JPS606884B2 - Method for producing α-type silicon nitride powder - Google Patents

Method for producing α-type silicon nitride powder

Info

Publication number
JPS606884B2
JPS606884B2 JP5175277A JP5175277A JPS606884B2 JP S606884 B2 JPS606884 B2 JP S606884B2 JP 5175277 A JP5175277 A JP 5175277A JP 5175277 A JP5175277 A JP 5175277A JP S606884 B2 JPS606884 B2 JP S606884B2
Authority
JP
Japan
Prior art keywords
powder
si3n4
particle size
type
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5175277A
Other languages
Japanese (ja)
Other versions
JPS53137899A (en
Inventor
寛 井上
多禾夫 太田
勝利 米屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5175277A priority Critical patent/JPS606884B2/en
Publication of JPS53137899A publication Critical patent/JPS53137899A/en
Publication of JPS606884B2 publication Critical patent/JPS606884B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はQ型窒化けし、素(Q型Si3N4)粉末の製
造方法に係り、高い品位のQ型Si3N4粉末を高い収
率で得られる製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing Q-type poppy nitride, bare (Q-type Si3N4) powder, and relates to a method for producing Q-type Si3N4 powder of high quality with a high yield.

例えば窒化けい素一酸化イットリウムもしくは酸化マグ
ネシウム(Si3N4‐Y203もしくはSi3N4−
Mg○)系焼縞体は機械的強度が高く且つ耐熱性もすぐ
れているため高温ガスタービン部材への適用が試みられ
ている。
For example, silicon nitride, yttrium monoxide or magnesium oxide (Si3N4-Y203 or Si3N4-
Since Mg○)-based fried stripes have high mechanical strength and excellent heat resistance, attempts have been made to apply them to high-temperature gas turbine components.

しかして上記Si3N4系焼結体を高温高応力材料とし
て実用に供する場合には高温時における物理的、化学的
安定性と信頼性が厳しく要求される。とりわけ重要な因
子である熱的、機械的特性は出発原料の種類、不純物含
有量に大きく影響され窒化けし、素についてはできるだ
けQ型Si3N4粉末を多く含んでいることが望まれる
。ところでSi3N〆分末の合成法としては一般に‘1
} 金属けし、素粉末を窒化させる方法$i+2N2→
Si3N4■ 四塩化けし、素やシランとアンモニアを
原料とする気相反応法$iC夕4 十4NH3→Si3
N4十12HC〆【31シリカ(Si02)を反応量論
比程度のカーボン(C)で還元して得たSi○を窒化す
る方法$i02十に十2N2一Si3N4十的0が探ら
れている。
However, when the Si3N4-based sintered body is used as a high-temperature, high-stress material, physical and chemical stability and reliability at high temperatures are strictly required. Thermal and mechanical properties, which are especially important factors, are greatly influenced by the type of starting materials and the content of impurities, and it is desirable that the material contains as much Q-type Si3N4 powder as possible. By the way, the synthesis method for Si3N finalization is generally '1
} Method of nitriding metal poppy and raw powder $i+2N2→
Si3N4■ Gas-phase reaction method using poppy tetrachloride, base, silane, and ammonia as raw materials $iC 4 14NH3→Si3
A method of nitriding Si○ obtained by reducing silica (Si02) with carbon (C) in a reaction stoichiometric ratio is being explored.

これらの方法はいずれも長月、 月が 純にどの方法がすぐれているとの判定は危険であり、通
常は要求とされる特性に合った方法が採用される。
All of these methods have a long lifespan, and it is dangerous to judge which method is simply superior, so the method that meets the required characteristics is usually adopted.

この中【3’のSi02還元法についてはシリコンオキ
シナィトラィド(Sj20N2)、炭火けし、素(SI
C)の温存により生成するSi3N4粉末の純度が、低
下すると言う短所が認められる。これを改良するため金
属けし、素粉(Si)を反応系に少量添加することによ
ってかなり良質なSiが4粉末を合成しうる。しかし上
記Si粉末の添加効果は、添加するSi粉末の平均粒径
に大きく依存し、一般に素原料である。Si02に対し
重量比で0.1以上の添加を要し、そのため生成粉は粗
大化する鏡向が認められる。本発明者らはこのSi02
還元によるSj3N4合成においてSi粉末の粒度とS
i添加効果の関係に注目し実験、検討を進めた結果ト特
に微細なSi粉末を用いると徴量の添加でも効果が表わ
れ、合成粉の純度化や特性をさらに改善できることを見
し、出した。
Among these, for the Si02 reduction method [3'], silicon oxynitride (Sj20N2), charcoal, and elemental (SI
A disadvantage is that the purity of the Si3N4 powder produced by preserving C) is reduced. To improve this, by adding a small amount of metal powder (Si) to the reaction system, a fairly high quality Si powder can be synthesized. However, the effect of adding the Si powder greatly depends on the average particle size of the added Si powder, which is generally a raw material. It is necessary to add 0.1 or more in weight ratio to Si02, and as a result, the resulting powder is observed to have a coarse grain pattern. The inventors have developed this Si02
In Sj3N4 synthesis by reduction, the particle size of Si powder and S
As a result of conducting experiments and studies focusing on the relationship between the effects of i addition, we found that when using particularly fine Si powder, even small amounts of Si powder are effective, and that the purity and properties of synthetic powders can be further improved. did.

すなわち無定形で0.1ym以下の高純度Sj02Cを
原料とし、添加するSi粉末を0.5山風以下に制限し
た混合粉を所定温度で窒化反応し、必要に応じて酸化性
雰囲気中で加熱処理した場合、Q型Si3N4含有率が
極めて高く「微細な粉末が合成されることを見し、出し
た。本発明はこのような知見に基づき、煩雑な操作乃至
装置を菱せずにSi3N4系の高温高応力材料用として
適するQ型Si3N4粉末を橋収率で得られる製造方法
を提供しようとするものである。
In other words, a mixed powder made of amorphous high-purity Sj02C of 0.1 ym or less and limited to 0.5 Yamakaze or less of added Si powder is subjected to a nitriding reaction at a predetermined temperature, and if necessary, heat-treated in an oxidizing atmosphere. Based on this knowledge, the present invention is based on the knowledge that the Q-type Si3N4 content is extremely high and a fine powder is synthesized. The present invention aims to provide a manufacturing method capable of obtaining Q-type Si3N4 powder suitable for use in high-temperature, high-stress materials with a high bridge yield.

以下本発明を詳細に説明すると、本発明は重量比で無定
形かつ平均粒度0.1仏の以下のシリカ(Si02)粉
末1、無定形かつ平均粒度0.1ぶれ以下のカーボン(
C)粉末0.4〜4、および平均粒度0.5仏の以下の
金属けし、素(Si)粉末0.01〜0.1の割合から
なる混合粉末を、窒素を含む雰囲気中1350〜150
000で加熱処理し、還元、窒化反応させ、要すればさ
らに酸化性雰囲気下600〜80000で加熱処理を施
すことを特徴とするQ型窒化けい素(Q−Sj3N4)
粉末の製造方法である。
The present invention will be described in detail below.The present invention consists of 1 silica (Si02) powder, which is amorphous and has an average particle size of 0.1 degrees or less, and carbon (1), which is amorphous and has an average particle size of 0.1 degrees or less, by weight.
C) A mixed powder consisting of a powder of 0.4 to 4, and a metal poppy with an average particle size of 0.5 or less, and an elemental (Si) powder of 0.01 to 0.1, was heated to 1350 to 150 in an atmosphere containing nitrogen.
Q-type silicon nitride (Q-Sj3N4) characterized by being heat treated at 000C, reduced and nitrided, and if necessary further heat treated at 600 to 80000C in an oxidizing atmosphere.
This is a method for producing powder.

本発明において出発原料として用いるシリカーカーポン
−けい素(Si02−C−Si)混合系において無定形
Si02:無定形C:Sjを1対0.4〜4対0.01
〜0.1の重量割合に選ぶのは次の理由による。すなわ
ち重量比でSi021当りCが0.4未満ではSi02
が禾反応として残留し、かつSi202の多量生成がみ
られる反面Q型Si3N4の生成量が少なく、また4を
超えるとB型Si3N4およびSICの生成が顕著とな
り、結果的にq−Si3N4の純度、収率が低下する。
一方重量比でSi021に対するSiの比が0.01〜
0.1重量部の場合Q−Si3N4の高収率化効果が大
で且つ粒度のそろった高品質のものを容易に得られる。
しかしてこれら無定形のSi02、CおよびSiの各原
料組成分はいずれも99%程度以上の高純度品が好まし
いが、さらに重要なことは特に原料の平均粒度で、Si
02およびCは0.1rの以下の無定形、超微粉が選ば
れ、添加するSiの平均粒度は0.6仏肌以下であるこ
とが必要である。
In the silica carbon-silicon (Si02-C-Si) mixed system used as a starting material in the present invention, amorphous Si02:amorphous C:Sj is 1:0.4 to 4:0.01.
The reason why the weight ratio is selected to be 0.1 is as follows. That is, if the weight ratio of C per Si021 is less than 0.4, Si02
remains as a hydrogen reaction, and a large amount of Si202 is produced, but on the other hand, the amount of Q-type Si3N4 produced is small, and when it exceeds 4, the production of B-type Si3N4 and SIC becomes significant, and as a result, the purity of q-Si3N4, Yield decreases.
On the other hand, the weight ratio of Si to Si021 is 0.01~
When the amount is 0.1 parts by weight, the effect of increasing the yield of Q-Si3N4 is large and high quality products with uniform particle size can be easily obtained.
Therefore, it is preferable that each of these amorphous Si02, C and Si raw material compositions have a high purity of about 99% or more, but what is more important is the average particle size of the raw materials,
For 02 and C, an amorphous, ultrafine powder of 0.1r or less is selected, and the average particle size of the added Si must be 0.6 grains or less.

もし、上記より平均粒度(粒度)が大きいといずれの場
合もSICがやや多く、生成したり「反応率が低下した
り生成粉の粒径も大きくなるなど好ましくない結果が生
じ易い。なお上記の如き無定形のSi02及びC粉末は
市販のものを用いる事ができ、又Si金属粉末は例えば
通常のSi金属粉末の製造方法であるSi比の気相反応
の加熱分解法によって得たものを分粒して用いる事がで
きる。本発明においてSi02−C−Si混合物の加熱
生成に際し、その雰囲気はN2,NH3,N2一水素(
日2)9N2一不活性ガスなどの系が挙げられるが主反
応ガスはN2またはN公でなければならない。
If the average particle size (particle size) is larger than the above, in any case, there will be a little more SIC, and undesirable results are likely to occur, such as the formation of SIC, a decrease in the reaction rate, and an increase in the particle size of the produced powder. Commercially available amorphous Si02 and C powders such as Si02 and C powders can be used, and Si metal powders obtained by thermal decomposition of gas phase reaction of Si ratio, which is a common method for producing Si metal powders, can be used. It can be used in the form of granules.In the present invention, when heating the Si02-C-Si mixture, the atmosphere is N2, NH3, N2 monohydrogen (
2) A system such as 9N2-inert gas may be used, but the main reaction gas must be N2 or N gas.

その理由はこれらのガスが最終的に高純度のQ型Si3
N4の生成に大きく影響することが実験的に確認された
からである。一方このN2またはNH3を主反応ガスと
する雰囲気中での加熱焼成温度は1350〜1500q
oの範囲内に選ばれる。その理由は135000未満で
はSi3N4が生成し難く、また150000を超える
とSICの生成がみられ、結局所望の、高温高応力材料
用に適するQ型Si3N4系粉末を得られないからであ
る。さらに上記N2などを主反応ガスとした雰囲気中で
の加熱暁生後、必要に応じて酸化性雰囲気下での加熱処
理は残存しているCの除去を目的としたものであるがそ
の温度は600〜80000の範囲に選ばれる。
The reason is that these gases eventually turn into high-purity Q-type Si3.
This is because it has been experimentally confirmed that it greatly influences the generation of N4. On the other hand, the heating and firing temperature in an atmosphere containing N2 or NH3 as the main reaction gas is 1350 to 1500q.
selected within the range o. The reason for this is that if it is less than 135,000, it is difficult to generate Si3N4, and if it exceeds 150,000, SIC will be generated, making it impossible to obtain the desired Q-type Si3N4 powder suitable for high-temperature, high-stress materials. Furthermore, after heating in an atmosphere using N2 as the main reaction gas, heat treatment in an oxidizing atmosphere is performed as necessary to remove residual C, but the temperature is 600℃. ~80,000.

即ち未反応により残存するCの除去に当り、上記温度範
囲外で加熱処理すると生成していたQ型Si3N4の酸
化を招き所要のQ型Sj3N4系粉末を得られ難いから
である。上記の如くSi02の還元、窒化反応において
反応量論比をはるかに超えた過剰のCを用いる一方、特
に所定量の微細Siを共存させる本発明によればSi0
2の還元が大いに促進され、またSiの窒化も円滑に進
行しQ型Sj3N4の含有量が多い高品位のび型Si3
N4系粉末を収率よく得られる。
That is, if heat treatment is performed at a temperature outside the above-mentioned temperature range when removing unreacted C, the Q-type Si3N4 produced will be oxidized, making it difficult to obtain the required Q-type Sj3N4 powder. As described above, in the reduction and nitriding reaction of Si02, an excess of C far exceeding the reaction stoichiometric ratio is used, and in particular, according to the present invention, a predetermined amount of fine Si is coexisting.
The reduction of 2 is greatly promoted, and the nitridation of Si also progresses smoothly, resulting in high-quality stretchable Si3 with a high content of Q-type Sj3N4.
N4-based powder can be obtained in good yield.

しかして本発明によれば高温高応力性の要求されるSi
3N4系競結体の製造に適するQ型Si3N4系粉末が
容易に得られるのは次のように考えられる。即ち一次反
応としてSi02十C→Si○十COが進行する。この
反応は固相反応であり、C/Si02比が高いほど円滑
に進行し、且つ生成したSi0はN2またはN瓜と気相
状態で容易に反応する。しかしてこの場合C量が反応量
論比程度或いは若干過剰程度ではSi0の生成が不十分
であるためSi20N2の生成がみられ、Sj20N2
からQ型Si3N4への転換が著しく困難となるが、上
記の如くC量が反応量論比に較べ大過剰であるためSi
20N2の生成は抑止され容易にQ型Si3N4が生成
するに至ると考えられる。このようにCの過剰量存在は
Q型Si3N4の生成を円滑に進めるが一方ではSIC
の生成混在、その他不純物の混在を招き相対的にはQ型
Si3N4の含有率の低下となる。しかるに本発明にお
いてはさらに所定量のSi粉末を反応系に共存せしめて
いる。ここに存在するSi粉末は微細なためそれ自体容
易に窒化しSi02とC本来の反応からSioを経由す
るSi3N4の生成に対し、微細なる核を提供すると同
時にSi02と反応してSi○の生成を促す2つの作用
を生ずる。しかしながら、ここに共存せしめるSi粉末
の効果はその粒径に大きく影響され、粗粒Siを用いた
場合、反応速度が遅いためSi○生成の助長効果も少な
く、Si自身の窒化によるSi3N4も粒径が粗く、最
終的に所要のSi添加効果を出すにはある程度の多量を
必要とするため、生成したSi3N4は粒径が大きくな
る。その点、本発明は、添加するSiの粒度を0.5A
肌以下と限定するため、Si02と反応してSj○を生
成する速度も速く、また、それ自身峯化したSi3N4
の粒蓬も微細なため、この微細で細かいSi3N4を核
とした生成Si3N4も微細となり、徴量添加でも効果
が十分発揮され、結果的に反応時間も短かくとも粒径が
均一でかつ高品質の粉末が高収率で合成される。かくし
て本発明によればQ型Sj3N4の含有量率の高い、し
かもSICなど不純物の含有量が著しく少なく高品位の
、Q型Si3N4系粉末が得られるので、本発明方法は
高温、高応力を要求されるSi3N4系焼結構造材料用
原料Si3N4系粉末の製造に適するものと言える。
However, according to the present invention, Si, which is required to have high temperature and high stress properties,
The reason why a Q-type Si3N4 powder suitable for producing a 3N4 composite is easily obtained is considered to be as follows. That is, as a primary reaction, Si020C→Si020CO proceeds. This reaction is a solid phase reaction, and the higher the C/Si02 ratio is, the more smoothly it proceeds, and the generated Si0 easily reacts with N2 or N melon in the gas phase. However, in this case, if the amount of C is around the reaction stoichiometric ratio or slightly excessive, the generation of Si0 is insufficient, so the generation of Si20N2 is observed, and Sj20N2
However, as mentioned above, since the amount of C is in large excess compared to the reaction stoichiometric ratio, it becomes extremely difficult to convert Si3N4 to Q-type Si3N4.
It is thought that the generation of 20N2 is suppressed and Q-type Si3N4 is easily generated. In this way, the presence of an excessive amount of C facilitates the formation of Q-type Si3N4, but on the other hand, it
and other impurities, resulting in a relative decrease in the content of Q-type Si3N4. However, in the present invention, a predetermined amount of Si powder is also allowed to coexist in the reaction system. Since the Si powder present here is fine, it easily nitrides itself, providing fine nuclei for the generation of Si3N4 via Sio from the original reaction with Si02 and C, and at the same time reacting with Si02 to generate Si○. It produces two promoting effects. However, the effect of the Si powder that coexists here is greatly influenced by its particle size, and when coarse-grained Si is used, the reaction rate is slow, so the effect of promoting Si○ formation is small, and Si3N4 due to nitridation of Si itself is also affected by the particle size. Since Si3N4 is coarse and a certain amount is required to finally produce the desired Si addition effect, the produced Si3N4 has a large particle size. In this regard, in the present invention, the particle size of added Si is reduced to 0.5A.
Because it is limited to less than the skin, the speed at which it reacts with Si02 to generate Sj○ is fast, and Si3N4 itself has become a mountain.
Since the grains of Si3N4 are also fine, the Si3N4 produced with these fine and fine Si3N4 as a nucleus is also fine, and the effect is fully exerted even with the addition of grains.As a result, even though the reaction time is short, the grain size is uniform and the quality is high. powder is synthesized in high yield. Thus, according to the present invention, a high-quality Q-type Si3N4 powder with a high content rate of Q-type Sj3N4 and a significantly low content of impurities such as SIC can be obtained, so the method of the present invention requires high temperature and high stress. It can be said that it is suitable for producing Si3N4-based powder, which is a raw material for Si3N4-based sintered structural materials.

次に本発明の実施例を記載する。Next, examples of the present invention will be described.

実施例 平均粒径0.013仏机無定形Sj02粉末、平均粒径
0.029仏仇の無定形C粉末、および平均粒径0.2
仏ののSi粉末を所定の重量比で混合し、1400℃靴
rN2ガス中で反応させた後、さらに700oC軸r空
気中で熱処理しSi3N4粉末を製造した。
Examples Average particle size: 0.013 Buddha's amorphous Sj02 powder, average particle size: 0.029 Buddha's amorphous C powder, and average particle size: 0.2
The Si powder of France was mixed at a predetermined weight ratio, reacted in N2 gas at 1400°C, and then heat-treated in air at 700°C to produce Si3N4 powder.

かくして得たそれぞれのSi3N4系粉末について平均
粒度、N含有量率(重量%)、Q型Si3N4の含有率
(重量%)・・・X線回折図形で確認・・・、SIC含
有率(重量%)をそれぞれ求めた結果を表−1に併せて
示した。表−1
For each Si3N4 powder thus obtained, the average particle size, N content rate (wt%), Q-type Si3N4 content (wt%)...confirmed by X-ray diffraction pattern..., SIC content (wt%) ) are shown in Table 1. Table-1

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径0.1μm以下の無定形シリカ(SiO_
2)粉末1重量部、平均粒径0.1μm以下の無定形カ
ーボン(C)粉末0.4〜4重量部、平均粒径0.5μ
m以下の金属けい素(Si)粉末0.01〜0.1重量
部からなる混合粉末を、窒素を含む雰囲気中1350〜
1500℃で加熱処理し、還元、窒化反応をさせること
を特徴とするα型窒化けい素粉末の製造方法。
1 Amorphous silica (SiO_
2) 1 part by weight of powder, 0.4 to 4 parts by weight of amorphous carbon (C) powder with an average particle size of 0.1 μm or less, average particle size of 0.5 μm
A mixed powder consisting of 0.01 to 0.1 parts by weight of metallic silicon (Si) powder of 1,350 to
A method for producing α-type silicon nitride powder, which comprises heating at 1500°C to cause reduction and nitriding reactions.
JP5175277A 1977-05-07 1977-05-07 Method for producing α-type silicon nitride powder Expired JPS606884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5175277A JPS606884B2 (en) 1977-05-07 1977-05-07 Method for producing α-type silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5175277A JPS606884B2 (en) 1977-05-07 1977-05-07 Method for producing α-type silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS53137899A JPS53137899A (en) 1978-12-01
JPS606884B2 true JPS606884B2 (en) 1985-02-21

Family

ID=12895657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5175277A Expired JPS606884B2 (en) 1977-05-07 1977-05-07 Method for producing α-type silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS606884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649565B2 (en) * 1985-04-19 1994-06-29 株式会社東芝 Method for producing α-type silicon nitride powder
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite

Also Published As

Publication number Publication date
JPS53137899A (en) 1978-12-01

Similar Documents

Publication Publication Date Title
US4117095A (en) Method of making α type silicon nitride powder
JPH0134925B2 (en)
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS6112844B2 (en)
JPS6016387B2 (en) Method for manufacturing heat-resistant materials
JPS62241812A (en) Manufacture of silicon nitride
JPS606884B2 (en) Method for producing α-type silicon nitride powder
JP2009161376A (en) Manufacturing method of silicon nitride powder
JPS6021804A (en) Manufacture of finely powdered alpha type silicon nitride
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JPS6120486B2 (en)
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH0313166B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS6348840B2 (en)
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPH0240606B2 (en)
JPH0122201B2 (en)
JPS6259049B2 (en)
JPS6324924B2 (en)
JPH03193617A (en) Production of silicon carbide powder
JPS6272506A (en) Preparation of silicon nitride powder
JPS5891007A (en) Manufacture of alpha-type silicon nitride powder
JPS6411565B2 (en)