JPS63210003A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPS63210003A
JPS63210003A JP4176987A JP4176987A JPS63210003A JP S63210003 A JPS63210003 A JP S63210003A JP 4176987 A JP4176987 A JP 4176987A JP 4176987 A JP4176987 A JP 4176987A JP S63210003 A JPS63210003 A JP S63210003A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
powder
nitrogen
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4176987A
Other languages
Japanese (ja)
Other versions
JPH0466804B2 (en
Inventor
Noboru Hashimoto
登 橋本
Shigeto Deki
成人 出来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4176987A priority Critical patent/JPS63210003A/en
Publication of JPS63210003A publication Critical patent/JPS63210003A/en
Publication of JPH0466804B2 publication Critical patent/JPH0466804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce high purity easily sinterable fine aluminum nitride powder, by mixing basic aluminum lactate with a water soluble compd. contg. carbon or nitrogen in the form of an aq. soln., drying the mixture and baking the resulting powder. CONSTITUTION:Basic aluminum lactate is mixed with a water soluble compd. contg. carbon such as glucose and/or a water soluble compd. contg. nitrogen such as urea in the form of an aq. soln. The mixture is dried at about 100-200 deg.C to form fine powder consisting of the components mixed homogeneously on the level of molecules. The mixed powder is then baked at >=about 900 deg.C in a nonoxidizing atmosphere contg. gaseous nitrogen. Fine homogeneous aluminum nitride powder can be rapidly obtd.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高熱伝導性基板を製造するのに適した窒化
アルミニウム粉末の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing aluminum nitride powder suitable for producing highly thermally conductive substrates.

〔背景技術〕[Background technology]

IC等に代表される半導体素子の高集積化や大電力化が
進み、これに伴って、放熱性の良い電気絶縁材料が要求
されるようになった。これに応えて各種の高熱伝導性基
板が提案されている。その中でも特に窒化アルミニウム
セラミック基板が、熱伝導性、熱膨張性、電気絶縁性等
の点にすぐれていると言うことから、実用化が進んでい
る。
BACKGROUND OF THE INVENTION As semiconductor devices such as ICs have become more highly integrated and have more power, electrical insulating materials with good heat dissipation properties have become required. In response to this demand, various highly thermally conductive substrates have been proposed. Among these, aluminum nitride ceramic substrates are being put into practical use because they are said to have excellent thermal conductivity, thermal expansion properties, electrical insulation properties, and the like.

ところが、この窒化アルミニウムセラ走ツク基板は、価
格が高いという欠点がある。この高価格の原因としては
、特に、原料となる窒化アルミニウム粉末が高価格であ
ること、焼結に高温を有することなどが挙げられる。
However, this aluminum nitride ceramic substrate has the disadvantage of being expensive. The reasons for this high price include, in particular, the high cost of aluminum nitride powder as a raw material and the high temperature required for sintering.

従来から窒化アルミニウム粉末は、アルミニウムの直接
窒化やアルミナの炭素還元等によって製造されているが
、たとえば、アルミニウムの直接窒化法においては、高
純度で粒径の小さい窒化アルミニウム粉末を得ることが
困難であり、アルミナの炭素還元法においては、反応に
高温を要する、原料価格が高い等の問題があった。アル
ミナの炭素還元法の改良として、アルミニウム源を液状
態で混合する方法などが提案されているが、けん濁状態
での混合であり、分子オーダーでの混合がなされないた
め、反応に高温を要する等により、製造価格が高いなど
の問題が残っている。
Conventionally, aluminum nitride powder has been produced by direct nitriding of aluminum or carbon reduction of alumina, but for example, it is difficult to obtain aluminum nitride powder with high purity and small particle size using the direct nitriding method of aluminum. However, in the carbon reduction method of alumina, there were problems such as high temperature required for the reaction and high raw material cost. As an improvement to the carbon reduction method of alumina, a method has been proposed in which the aluminum source is mixed in a liquid state, but since the mixing is in a suspended state and the mixing is not done on a molecular order, the reaction requires high temperatures. However, there remain problems such as high manufacturing costs.

〔発明の目的〕[Purpose of the invention]

この発明は、以上のような事情に鑑みて、高純度で微粒
子の易焼結性を有する窒化アルミニウム粉末を安価で得
ることができる窒化アルミニウム粉末の製法を提供する
ことを目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a method for producing aluminum nitride powder that can obtain aluminum nitride powder of high purity and easy sinterability into fine particles at a low cost.

〔発明の開示〕[Disclosure of the invention]

この発明は、以上のような目的を達成するために、塩基
性乳酸アルミニウムと水溶性炭素含有化合物または/お
よび水溶性窒素含有化合物を水溶液として混合し、前記
化合物の混合粉末を得、この混合粉末を、窒素ガスを含
む非酸化性雰囲気中で焼成して窒化アルミニウム粉末を
得ることを要旨としている。
In order to achieve the above objects, the present invention mixes basic aluminum lactate and a water-soluble carbon-containing compound and/or a water-soluble nitrogen-containing compound as an aqueous solution to obtain a mixed powder of the compound, and this mixed powder The gist is to obtain aluminum nitride powder by firing in a non-oxidizing atmosphere containing nitrogen gas.

以下、この発明を工程順に詳しく説明する。Hereinafter, this invention will be explained in detail in the order of steps.

■ 塩基性乳酸アルミニウムと、水溶性炭素含有化合物
または/および水溶性窒素含有化合物を水溶液として混
合する。
(2) Basic aluminum lactate and a water-soluble carbon-containing compound or/and a water-soluble nitrogen-containing compound are mixed as an aqueous solution.

塩基性乳酸アルミニウムは水溶液であるうえ、硫酸イオ
ン、塩素イオン、硝酸イオン等を含まないため、窒化ア
ルミニウム合成時の還元反応に悪影響を及ぼさない。こ
の水溶液では、分子オーダでの各成分が均質に混合され
ている。水溶性炭素含有化合物としては、ブドウ糖等糖
類、メチルセルロース、ポリエチレンオキサイド、ポリ
ビニルアルコール、リグニン等の水溶性のものが挙げら
れる。
Basic aluminum lactate is an aqueous solution and does not contain sulfate ions, chloride ions, nitrate ions, etc., so it does not adversely affect the reduction reaction during aluminum nitride synthesis. In this aqueous solution, each component on the molecular order is homogeneously mixed. Examples of the water-soluble carbon-containing compound include water-soluble compounds such as sugars such as glucose, methylcellulose, polyethylene oxide, polyvinyl alcohol, and lignin.

水溶性窒素含有化合物としては、尿素、メラミン、グリ
シン、カルボニルヒドラジド、エチレンジアミン等の水
溶性のものが挙げられる。
Examples of the water-soluble nitrogen-containing compound include water-soluble compounds such as urea, melamine, glycine, carbonyl hydrazide, and ethylenediamine.

■ 前記混合水溶液から、蒸発乾燥などにより、塩基性
乳酸アルミニウムと、炭素含有化合物または/および窒
素含有化合物が分子オーダーで均質に混合された混合微
細粉末を得る。
(2) A mixed fine powder in which basic aluminum lactate and a carbon-containing compound and/or a nitrogen-containing compound are homogeneously mixed on a molecular order is obtained from the mixed aqueous solution by evaporation drying or the like.

乾燥温度としては100〜200℃が適当である。A suitable drying temperature is 100 to 200°C.

■ この混合物粉末を窒素ガスを含有する非酸化性雰囲
気で焼成して窒化アルミニウム粉末を得る。非酸化性雰
囲気としては、アルゴン、−flJ化炭素、さらに好ま
しくは窒素、アンモニアなどが用いられる。なお、窒素
、アンモニアの場合はそれのみでもよく、他の非酸化性
雰囲気の併用は必要がない。
(2) This mixed powder is fired in a non-oxidizing atmosphere containing nitrogen gas to obtain aluminum nitride powder. As the non-oxidizing atmosphere, argon, -flJ carbon, more preferably nitrogen, ammonia, etc. are used. In the case of nitrogen or ammonia, they may be used alone, and there is no need to use other non-oxidizing atmospheres.

焼成温度は900℃以上、好ましくは1200〜180
0℃である。なお、残留炭素は、窒化アルミニウム形成
後、600〜700℃の酸化性雰囲気中で加熱処理する
ようにすれば除去できる。
Firing temperature is 900°C or higher, preferably 1200-180°C
It is 0°C. Note that residual carbon can be removed by heat treatment in an oxidizing atmosphere at 600 to 700° C. after forming aluminum nitride.

この発明の製法によれば、塩基性乳酸アルミニウムと水
溶性炭素含有化合物または/および水溶性窒素含有化合
物が分子オーダーで均質に混合された微細粉末を、窒素
ガスを含む非酸化性雰囲気で焼成するので、微細で均質
な窒化アルミニウム粉末を迅速にかつ安価に得ることが
できる。しかも、微細粉末であるから焼結性がよい。
According to the manufacturing method of this invention, a fine powder in which basic aluminum lactate and a water-soluble carbon-containing compound or/and a water-soluble nitrogen-containing compound are homogeneously mixed on a molecular order is fired in a non-oxidizing atmosphere containing nitrogen gas. Therefore, fine and homogeneous aluminum nitride powder can be obtained quickly and at low cost. Moreover, since it is a fine powder, it has good sinterability.

また、混合物粉末中に窒素含有化合物を有している場合
には、局所的に還元窒化雰囲気が形成され混合物内部か
ら窒化反応が促進され、窒化アルミニウムが迅速に形成
される。
Further, when the mixture powder contains a nitrogen-containing compound, a reducing nitriding atmosphere is locally formed to promote the nitriding reaction from within the mixture, and aluminum nitride is rapidly formed.

つぎに実施例を詳しく説明する。Next, examples will be explained in detail.

(実施例1) 塩基性乳酸アルミニウム1重量部に対し、尿素を0.3
重量部となるように混合した水溶液を作った。この水溶
液を蒸発させ150℃で乾燥して混合粉末を得たのち、
1500℃の窒素雰囲気で5時間焼成して窒化アルミニ
ウム粉末を得た。
(Example 1) 0.3 parts of urea was added to 1 part by weight of basic aluminum lactate.
An aqueous solution was prepared by mixing parts by weight. After evaporating this aqueous solution and drying at 150°C to obtain a mixed powder,
The aluminum nitride powder was obtained by firing in a nitrogen atmosphere at 1500° C. for 5 hours.

なお、この窒化アルミニウム粉末は、純度98%以上、
平均粒径が約2μmであった。
Note that this aluminum nitride powder has a purity of 98% or more,
The average particle size was about 2 μm.

(実施例2) 塩基性乳酸アルミニウム1重量部に対し、D−グルコー
スを0.3重量部となるように混合した水溶液を作った
。この水溶液から水を蒸発させ、150℃で乾燥して混
合粉末を得たのち、1600℃の窒素雰囲気中で5時間
焼成して窒化アルミニウム粉末を得た。
(Example 2) An aqueous solution was prepared by mixing 0.3 parts by weight of D-glucose with 1 part by weight of basic aluminum lactate. Water was evaporated from this aqueous solution and the mixture was dried at 150° C. to obtain a mixed powder, which was then calcined in a nitrogen atmosphere at 1600° C. for 5 hours to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度98%以上、
平均粒径が約2.5μmであった。
Note that this aluminum nitride powder has a purity of 98% or more,
The average particle size was approximately 2.5 μm.

(実施例3) 塩基性乳酸アルミニウム1重量部に対してメラミン0.
2重量部となるように混合した水溶液を作った。
(Example 3) Melamine: 0.00 parts by weight of basic aluminum lactate.
An aqueous solution was prepared by mixing 2 parts by weight.

この水溶液を蒸発させ150℃で乾燥して混合粉末を得
たのち、1500℃の窒素雰囲気中で5時間焼成して窒
化アルミニウム粉末を得た。
This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then fired in a nitrogen atmosphere at 1500°C for 5 hours to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度が98%以上
、平均粒径が2μm以下であった。
Note that this aluminum nitride powder had a purity of 98% or more and an average particle size of 2 μm or less.

(実施例4) 塩基性乳酸アルミニウム1重量部に対して、D−グルコ
ース0.2重量部、尿素0.2重量部となるように混合
した水溶液を作った。この水溶液を蒸発させ、150℃
で乾燥して混合粉末を得たのち、1450℃で10時間
窒素雰囲気中で焼成して窒化アルミニウム粉末を得た。
(Example 4) An aqueous solution was prepared by mixing 1 part by weight of basic aluminum lactate with 0.2 part by weight of D-glucose and 0.2 part by weight of urea. This aqueous solution was evaporated and heated to 150°C.
After drying to obtain a mixed powder, the mixture was fired at 1450° C. for 10 hours in a nitrogen atmosphere to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度98%以上、
平均粒径が2μm以下であった。
Note that this aluminum nitride powder has a purity of 98% or more,
The average particle size was 2 μm or less.

(実施例5) 塩基性乳酸アルミニウム1重量部に対し、メチルセルロ
ース(信越化学工業■製SMタイプ)が0、1重量部、
尿素0.2重量部となるように混合した水溶液を作った
。この水溶液を蒸発させ150℃で乾燥して混合粉末を
得たのち、1500℃の窒素雰囲気中で3時間焼成して
窒化アルミニウム粉末を得た。
(Example 5) Methyl cellulose (SM type manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 1 part by weight of basic aluminum lactate,
An aqueous solution containing 0.2 parts by weight of urea was prepared. This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then calcined for 3 hours in a nitrogen atmosphere at 1500°C to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度98%以上、
平均粒径が2μmであった。
Note that this aluminum nitride powder has a purity of 98% or more,
The average particle size was 2 μm.

(実施例6) 塩基性乳酸アルミニウム1重量部に対しケン化度90%
のポリビニルアルコールが0.1重量部、メラミンが0
.3重量部となるように混合した水溶液を作った。この
水溶液を蒸発させ150℃で乾燥して混合粉末を得たの
ち、1500℃の窒素雰囲気中で5時間焼成して窒化ア
ルミニウム粉末を得た。
(Example 6) Degree of saponification is 90% for 1 part by weight of basic aluminum lactate
0.1 part by weight of polyvinyl alcohol, 0 part of melamine
.. An aqueous solution was prepared by mixing 3 parts by weight. This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then fired in a nitrogen atmosphere at 1500°C for 5 hours to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度98%以上、
平均粒径が2μmであった。
Note that this aluminum nitride powder has a purity of 98% or more,
The average particle size was 2 μm.

以上、実施例1〜6で使用した塩基性乳酸アルミニウム
はA11t03含量37%、乳酸含量56%のものであ
る。
The basic aluminum lactate used in Examples 1 to 6 has an A11t03 content of 37% and a lactic acid content of 56%.

また、実施例1〜5で得た窒化アルミニウム粉末に対し
て焼結補助剤としてのy、o、を3重量%混合し、成形
後、1650℃の窒素雰囲気中で3時間焼成することに
よって、密度98%以上の焼結窒化アルミニウムセラミ
ックを得ることができた。
In addition, 3% by weight of y and o as sintering aids were mixed with the aluminum nitride powder obtained in Examples 1 to 5, and after molding, the mixture was baked in a nitrogen atmosphere at 1650°C for 3 hours. A sintered aluminum nitride ceramic having a density of 98% or more could be obtained.

この発明にかかる窒化アルミニウム粉末の製法は上記実
施例の範囲に限らない。
The method for producing aluminum nitride powder according to the present invention is not limited to the scope of the above embodiments.

なお、通常窒化アルミニウムの焼結時には、焼結性を向
上させるために焼結補助剤として、酸化インドリウムな
どの希土類金属酸化物、酸化カルシウムなどのアルカリ
土類金属酸化物を添加するのであるが、混合水溶液を作
る際に、塩化イツトリウムや硝酸カルシウムなどを同時
にこの混合水溶液中に添加するようにすれば、焼結補助
剤が均一に分散された窒化アルミニウム粉末をこの製法
によって得ることができる。
When aluminum nitride is sintered, rare earth metal oxides such as indium oxide and alkaline earth metal oxides such as calcium oxide are usually added as sintering aids to improve sinterability. By simultaneously adding yttrium chloride, calcium nitrate, etc. to the mixed aqueous solution when preparing the mixed aqueous solution, aluminum nitride powder in which the sintering aid is uniformly dispersed can be obtained by this manufacturing method.

〔発明の効果〕〔Effect of the invention〕

この発明の窒化アルミニウム粉末の製法は、以上のよう
に、塩基性乳酸アルミニウムと、水溶性炭素含有化合物
または/および水溶性窒素含有化合物を水溶液として混
合し、前記水溶液から前記化合物の混合粉末を得、この
混合粉末を窒素ガスを含む非酸化性雰囲気中で焼成して
窒化アルミニウム粉末を得るので、高純度で微粒子の易
焼結性を有する窒化アルミニウム粉末を安価で得ること
ができる。
As described above, the method for producing aluminum nitride powder of the present invention involves mixing basic aluminum lactate with a water-soluble carbon-containing compound and/or a water-soluble nitrogen-containing compound as an aqueous solution, and obtaining a mixed powder of the compound from the aqueous solution. Since aluminum nitride powder is obtained by firing this mixed powder in a non-oxidizing atmosphere containing nitrogen gas, it is possible to obtain aluminum nitride powder with high purity and easy sinterability in the form of fine particles at a low cost.

Claims (2)

【特許請求の範囲】[Claims] (1)塩基性乳酸アルミニウムと、水溶性炭素含有化合
物または/および水溶性窒素含有化合物の水溶液より得
られた混合粉末を、窒素ガスを含有する非酸化性雰囲気
中で焼成することを特徴とする窒化アルミニウム粉末の
製法。
(1) A mixed powder obtained from an aqueous solution of basic aluminum lactate and a water-soluble carbon-containing compound or/and a water-soluble nitrogen-containing compound is fired in a non-oxidizing atmosphere containing nitrogen gas. Production method of aluminum nitride powder.
(2)水溶性窒素含有化合物が、尿素、メラミン、塩化
アンモニウムの1種もしくは2種以上である特許請求の
範囲第1項記載の窒化アルミニウム粉末の製法。
(2) The method for producing aluminum nitride powder according to claim 1, wherein the water-soluble nitrogen-containing compound is one or more of urea, melamine, and ammonium chloride.
JP4176987A 1987-02-24 1987-02-24 Production of aluminum nitride powder Granted JPS63210003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4176987A JPS63210003A (en) 1987-02-24 1987-02-24 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4176987A JPS63210003A (en) 1987-02-24 1987-02-24 Production of aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS63210003A true JPS63210003A (en) 1988-08-31
JPH0466804B2 JPH0466804B2 (en) 1992-10-26

Family

ID=12617603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4176987A Granted JPS63210003A (en) 1987-02-24 1987-02-24 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS63210003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456307A (en) * 1987-08-26 1989-03-03 Matsushita Electric Works Ltd Production of aluminum nitride powder
JPH01141810A (en) * 1987-11-28 1989-06-02 Matsushita Electric Works Ltd Production of aluminum nitride
KR20000074574A (en) * 1999-05-21 2000-12-15 오근호 Mono- and Di-saccharides for Environmental Friendly Plastic Alumina Slurries with High Alumina Concentration
CN100368284C (en) * 2005-12-02 2008-02-13 中国科学院物理研究所 Method for synthesizing nitride using metal oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456307A (en) * 1987-08-26 1989-03-03 Matsushita Electric Works Ltd Production of aluminum nitride powder
JPH01141810A (en) * 1987-11-28 1989-06-02 Matsushita Electric Works Ltd Production of aluminum nitride
KR20000074574A (en) * 1999-05-21 2000-12-15 오근호 Mono- and Di-saccharides for Environmental Friendly Plastic Alumina Slurries with High Alumina Concentration
CN100368284C (en) * 2005-12-02 2008-02-13 中国科学院物理研究所 Method for synthesizing nitride using metal oxide

Also Published As

Publication number Publication date
JPH0466804B2 (en) 1992-10-26

Similar Documents

Publication Publication Date Title
KR950005761B1 (en) Process for producing aluminum nitride powders
CN102502539B (en) Method for preparing yttrium-doped nano aluminum nitride powder
JPS63210003A (en) Production of aluminum nitride powder
JPH07503695A (en) Moisture-proof aluminum nitride powder and its manufacturing and usage methods
JPS63210002A (en) Production of aluminum nitride powder
JPS6355109A (en) Production of aluminum nitride powder
JP3340171B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0468242B2 (en)
JPH0637286B2 (en) Manufacturing method of aluminum nitride
JPH03275567A (en) Production of aluminum nitride sintered body
JPH0230608A (en) Production of aluminum nitride powder
JPH0365563A (en) Production of aluminum nitride sintered compact
JPH0686286B2 (en) Manufacturing method of aluminum nitride
JPS6369759A (en) Manufacture of silicon nitride sintered body
JPS62246866A (en) Manufacture of aluminum nitride sintered body
JPS62167208A (en) Production of aluminum nitride powder
JPS61251570A (en) Manufacture of silicon carbide sintered body
JP3593705B2 (en) Aluminum nitride powder and method for producing aluminum nitride sintered body using the same
JPH02192409A (en) Production of aluminum nitride powder and aluminum nitride sintered compact
JPH0365565A (en) Production of aluminum nitride sintered compact
JPH02199008A (en) Production of aluminum nitride powder and sintered aluminum nitride compact
JPH02289409A (en) Production of aluminum nitride powder and aluminum nitride sintered body
JPS6265912A (en) Aluminum nitride ceramic powder for slip forming
JPH02188413A (en) Production of aluminum nitride powder and aluminum nitride sintered body
JPS62187172A (en) Manufacture of aluminum nitride sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term