JPS60141698A - Manufacture of silicon carbide whisker - Google Patents

Manufacture of silicon carbide whisker

Info

Publication number
JPS60141698A
JPS60141698A JP58251964A JP25196483A JPS60141698A JP S60141698 A JPS60141698 A JP S60141698A JP 58251964 A JP58251964 A JP 58251964A JP 25196483 A JP25196483 A JP 25196483A JP S60141698 A JPS60141698 A JP S60141698A
Authority
JP
Japan
Prior art keywords
reaction
raw material
silicon
gas
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58251964A
Other languages
Japanese (ja)
Inventor
Isao Kimura
功 木村
Tsuyoshi Nakamori
中森 強
Shigeo Shimizu
清水 滋夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP58251964A priority Critical patent/JPS60141698A/en
Publication of JPS60141698A publication Critical patent/JPS60141698A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Abstract

PURPOSE:To obtain a high-quality whisker in good yield by introducing a powdery silicon material, a carbonaceous material, and a catalyst into a reaction vessel along with hydrochloric acid, and allowing to react at a specified temp. CONSTITUTION:A mixture of a powdery silicon material such as SiO2 and Si3N4, a carbonaceous material such as carbon black and powdered activated carbon, and a finely powdered catalyst such as Fe, Ni, and Co is packed uniformly into a reaction vessel. Then the nonoxidative atmosphere is formed by introducing gaseous nitrogen, etc., and the temp. in the vessel is increased to 1,350-1,600 deg.C. Gaseous hydrogen chloride or chlorine is mixed with the nonoxidative gas, and introduced into the vessel to carry out the reaction. The reaction product is introduced into a muffle furnace, etc., and heated to oxidized and burn the unreacted carbonaceous material. The desired silicon carbide whisker is obtained in this way. The yield and purity of the whisker can be increased by this method.

Description

【発明の詳細な説明】 本発明は炭「ヒ珪素ウィスカーの製造方法に関するもの
にして、特に高品質ウィスカーを収車よく製造する方法
を提供するものである。ここで云う高品質とは繊維径細
く、繊維長長く、外観形状で屈曲、分岐がなく、夾雑物
のない事を意味し、又ウィスカーの収率とは原料珪素[
ヒ合物の珪素当)の炭化珪素ウィスカーの生成割合いを
意味する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing charcoal and arsenic whiskers, and particularly provides a method for producing high-quality whiskers with good yield.High quality here refers to fiber diameter. This means that the fibers are thin, have long fibers, have no bends or branches in appearance, and are free of impurities. Also, the whisker yield refers to the raw material silicon [
This refers to the ratio of silicon carbide whiskers produced in arsenic compounds (based on silicon).

炭化珪素ウィスカーの製法は大別すれば気相成長法と基
盤成長法とに類別出来る。前者は固体若しくは液体の出
発原料を9定の高温反応系内にて一旦気相状態にするか
、或いは最初から気体の出発ぷ料を該反応系内に送υ込
み、その系内で炭rヒ珪素をウィスカー伏に合成する方
法であシ、後者は9定の基盤上に珪素系及び炭素の固体
原料を置き、その場所でウィスカーを成長させる方法で
ある。前者は形状面で断面径数μ、長さ数騙になシ、所
謂“ウールライク′ウィスカーが得られるが収率が低く
、工業生産の面からは生産性の面で難点がある。又場合
によっては炭化珪素以外の化合物が夾雑物としてウィス
カー上に付着生成する場合もあシ蒋卯処理を必要とする
事もある。
Methods for producing silicon carbide whiskers can be broadly classified into vapor phase growth methods and base growth methods. In the former method, a solid or liquid starting material is once brought into a gaseous state in a high-temperature reaction system at a constant temperature, or a gaseous starting material is fed into the reaction system from the beginning, and the charcoal is produced in the system. This is a method of synthesizing arsenic in a whisker-free manner, and the latter is a method in which silicon-based and carbon solid raw materials are placed on a 90-degree substrate and whiskers are grown in that place. The former has a cross-sectional diameter of several microns in terms of shape and a length of several micrometers, so that so-called "wool-like" whiskers can be obtained, but the yield is low and there are problems in terms of productivity from an industrial production standpoint. In some cases, compounds other than silicon carbide may adhere to and form on the whiskers as impurities, which may require reed treatment.

後者は収率の大きい特徴を有するが6伏の外観を有する
様に繊維長が短かく、屈曲、分岐も出来島<、出発物質
との分離に困難を伴なう事が多い。
The latter is characterized by a high yield, but its fiber length is short so that it has a 6-fold appearance, and it is often difficult to separate from the starting material due to bending and branching.

基盤成長法にて気相成長法に近い細長くアスペクト孔大
なる高品質の現出珪素ウィスカーを収率よく製造するの
が最も好まし−。その方向の技術の例として特開昭57
−209813号公報、同58−125/+97号公報
及び同58−145700号公報に記載された方法があ
るがこれらの方法はオ匁殻灰及びシリカゲル等を代表と
した珪素原料とカーボンブラックを代表とした炭素源の
混合体を主原料とし、それに反応促進を目的とした触媒
及びフラックス効果を目的としてNa0Il を代表と
するアルカリ金属ハロゲン1ヒ物を混合した系を用いる
所に特徴を有する。然しなからこれらの方法は結果の面
から基盤成長法の域を出ず、細長く、アスペクト孔大な
る高品質ウィスカーは得られない。
It is most preferable to produce high-quality exposed silicon whiskers that are elongated, have large aspect pores, and have a good yield using a base growth method similar to that obtained using a vapor phase growth method. As an example of technology in that direction, JP-A-57
There are methods described in 209813, 58-125/+97 and 58-145700, but these methods use silicon raw materials such as ash and silica gel, and carbon black. The system is characterized in that it uses a mixture of carbon sources as the main raw material, mixed with a catalyst for the purpose of promoting the reaction and an alkali metal halide represented by Na0Il for the purpose of flux effect. However, in terms of results, these methods are no more than base growth methods, and high-quality whiskers that are elongated and have large aspect pores cannot be obtained.

本発明者等は全く異った成長法に基〈反応を同一系内で
行わ【−め目的とする高品質反出珪素ウィスカーを収率
よく製造する方法につき鋭意検討を重ね本発明を完成す
るに到った。
The present inventors have completed the present invention by conducting intensive studies on a method for producing the desired high-quality reproducible silicon whiskers in a high yield based on a completely different growth method. reached.

本発明方法は粉末状珪素原料、炭素原料及び触媒の混合
物を反応容器内に均一に充填し、非酸[ヒ性ガス存在下
、塩出水素又は塩素ガスを混合導入せしめ1350乃至
1600℃の温度で反応せしめることを特徴とする。
In the method of the present invention, a mixture of a powdered silicon raw material, a carbon raw material, and a catalyst is uniformly filled into a reaction vessel, and chlorinated hydrogen or chlorine gas is mixed and introduced in the presence of a non-acid [arsenic gas] at a temperature of 1350 to 1600°C. It is characterized by causing a reaction.

即ち、本発明方法は5102 を主たる成分とする珪素
原料と粉末状炭素原料とよりなる固体原料を基本体とな
し、それに酸(ヒ鉄を代表とする鉄、ニッケル、コバル
トのうちの何れかよりなる微粉末伏金属又はそれら金属
酸上物系化合物を反応促進剤としての触媒に使用し、更
に気相成長法に係わる反応促進剤として塩1ヒ水素又は
塩素ガスをキャリヤガスとして非酸比性ガス、例えば水
素、窒素、アルゴン、ヘリウムの如きガスのうち少くと
も1種と共に反応系内に流入させることよυなる。
That is, the method of the present invention is based on a solid raw material consisting of a silicon raw material containing 5102 as a main component and a powdered carbon raw material, and an acid (from any of iron, nickel, and cobalt, typified by arsenate). Finely powdered metals or their supermetallic acid compounds are used as catalysts as reaction accelerators, and salt 1, arsenic or chlorine gas is used as a carrier gas and non-acid specificity is used as a reaction accelerator. It is possible to flow into the reaction system together with at least one gas such as hydrogen, nitrogen, argon, and helium.

この場合Si O2を主たる成分とする珪素原料と粉末
状炭素よシなる固体原料に酸[ヒ鉄を代表とする触媒を
混合し、非酸化性ガスよりなるキャリヤガスを流通せl
、めで9定温度に保持する従来からの基盤成長法しこよ
る製法でtよ6伏の外観を有するflu長の短かいウィ
スカーを得るに止まるが、この反応系の中にギヤ1.1
ヤガスと共に塩化水素又d塩素ガスを混合して導入する
と生成するウィスカーの繊維長が長くなシ、且生成する
速度か早くなる現象を見出したのである。
In this case, a silicon raw material containing SiO2 as the main component and a solid raw material such as powdered carbon are mixed with an acid (a catalyst represented by arsenate), and a carrier gas consisting of a non-oxidizing gas is passed through.
However, in this reaction system, a gear 1.1
They discovered that when hydrogen chloride or d-chlorine gas is mixed and introduced with Yagas, the fiber length of the whiskers produced becomes longer and the generation rate becomes faster.

基盤成長法は原理的に次\の未反応に従ってウィスカー
を生成する。即ち 51o2+c −+ sio + a。
In principle, the base growth method generates whiskers according to the following unreacted results. That is, 51o2+c −+ sio + a.

SiO+20 −* SiO+ C0 この系の中に塩〔ヒ水素又は塩素ガスを導入する事によ
り気]ヒ性珪素比合物を迅速、多量発生させるようにな
夛、その結果従来の基盤成長法よシもウィスカーの繊維
長が長めになると共に短い時間内に生成して来る。
SiO+20 -* SiO+ C0 By introducing salt (arsenic or chlorine gas) into this system, the arsenic silicon compound can be generated rapidly and in large quantities, resulting in an improvement over conventional substrate growth methods. As the fiber length of the whiskers becomes longer, they are formed within a shorter period of time.

以下本発明方法を更に詳しく説明する。The method of the present invention will be explained in more detail below.

本発明方法で使用する珪素原料は5i02 、5i5N
4゜金属珪素の何五かであシ、峰の形態は何れの場合も
微粉状が好ましい。5i02としては珪石粉、粉状シリ
カゲル、籾殻灰、沈降性シリカがある。
The silicon raw materials used in the method of the present invention are 5i02, 5i5N
The shape of the peaks is preferably fine powder in any case. Examples of 5i02 include silica powder, powdered silica gel, rice husk ash, and precipitated silica.

粉末状炭素原料としてはカーボンブラック、粉末活性炭
が使えるが微粉で嵩高込原料程反応性が高いのでカーボ
ンブラックが好マしい。
Carbon black and powdered activated carbon can be used as the powdered carbon raw material, but carbon black is preferable because it is finer and has higher reactivity as the bulkier raw material.

反応促進剤として使用する触媒には鉄、ニッケル、コバ
ルトの夫々金属又はそれら金属の酸(ヒ物粉末の何れか
一種が使用さfする。
As the catalyst used as a reaction accelerator, metals such as iron, nickel, and cobalt, or acids of these metals (arsenic powder) are used.

上記微粉状珪素原料、炭素原料及び触媒の3成分を充分
に均一混合して使用するが珪素原料九対する炭素原料の
使用割合は重量比で100部に対し100乃至400部
で混合する(以丁割合は特にことわらぬ限り凡て重量比
)。この場合炭素原料の使用量が100部以下の場合に
は9定条件下の反応後珪素原料が炭山珪素に変換せず、
未反応のま\残留するものが増え、又400部以上にな
ると反応に関与しない炭素原料の残留分が増えるので何
れの場合とも好ましくない。
The above-mentioned three components, the fine powder silicon raw material, the carbon raw material, and the catalyst, are thoroughly and uniformly mixed and used, and the ratio of the carbon raw material to the silicon raw material is 100 to 400 parts per 100 parts by weight. All percentages are by weight unless otherwise specified.) In this case, if the amount of carbon raw material used is 100 parts or less, the silicon raw material will not be converted to coal-based silicon after the reaction under 9 constant conditions;
Both cases are unfavorable because the amount of unreacted and residual materials increases, and if the amount exceeds 400 parts, the amount of carbon raw materials that do not participate in the reaction increases.

触媒の使用量は通常珪素原料100部に対し0.05乃
至20部であり、005部未7^では触媒効力不足の為
ウィスカーの生成が不充分で処定条件下の反応後未反応
のま\の珪素原料が多く残留し、又20部以上使用して
も触媒粉体がそのま\生成ウィスカー内に残留し以後の
生成ウィスカーの精製処理を煩雑にする傾向を示す。
The amount of catalyst used is usually 0.05 to 20 parts per 100 parts of silicon raw material, and if the amount is less than 0.05 parts, whisker formation is insufficient due to lack of catalytic efficacy, and unreacted remains after the reaction under the treatment conditions. A large amount of the silicon raw material remains, and even if 20 parts or more of the catalyst powder is used, the catalyst powder tends to remain in the generated whiskers, making subsequent purification of the generated whiskers complicated.

本発明方法の反応容器は通常小規模の場合にはムライト
環、アルミナ製、の磁製管、黒鉛製パイプを使用し、更
に規模の拡大と共にこれらセラミック材料をもって組立
てた箱型容器を使用する。
When the reaction vessel of the present invention is small-scale, a mullite ring, an alumina porcelain tube, or a graphite pipe is usually used, and when the scale is expanded, a box-shaped vessel made of these ceramic materials is used.

本発明における焼成温度は少くとも1350℃以上、1
600℃以下で、好ましくは1400℃以上、1550
℃以下、最も好ましくは1450乃至1500℃の温度
域である。1350℃未満ではウィスカーの生成が不充
分で未反応のま\の珪素原料の残留が多く、一方160
0℃を超えると反応条件が過激になるためウィスカーの
繊維径が肥大「ヒしてアスペクト比が小さくなシ、又分
岐、折れ曲り等形態の乱れが多発して来るので好I L
 < Jrい。加熱手段は如何なるものでもよいが電気
加熱系が使用し易い。
The firing temperature in the present invention is at least 1350°C or higher, 1
Below 600°C, preferably above 1400°C, 1550°C
The temperature range is 1450 to 1500°C, most preferably 1450 to 1500°C. At temperatures below 1350°C, whisker formation is insufficient and a large amount of unreacted silicon raw material remains;
If the temperature exceeds 0°C, the reaction conditions become extreme, and the fiber diameter of the whiskers increases.
<Jr. Although any heating means may be used, an electric heating system is easily used.

本発明方法においては反応促進剤として塩化水素又は塩
素ガスの使用を必須とするが該ガスを非酸[ヒ性ガス即
ちキャリヤガスに混合して使用するに当りその北本は通
常容積比としてキャリヤガス100部に対し塩1ヒ水素
又は塩素ガスは[L5乃至50部を加える。この場合好
ましくは1乃至20部、更に好ましくは3乃至15部で
ある。しかしてこの混合ガスを10乃至1000 mf
f/min の流量でもって好ましくは30乃至500
 mA/min でもって反応系内に導入する。
In the method of the present invention, it is essential to use hydrogen chloride or chlorine gas as a reaction accelerator; For every 100 parts of salt, add 5 to 50 parts of arsenic or chlorine gas. In this case, the amount is preferably 1 to 20 parts, more preferably 3 to 15 parts. However, the mixed gas is 10 to 1000 mf
Preferably from 30 to 500 with a flow rate of f/min
It is introduced into the reaction system at a rate of mA/min.

塩化水素又は塩素ガスの混合割合が05部未満の場合は
基盤成長における反応促進効果が乏しくなる傾向を示す
。一方、混合割合が50部を超えると珪素原料と該ガス
との反応が支配的になり、かえってウィスカーの生成違
が減少して来る傾向を示す。
If the mixing ratio of hydrogen chloride or chlorine gas is less than 0.5 parts, the effect of promoting the reaction in substrate growth tends to be poor. On the other hand, when the mixing ratio exceeds 50 parts, the reaction between the silicon raw material and the gas becomes dominant, and the generation of whiskers tends to decrease.

本発明方法における反応時間は通常30分以上4時間迄
であるが50分未満では未反応珪素原料が残留し易く、
又4時間を超える反応時間は無意味であル、特に好まし
くは1乃至2時間の範囲である。
The reaction time in the method of the present invention is usually from 30 minutes to 4 hours, but if it is less than 50 minutes, unreacted silicon raw materials tend to remain.
Further, a reaction time exceeding 4 hours is meaningless, and a reaction time of 1 to 2 hours is particularly preferred.

本発明に係わる珪素原料、炭素原料及び触媒の粉末混合
物は通常反応管内部に直接均一に分散充填する方法及び
磁製又は黒鉛板に散布して反応系内に充填する方法の何
れでも実施可能であるが反応促進剤であるinlヒ水素
又は塩素ガスとの接触が充分行えるよう均一に充填する
事が望ましい。
The powder mixture of the silicon raw material, carbon raw material, and catalyst according to the present invention can be normally dispersed and filled directly into the reaction tube or filled into the reaction system by being spread on a porcelain or graphite plate. However, it is desirable to uniformly fill the gas to ensure sufficient contact with the reaction accelerator, i.e., arsenic or chlorine gas.

キャリヤガスとして水素を使用する場合には反応系内を
先ず窒素、アルゴン、ヘリウムの如き不活性ガスで事前
に充分置換した後に水素及び反応促進剤である塩1ヒ水
素又は塩素との混合ガスを導入し加熱反応を進め、9定
時間経過後は該混合ガスの導入を停止した後再び不活性
ガスの導入にきシがえ、系内のガスを置換した後反応生
成物を取シ出す。反応生成物は通常一旦700〜800
CK加熱したマツフル炉内に入れて未反応のま\残って
いる炭素原料を酸比焼却して目的とする炭化珪素ウィス
カーを得る。反応容器から反応生成物を取シ出す場合、
通常珪素原料のと部に嵩高く目的とするウィスカー生成
物が生成しており、本発明方法に係わる処定条件下の反
応においてはこの底部に残存する未反応珪素原料は殆ど
皆無であるが、若干でも存在する場合においても生成物
との形状の淋いによって簡単に分離出来るものであり、
又121単に分離出来るのが本発明方法の特長でもある
。分離後上記焼却処理して得られたウィスカーは殆ど夾
雑物を有さない炭化珪素よりなってhるが尚f#製を必
要とする場合には通常得られたウィスカーを10〜46
チ弗酸に浸請し、室温下又は70〜80’C加温して炭
化珪素以外の珪素fヒ合物を溶解処理後水洗して精製す
る。
When hydrogen is used as a carrier gas, the reaction system is first sufficiently purged with an inert gas such as nitrogen, argon, or helium, and then a mixed gas of hydrogen and a reaction accelerator, a salt of arsenic or chlorine, is added. The mixed gas is introduced and heated to proceed with the reaction, and after 9 fixed hours have elapsed, the introduction of the mixed gas is stopped, and then the introduction of an inert gas is resumed. After replacing the gas in the system, the reaction product is taken out. The reaction product is usually 700 to 800
The material is placed in a Matsufuru furnace heated by CK, and the remaining unreacted carbon material is incinerated with an acid ratio to obtain the desired silicon carbide whiskers. When removing the reaction product from the reaction vessel,
Normally, a bulky and desired whisker product is formed at the bottom of the silicon raw material, and in the reaction under the treatment conditions related to the method of the present invention, there is almost no unreacted silicon raw material remaining at the bottom. Even if a small amount exists, it can be easily separated from the product due to its poor shape.
Another feature of the method of the present invention is that 121 can be simply separated. The whiskers obtained by the above-mentioned incineration treatment after separation are made of silicon carbide with almost no impurities, but if F# product is required, the whiskers obtained are usually
It is immersed in dihydrofluoric acid and heated at room temperature or 70 to 80'C to dissolve silicon f arsenide other than silicon carbide, and then purified by washing with water.

本発明方法による場合珪素原料の珪素を基にした炭「じ
珪素ウィスカーの収車は85〜100係であり、反応促
進剤である塩1ヒ水素又は塩素ガスを使用しない場合に
比しウィスカーの純度及び収率共に高す値が得られる所
に大きな特長を有する。
In the case of the method of the present invention, the yield of silicon whiskers is 85 to 100% due to charcoal based on silicon as a silicon raw material, and compared to the case where salt 1 arsenic or chlorine gas as a reaction accelerator is not used. It has the great advantage of achieving high values for both purity and yield.

更に本発明方法による場合同一条件下反応促進剤である
塩1ヒ水素又は塩素ガスを使用しない場合に比し得られ
たウィスカーの嵩密度が小さくなる傾向がある。即ち反
応促進剤を使用しない場合には0.15〜0.2g/c
jであるのに対し末法にお−ては0.1〜0.15g/
−の嵩高いウィスカーが得られる。それをウィスカーの
繊維径、繊維長、アスペクト比よシ対比すれば前者条件
の対照法では夫々が0.5〜1μ、50〜100μ、5
0〜100に対し、後者条件の本発明方法に係わる場合
にはそれが0.5〜1μ、100〜500μ、100〜
500となシ、本製法による形態上の特質が明らかであ
る。
Furthermore, when the method of the present invention is used, the bulk density of the resulting whiskers tends to be smaller than when the reaction accelerator salt 1 arsenide or chlorine gas is not used under the same conditions. That is, 0.15 to 0.2 g/c when no reaction accelerator is used.
j, whereas in the powder method it is 0.1-0.15g/
− Bulky whiskers are obtained. Comparing this with the whisker fiber diameter, fiber length, and aspect ratio, in the control method under the former condition, the values are 0.5 to 1μ, 50 to 100μ, and 5μ, respectively.
0 to 100, when the latter condition is involved in the method of the present invention, it is 0.5 to 1μ, 100 to 500μ, 100 to
500, the morphological characteristics of this manufacturing method are obvious.

ウィスカーを製造し、それを金属、セラミック、プラス
チックに対する強化剤として使用する場合、強1ヒ剤が
出来る限9安価であると共に旦通常一般の成型手段で複
合1ヒ出来る限り、アスペクト比の大なるウィスカー程
好ましいが本発明方法はまさにそれを実現した製法であ
る所に最大の特徴を有するものである。
When producing whiskers and using them as reinforcing agents for metals, ceramics, and plastics, it is important to use strong additives that are as cheap as possible, and as long as they can be composited using conventional molding methods. Although whiskers are more preferable, the method of the present invention has the greatest feature in that it is a manufacturing method that achieves just that.

以下本発明を実施例にもとづ〜四に詳細に説明する。The present invention will be described in detail below based on Examples.

実施例1 平均粒径5〜10μの沈降性シリカ5gに粉末状酸「ヒ
鉄Q、05g及びカーポンプシック(ライオン油脂製ケ
ッグユンブラックEC)10gを事前に充分よく混合分
散した後外径65MX内径60賜×長さ1000a+の
アルミナ管の中央に均一に分散充填し、それをシリコニ
ット電気炉に挿入した。仄いで窒素ガスを100 ml
/m1mの流量にて1時間管内に4人した後5℃/mi
nの昇温速度にて炉の中心部温度が1480℃になる迄
加熱した。内温が1000℃になってがら窒素ガスを停
止し、次いで塩]ヒ水素を5m2/minと水素を50
 n+fi/min の流量にて混合しながら反応管内
に導入しつつ管内温度1480℃のまま90分保持した
。次いで徐々に降温させなから臘1ヒ水素と水素の導入
を停止し、反応管内を窒素ガスに切り換えてから内容物
を取シ出した。内容物は黒縁色で軽量の嵩高い塊であシ
、アルミナ管に接した部分に未反応シリカは認められな
かった。
Example 1 After thoroughly mixing and dispersing 5 g of precipitated silica with an average particle size of 5 to 10 μm, 5 g of powdered acid Arsenic Q, 05 g and 10 g of Carpon Thick (Keg Yun Black EC manufactured by Lion Oil Co., Ltd.), an outer diameter of 65 MX was prepared. It was evenly distributed and filled in the center of an alumina tube with an inner diameter of 60 mm and a length of 1000 mm, and then inserted into a siliconite electric furnace.
5℃/mi after placing 4 people in the tube for 1 hour at a flow rate of /ml1m
The furnace was heated at a heating rate of n until the temperature at the center of the furnace reached 1480°C. Stop the nitrogen gas supply while the internal temperature reaches 1000°C, then add 5 m2/min of salt] arsenic and 50 m2/min of hydrogen.
The mixture was introduced into the reaction tube while being mixed at a flow rate of n+fi/min, and the temperature inside the tube was maintained at 1480° C. for 90 minutes. Next, the introduction of arsenic and hydrogen was stopped while the temperature was gradually lowered, the inside of the reaction tube was switched to nitrogen gas, and the contents were taken out. The contents were a bulky, lightweight mass with black edges, and no unreacted silica was observed in the area in contact with the alumina tube.

この塊状物を800℃のマツフル炉内で3時間焼成した
結果炭〔ヒ珪素ウィスカーとして3.3gが得られた。
This lump was fired in a Matsufuru furnace at 800° C. for 3 hours, resulting in 3.3 g of charcoal (arsenic whiskers).

これを使用したシリカ原料の珪素を基にした収車として
99チであった。このものを46係弗酸で40℃70時
間浸漬後充分水洗して乾燥処理した後の精製収車は95
チであった。得られたウィスカーの形状は分岐、折れ曲
シはなく、繊維径、繊維長、アスペクト比tri 夫k
 Q、 5− I It、100〜400.c+、20
0−400であシ、嵩密度はQ、 129/eII!で
あった。
It was 99cm as a pickup truck based on silicon, which is a silica raw material. After immersing this material in 46-hydrofluoric acid at 40°C for 70 hours, thoroughly washing it with water and drying it, the purified product was 95%
It was Chi. The shape of the obtained whiskers has no branches or bends, and the fiber diameter, fiber length, and aspect ratio are
Q, 5-I It, 100-400. c+, 20
0-400, bulk density is Q, 129/eII! Met.

比較例1 実施例1の反応条件において塩〔ヒ水素を全く使用せず
、水素のみをキャリヤガスとして53mIt/winの
流量で導入する以外は凡て同一条件のもと実施した。反
応終了後塊状の反応生成物を取シ出しだ所アルミナ管に
接した部分に白色粉状の未反応シリカが認められた。そ
の粉状体を分離した塊状物を実施例1と同一条件下焼成
した新炭[ヒ珪素ウィスカーとして2.8gが得られた
。これは使用したシリカ原料の珪素を基にした収ぶとし
て65俤であった。このものを更に実施例1と同一条件
下弗酸処理した精製収率け71係であった。得られたウ
ィスカーの形状は繊維径、繊維長、アスペクト北天々が
0.5〜1μ、40〜80μ、80〜150であり、嵩
密度は0 、2 g/cdであった。
Comparative Example 1 The reaction was carried out under the same conditions as in Example 1 except that no salt (arsenic) was used and only hydrogen was introduced as a carrier gas at a flow rate of 53 mIt/win. After the reaction was completed, the lumpy reaction product was taken out, and unreacted silica in the form of white powder was observed in the area in contact with the alumina tube. The lumps from which the powder was separated were fired under the same conditions as in Example 1 to obtain 2.8 g of new coal (as arsenic whiskers). This amount was 65 yen based on the silicon of the silica raw material used. This product was further purified with hydrofluoric acid under the same conditions as in Example 1, resulting in a purification yield of 71. The shape of the obtained whiskers was such that the fiber diameter, fiber length, and aspect ratio were 0.5 to 1 μ, 40 to 80 μ, and 80 to 150, and the bulk density was 0.2 g/cd.

実施例2 平均径10μの窒化珪素粉体5pに鉄微粉末llL01
g及び実施例1で使用1−たカーボンブラック5gを加
え、相互によく混合した。
Example 2 Fine iron powder llL01 on silicon nitride powder 5p with an average diameter of 10μ
g and 5 g of the carbon black used in Example 1 were added and mixed well.

次いで実施例1で使用したアルミナ管と同じ寸法のムラ
イト製磁製管の中に5(INLX200Uのアルミナ製
平板を挿入し、その上面に上記5者混合原料を均一厚み
になるよう充填した。
Next, an alumina flat plate of 5 (INL

この状態で墾SCガス80 mN/m1nとJi水素ガ
スrtrN/m i n の混合ガスを反応管に導入、
実施例1と同一昇温速度のもと1480℃に迄外温させ
、その温度で120分保持した。次いで塩素ガスの導入
を停止して窒素ガスのみを流しつつ降温させてから内容
物を取シ出した。
In this state, a mixed gas of 80 mN/m1n of SC gas and rtrN/min of Ji hydrogen gas was introduced into the reaction tube.
The temperature was externally heated to 1480° C. at the same temperature increase rate as in Example 1, and the temperature was maintained for 120 minutes. Next, the introduction of chlorine gas was stopped, and while only nitrogen gas was allowed to flow, the temperature was lowered, and then the contents were taken out.

内容物は暗緑色で嵩高いケーク伏であり、アルミナ製平
板に接した面に施かに白色粉体が付着していた。
The contents were a dark green, bulky cake with white powder adhered to the surface in contact with the alumina flat plate.

白色粉体を除いたケーク状物を700℃のマツフル炉内
で4時間焼成した結果炭化珪素ウィスカーとして2.4
gが得られた。これは使用した室1ヒ珪素原料の珪素を
基とした収車で93チで必うた。このものを46係弗酸
で70℃24時間′&漬後充分水洗して乾燥処理した後
の謂製収烏は90e6であった。得られたウィスカー形
状は屈曲なく、嵩密度は0.1g/Cイであった。
The cake-like material excluding the white powder was baked in a Matsufuru furnace at 700°C for 4 hours, resulting in a silicon carbide whisker of 2.4
g was obtained. This was achieved by a 93-chi model based on the silicon-based arsenic raw material used. This product was soaked in 46-hydrofluoric acid at 70° C. for 24 hours, thoroughly washed with water, and dried, and the so-called yield was 90e6. The resulting whisker shape had no bending, and the bulk density was 0.1 g/Ci.

比較例2 実施例2の反応条件において塩素ガスを全(使用せず、
窒素のみをギヤ+1ヤガスとして84mA/min の
流量で導入する以外は凡て同一条件のもとに実施した。
Comparative Example 2 Under the reaction conditions of Example 2, all chlorine gas (no use,
All experiments were conducted under the same conditions except that only nitrogen was introduced as a gear+1 gas at a flow rate of 84 mA/min.

反応終了後塊状の反応生成物を取シ出した所アルミナ製
平板に接した部分には白色粉体が層状で残留していた。
When the reaction product in the form of a lump was removed after the reaction was completed, a layer of white powder remained in the area in contact with the alumina flat plate.

この層状残留物を除去した塊状物を実施例2と同一条件
下焼成した新炭(ヒ珪素ウィスカーとして0.72yが
得られた。これは使用した重比珪素原料の珪素を基とし
た収車で28係であった。このものを更に実施例2と同
一条件下弗酸処理した後のf1M収率l−1:544で
あった。得られたウィスカーの嵩密度はα24g/−で
あった。
New coal (0.72y as arsenic whiskers) was obtained by burning the lumps from which the layered residue was removed under the same conditions as in Example 2. This material was further treated with hydrofluoric acid under the same conditions as in Example 2, and the f1M yield was l-1:544.The bulk density of the obtained whiskers was α24 g/-. .

実施例3 微粉末状金属珪素10FK酸比ニツケル粉体a5gとカ
ーボンブラック25.9とを充分よく混合して実施例1
で使用したアルミナ製磁製管の中央に均一に分散充填し
、それを管状電気炉に挿入した。次いで窒素ガスを10
0 yJ/minの流量にて1時間管内に導入した後実
施例1と同一昇温速度のもと炉の中心温度が1500℃
になる迄加熱した。内温か500℃になってから窒素ガ
スの流量を10 mQ/rn1nIC迄低下させると共
に塩1ヒ水素を2 m+j!/minと水素を50 m
fl /minの流量下6者ガスを混合しながら反応管
内に導入し、反応管温度を1500℃の1\60分保持
した。次すで徐々忙降温させながら塩1ヒ水素と水素の
導入を停止し、窒素ガスのみを1[10rJ!/min
 の流量で流して管内ガスヲ凡て窒素に置きかえた後内
容物を取り出した。
Example 3 Finely powdered metal silicon 10FK acid ratio nickel powder a5g and carbon black 25.9 were thoroughly mixed to form Example 1
It was evenly distributed and filled in the center of the alumina porcelain tube used in , and then inserted into a tubular electric furnace. Then add nitrogen gas for 10
After introducing it into the tube for 1 hour at a flow rate of 0 yJ/min, the center temperature of the furnace reached 1500°C under the same temperature increase rate as in Example 1.
It was heated until it was. After the internal temperature reaches 500℃, reduce the flow rate of nitrogen gas to 10 mQ/rn1nIC and add 2 m+j of salt 1 arsenic! /min and hydrogen at 50 m
The six gases were introduced into the reaction tube while being mixed at a flow rate of fl/min, and the reaction tube temperature was maintained at 1500° C. for 1\60 minutes. Next, while gradually lowering the temperature, the introduction of salt 1 arsenic and hydrogen was stopped, and only nitrogen gas was introduced at 1 [10 rJ! /min
After all the gas in the tube was replaced with nitrogen, the contents were taken out.

Claims (5)

【特許請求の範囲】[Claims] (1) 粉末状珪素原料、炭素原料及−び触媒の混合−
物を反応容器内に均一充填し、非酸fヒ性ガス存在下、
塩(ヒ水素又は塩素ガスを混合導入せしめ1350乃至
1600℃の温度で反応せしめることを特徴とする炭化
珪素ウィスカーの製造方法。
(1) Mixing of powdered silicon raw material, carbon raw material and catalyst
Fill the reaction container uniformly, and in the presence of non-acidic arsenic gas,
A method for producing silicon carbide whiskers, which comprises introducing a mixture of salt (arsenic or chlorine gas) and reacting at a temperature of 1350 to 1600°C.
(2) 珪素原料が5i02 、 Si3N4又は金属
珪素である特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the silicon raw material is 5i02, Si3N4, or metallic silicon.
(3) 炭素原料がカーボンブラック又は粉末活性炭で
ある特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the carbon raw material is carbon black or powdered activated carbon.
(4) 触媒が微粉末状鉄、ニッケル、コバルトの金属
又はそれら金属酸化物である特許請求の範囲第1項記載
の方法。
(4) The method according to claim 1, wherein the catalyst is a finely powdered metal of iron, nickel, or cobalt, or an oxide of these metals.
(5) 非酸化性ガスが水素、窒素、ヘリウム又はアル
ゴンである特許請求の範囲第1項記載の方法。
(5) The method according to claim 1, wherein the non-oxidizing gas is hydrogen, nitrogen, helium or argon.
JP58251964A 1983-12-28 1983-12-28 Manufacture of silicon carbide whisker Pending JPS60141698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58251964A JPS60141698A (en) 1983-12-28 1983-12-28 Manufacture of silicon carbide whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251964A JPS60141698A (en) 1983-12-28 1983-12-28 Manufacture of silicon carbide whisker

Publications (1)

Publication Number Publication Date
JPS60141698A true JPS60141698A (en) 1985-07-26

Family

ID=17230604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251964A Pending JPS60141698A (en) 1983-12-28 1983-12-28 Manufacture of silicon carbide whisker

Country Status (1)

Country Link
JP (1) JPS60141698A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141123A (en) * 1985-12-16 1987-06-24 Idemitsu Kosan Co Ltd Production of fibrous carbonaceous material
JPS6451399A (en) * 1987-08-17 1989-02-27 Ofic Co Production of silicon carbide whisker
US4892693A (en) * 1987-07-24 1990-01-09 Aluminum Company Of America Method of making filament growth composite
US4971834A (en) * 1989-06-29 1990-11-20 Therm Incorporated Process for preparing precursor for silicon carbide whiskers
TWI381928B (en) * 2009-07-23 2013-01-11 Ind Tech Res Inst Composition and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141123A (en) * 1985-12-16 1987-06-24 Idemitsu Kosan Co Ltd Production of fibrous carbonaceous material
US4892693A (en) * 1987-07-24 1990-01-09 Aluminum Company Of America Method of making filament growth composite
JPS6451399A (en) * 1987-08-17 1989-02-27 Ofic Co Production of silicon carbide whisker
US4971834A (en) * 1989-06-29 1990-11-20 Therm Incorporated Process for preparing precursor for silicon carbide whiskers
TWI381928B (en) * 2009-07-23 2013-01-11 Ind Tech Res Inst Composition and use thereof

Similar Documents

Publication Publication Date Title
JPH0134925B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS60141698A (en) Manufacture of silicon carbide whisker
JPS6122000A (en) Preparation of silicon carbide whisker
JPS5855316A (en) Manufacture of silicon nitride powder
JPS623098A (en) Production of silicon carbide whisker
TWI297672B (en) Method for synthesizing aluminum nitride and composite thereof
JPS58172297A (en) Manufacture of sic whisker
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
JPS5855315A (en) Manufacture of silicone nitride powder
JPS5891018A (en) Manufacture of fine nitride powder
JPS6259599A (en) Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide
JPS58176109A (en) Production of alpha-type silicon nitride
JPS5891027A (en) Manufacture of silicon carbide powder
JPS58125697A (en) Preparation of sic whisker
JPS6126600A (en) Preparation of beta type silicon carbide whisker
JPS6272600A (en) Production of silicon carbide whisker
JPS60131899A (en) Manufacture of silicon carbide whisker
JPH0693517A (en) Modified section fibrous sic and its production
JPH03232800A (en) Production of silicon carbide whisker
JPS5845196A (en) Manufacture of silicon carbide whiskers
JPH04270199A (en) Production of silicon carbide whisker
JPS6117764B2 (en)
JPS6259600A (en) Production of fibrous aggregate of silicon nitride oxide
JPS58204813A (en) Preparation of powdery carbide and nitride of silicon