JPH0365563A - Production of aluminum nitride sintered compact - Google Patents

Production of aluminum nitride sintered compact

Info

Publication number
JPH0365563A
JPH0365563A JP1201819A JP20181989A JPH0365563A JP H0365563 A JPH0365563 A JP H0365563A JP 1201819 A JP1201819 A JP 1201819A JP 20181989 A JP20181989 A JP 20181989A JP H0365563 A JPH0365563 A JP H0365563A
Authority
JP
Japan
Prior art keywords
aluminum
containing compound
urea
aluminum nitride
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1201819A
Other languages
Japanese (ja)
Inventor
Takashi Bando
板東 高志
Noboru Hashimoto
登 橋本
Koji Sawada
康志 沢田
Hiroyoshi Yoda
浩好 余田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1201819A priority Critical patent/JPH0365563A/en
Publication of JPH0365563A publication Critical patent/JPH0365563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To simply and inexpensively obtain dense aluminum nitride sintered compact by burning a formed article consisting of a mixture of aluminum- containing compound and urea under nonoxidizing atmosphere containing nitrogen. CONSTITUTION:A formed article consisting of a mixture of an aluminum- containing compound and urea and having prescribed shape is burned under non-oxidizing atmosphere. The aluminum-containing compound is water soluble and the mixture is preferably prepared by uniformly blending the water soluble aluminum-containing compound with urea in a state of aqueous solution and then removing water content. The aluminum-containing compound, which is not especially limited, includes aluminum nitrate, aluminum chloride, aluminum sulfate, aluminum polynuclear complex or aluminum alkoxide. A formed article containing a sintering assistant (e.g. alkaline earth metal or salt or oxide of rare earth element) may be burned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば、高熱伝導性(絶縁)基板として用
いるのに通した窒化アルミニウム焼結体の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a sintered aluminum nitride body for use, for example, as a highly thermally conductive (insulating) substrate.

〔従来の技術および問題点〕[Conventional technology and problems]

ic等に代表される半導体素子の高集積化や大電力化が
進み、これに伴って、放熱性の良い電気絶縁材料が要求
されるようになった。これに応えて各種の高熱伝導性基
板が提案されている。その中でも、特に窒化アルミニウ
ムセラミソク基板が、熱伝導性、熱膨張性、電気絶縁性
等の点で優れていることから、実用化が進められてきて
いる。
BACKGROUND ART As semiconductor devices such as ICs have become more highly integrated and have higher power, electrical insulating materials with good heat dissipation properties have become required. In response to this demand, various highly thermally conductive substrates have been proposed. Among these, aluminum nitride ceramic substrates in particular are being put into practical use because they are excellent in terms of thermal conductivity, thermal expansion, electrical insulation, and the like.

この窒化アルミニウムセラミック基板ば、アルミニウム
粉末を用いて得た焼結体である。しかしながら、従来、
十分な性能の窒化アルミニウム焼結体がなかなか得られ
なかったり、高価であったりという不具合があった。こ
こで用いられる窒化アルミニウム粉末は、アルミニウム
の直接窒化やアルミナの炭素還元等によって製造されて
いるが、例えば、アルミニウムの直接窄化法においては
、高純度で粒径の小さな粉末を得ることが困難であり、
アルミナの炭素還元法においては、反応に高温を要する
、原料価格が高い等の問題があるのである。アルミナの
炭素還元法の改良として、アル主ニウム源を炭素含有化
合物で還元する方法が提案されているが、還元効率の点
で、まだ十分とは言えない。
This aluminum nitride ceramic substrate is a sintered body obtained using aluminum powder. However, conventionally,
There were problems in that aluminum nitride sintered bodies with sufficient performance were difficult to obtain and were expensive. The aluminum nitride powder used here is manufactured by direct nitriding of aluminum, carbon reduction of alumina, etc. However, for example, it is difficult to obtain powder with high purity and small particle size using the direct thinning method of aluminum. and
The carbon reduction method for alumina has problems such as high temperatures required for the reaction and high raw material costs. As an improvement to the carbon reduction method for alumina, a method has been proposed in which the main source of aluminum is reduced with a carbon-containing compound, but this method is still not sufficient in terms of reduction efficiency.

それに、−旦、窒化アルミニウム粉末を得る従来のプロ
セスは、手間がかかり、材料費やエネルギー費も結構高
くつくものであるため、結果的に製造される窒化アルミ
ニウム焼結体が高価なものになっている。
In addition, the conventional process for obtaining aluminum nitride powder is labor-intensive and requires considerable material and energy costs, making the resulting aluminum nitride sintered body expensive. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、このような事情に鑑み、十分に焼結された
緻密な窒化アルミニウム焼結体を簡単かつ安価に得るこ
とのできる方法を提供することを課題とする。
In view of these circumstances, it is an object of the present invention to provide a method that can easily and inexpensively obtain a sufficiently sintered and dense aluminum nitride sintered body.

〔課題を解決するための手段〕 前記課題を解決するため、請求項1記載の窒化アルミニ
ウム焼結体の製造方法では、アルミニウム含有化合物と
尿素の混合物からなる所定形状の成形体を、窒素を含む
非酸化性雰囲気下で焼成するようにしている。
[Means for Solving the Problems] In order to solve the above problems, in the method for producing an aluminum nitride sintered body according to claim 1, a molded body of a predetermined shape made of a mixture of an aluminum-containing compound and urea is made of a mixture containing nitrogen. The firing is done in a non-oxidizing atmosphere.

この発明の製造方法で用いられるアルミニウム含有化合
物と尿素の混合物としては、例えば、請求項2記載の発
明のように、アルミニウム含有化合物が水溶性化合物で
あり、これと尿素を水溶液状態で均一に混合させた後、
水分を除くことにより得たものが挙げられる。
In the mixture of an aluminum-containing compound and urea used in the production method of the present invention, for example, as in the invention according to claim 2, the aluminum-containing compound is a water-soluble compound, and the aluminum-containing compound and urea are uniformly mixed in an aqueous solution state. After letting
Examples include those obtained by removing water.

この発明の製造方法に用いられるアルミニウム含有化合
物としては、請求項3記載の発明のように、アルくニウ
ム多核錯体およびアルミニウムアルコキシドのうちの少
なくともひとつが挙げられる。
The aluminum-containing compound used in the production method of the present invention includes at least one of an aluminium polynuclear complex and an aluminum alkoxide, as in the third aspect of the invention.

この発明にかかる窒化アルミニウム焼結体の製造方法で
は、例えば、請求項4記載の発明のように、成形体に焼
結助剤を含ませて焼成するようにしてもよい。
In the method for producing an aluminum nitride sintered body according to the present invention, for example, as in the fourth aspect of the present invention, the molded body may contain a sintering aid and then be fired.

以下、より具体的に説明する。This will be explained in more detail below.

アルくニウム含有化合物は、窒化アルミニウムの主体で
あるアルミニウムの供給源となるものである。したがっ
て、アルミニウムを含む化合物であれば、特に限定され
ることはないが、例えば、硝酸アル主ニウム、塩化アル
ミニウム、硫酸アルミニウム、水酸化アルミニウム、乳
酸アル主ニウム、アルミナ、アルミニウム多核錯体、ア
ルミニウムアルコキシド等がある。
The aluminium-containing compound is a source of aluminum, which is the main component of aluminum nitride. Therefore, as long as it is a compound containing aluminum, it is not particularly limited, but examples include aluminum nitrate, aluminum chloride, aluminum sulfate, aluminum hydroxide, aluminum lactate, alumina, aluminum polynuclear complex, aluminum alkoxide, etc. There is.

アルミニウム多核錯体としては、塩基性塩化アルミニウ
ム、塩基性乳酸アルミニウム、塩基性硝酸アルくニウム
等が例示される。
Examples of the aluminum polynuclear complex include basic aluminum chloride, basic aluminum lactate, and basic aluminum nitrate.

アルミニウムアルコキシド(アルミニウムアルコキサイ
ド)としては、アルミニウムメトキシド、アルミニウム
エトキシド、アルミニウムプロポキシド、アルミニウム
ブトキシド等の炭素数10以下の脂肪族のアルコキシド
が好適に使用できるなお、前記のアルミニウム含有化合
物は、単独で、あるいは、複数種併用して用いる。
As the aluminum alkoxide, aliphatic alkoxides having 10 or less carbon atoms such as aluminum methoxide, aluminum ethoxide, aluminum propoxide, and aluminum butoxide can be suitably used. Used alone or in combination.

尿素は、焼成工程での窒化アルミニウムの生成反応にお
いて、前記アルミニウム含有化合物中に含まれる酸素元
素を、CO,COx0形で除去する作用を果たす。
Urea functions to remove the oxygen element contained in the aluminum-containing compound in the form of CO and COx0 in the aluminum nitride production reaction in the firing process.

アルミニウム含有化合物が水溶性化合物であり、これと
尿素を水溶液状態で均一に混合させた後、乾燥させて水
分を除くことにより混合物を得る場合、乾燥温度は、例
えば70〜200℃程度の範囲が適当である。
When the aluminum-containing compound is a water-soluble compound and a mixture is obtained by uniformly mixing this and urea in an aqueous solution state and then drying to remove water, the drying temperature is, for example, in the range of about 70 to 200°C. Appropriate.

このように乾燥して得られた混合物は、粉末状態、ある
いは、バルク状態である。この発明の製造方法では、混
合物を所定形状の成形体とするわけであるが、乾燥して
得られる混合物がバルク状であった場合、−旦、粉砕し
粉末化してから成形することが好ましいが、バルク状の
まま成形するようにしてもよい。
The mixture obtained by drying in this way is in a powder state or a bulk state. In the manufacturing method of the present invention, the mixture is formed into a molded body of a predetermined shape, but if the mixture obtained by drying is in bulk form, it is preferable to first crush and powder it and then mold it. , it may also be molded in bulk form.

成形方法は、例えば、成形金型を用いた加圧成形法など
が用いられるが、不都合な成分の変質や流密を招来しな
い方法であればよく、特に限定されない。
The molding method may be, for example, a pressure molding method using a mold, but is not particularly limited as long as it does not cause undesirable deterioration or leakage of components.

成形体に含まれる焼結助剤としては、アルカリ土類、あ
るいは、希土類元素の塩や酸化物等が挙げられる。例え
ば、硝酸イソトリウム、塩化7f/トリウム1、塩基性
酢酸イソI・り省″ノム、酸化7f、、l、リウlへ、
硝酸カルシラ五、塩化カルシ1′)ム、酸化カルシ・:
ノム等が具体的t、′4例示7′(れるが1、これに駆
足されない。なお、焼結助剤の含有量は含をアルミニウ
ムに対して3−=10重景重電度が好4何9.い焼結助
剤を添加するタイミ゛/グは、アルミて、すJい含有化
合物と尿素か混合され人・水溶液段階、あるいは、水溶
液乾繰後の粉末段階・専いVれであ−。
Examples of the sintering aid contained in the compact include salts and oxides of alkaline earth or rare earth elements. For example, isotrium nitrate, 7f/thorium chloride, basic acetic acid isoI, 7f, 1, liu,
Calcium nitrate, Calcium chloride, Calcium oxide:
Nome etc. are specific, '4 example 7' (1, but this is not sufficient.The content of the sintering aid is preferably 3-=10 heavy density for aluminum. 4/9. The timing to add the sintering aid is when the aluminum alloy is mixed with the urea-containing compound at the aqueous solution stage, or at the powder stage after the aqueous solution has been dried. So...

てもよく、特に限定されない。may be used, and is not particularly limited.

非酸化性雰囲気と1,5.ては、窄素を含むアルボ1/
、窒素を含む−・醸化炭素、あるい&J:、窒素、アン
モニア等の雰囲気が用いられる。焼成温庶は、1200
℃以上、好ましくは、1400へ−200O℃程度であ
る。なお、窒化後、例ヌば、600 =700℃程度の
酸化性雰囲気で、\らに加熱処理j7焼結体内の残留炭
素を除< 、J、うにj2てもよい。
Non-oxidizing atmosphere and 1,5. In this case, Arbo 1/
An atmosphere containing nitrogen, fermented carbon, nitrogen, ammonia, or the like is used. Firing temperature is 1200
℃ or higher, preferably about 1400 to 200°C. After nitriding, residual carbon in the sintered body may be removed by heat treatment, for example, in an oxidizing atmosphere at about 600° C. to 700° C.

〔作   用〕[For production]

この発明にかかる窒化アル宝ニウム焼結体の製j告方t
i、:のよ・うに、j′ルミ−“、ラム含有化合物、例
えば、アル失ニウム多核錯体やアルミーニーウムアルコ
ヤ・ンVと尿素の混合物からなる所定形状の成形棒ろ二
1、窄素を含む非酸化性雰囲気下で焼成4″ると、純度
(窒化率)が高く緻密で熱伝導率のよい窒化アルミニウ
ム焼結体が、煩雑な粉末工程を経ることなく容易に得ら
れる、゛、ととなる。
Manufacturing method of aluminum nitride sintered body according to this invention
i,: Like, j'lumi-'', a molded rod 1 of a predetermined shape made of a rum-containing compound, such as an alkali polynuclear complex or a mixture of aluminum alkoyane V and urea. By sintering in a non-oxidizing atmosphere containing elements, an aluminum nitride sintered body with high purity (nitridation rate), density, and good thermal conductivity can be easily obtained without going through a complicated powder process. , and so on.

尿素は窒素含イf化合物であるために混合物中と・こも
穿索源ををするので、局所的還元雰囲気が形成=Uxれ
混合物内部から窒化反応が促進され窒化アルミニウムが
迅速に形成される。
Since urea is a nitrogen-containing compound, it also acts as a source of permeation in the mixture, so a local reducing atmosphere is formed and the nitriding reaction is promoted from within the mixture, resulting in the rapid formation of aluminum nitride.

1′ルミニウム含有化合物が水溶性化合物であり1、.
れと尿素を水溶液状態で均一に混合させた後5、水分を
除く、=とにより得た混合物は、アルミニウム含有化合
物と尿素が分子オーダで混じり合った状態となるため1
.1:、り純度が高く均質な焼結体が得られるようにな
る。
1' The aluminum-containing compound is a water-soluble compound and 1,.
After homogeneously mixing this and urea in an aqueous solution state, the mixture obtained by removing water is 1, since the aluminum-containing compound and urea are mixed on a molecular order.
.. 1: A homogeneous sintered body with high purity can be obtained.

〔実 施 例〕〔Example〕

以−′1・、具体的な実施例について説明する。 Hereinafter, specific examples will be described.

実施例1− 塩基性塩化アルミニウム含有量部に対し、尿素が4.0
重電部となるよ°うに混合した水溶液を作製した。なお
、塩基性塩化アルミニウムは、アルミニウム含有量がA
dオO7換算で50電量%であり、塩基度が84%のも
のを用いた。つぎム、二、この水溶液を70℃の乾燥湿
度で蒸発乾固させた。
Example 1 - Urea is 4.0 parts basic aluminum chloride content
An aqueous solution was prepared by mixing the two to form a heavy electric part. In addition, basic aluminum chloride has an aluminum content of A
The amount of electricity used was 50% in terms of dOO7, and the basicity was 84%. Next, this aqueous solution was evaporated to dryness at a dry humidity of 70°C.

得られた固形物を1、−目1、粉砕した後、成形金型を
用いて、直径25B、厚み3 mmの円板状の成形棒に
17でから、1900℃の窒素雰囲気で8時間焼成1,
1、窒化′アルくニウム焼結体を得た。
After crushing the obtained solid material 1-1 times, it was molded into a disk-shaped rod with a diameter of 25 B and a thickness of 3 mm using a molding die, and then baked in a nitrogen atmosphere at 1900°C for 8 hours. 1,
1. A sintered body of aluminum nitride was obtained.

実施例2 実施例1で用いた塩基性塩化アルミニ、ラム1電置部に
対し、尿素が460電量部、硝酸イソトリウム6永和物
が0.068電量部となるように混合した水溶液を作M
l、lこ。つぎに、この水溶液を80℃の乾燥温度で蒸
発乾固さ−iqた。得られた固形物を、−旦、粉砕L7
た後、成形金型を用いて、直径2511Im、厚み3關
の円板状の成形棒にしてから、1850℃の窒素雰囲気
で4時間焼6成17、窒化アルミニウム焼結体を(りた
Example 2 An aqueous solution was prepared by mixing the basic aluminum chloride used in Example 1, 460 coulometric parts of urea, and 0.068 coulometric parts of isotrium nitrate 6 per 1 part of ram.
l-l-ko. Next, this aqueous solution was evaporated to dryness at a drying temperature of 80°C. The obtained solid was crushed L7
After that, using a molding die, it was formed into a disk-shaped rod with a diameter of 2511 Im and a thickness of 3 mm, and then fired in a nitrogen atmosphere at 1850° C. for 4 hours to form an aluminum nitride sintered body.

実施例3 塩基性乳酸アルミニウム1電量部に対し、尿素が3.6
 徂i1部、硝酸イソI・リウム6水和物が0.05電
量部となるよ・うに混合した水溶液を作製した。なお、
塩基性乳酸アルミニウムは、アルミニウム含有量がAI
!to*換算で37銀量%であり7、乳酸含量56%の
ものを用いた。つぎに、この水溶液を80℃の乾燥温度
で蒸発乾固させた。得られた固形物を、−11、粉砕し
た後、成形金型を用いて、直径25州、厚み3翔のP]
根板状成形棒にしてから、1850℃の窒素雰囲気で4
時間焼成j2、窒化アルミニ、リム焼結体を得た。
Example 3 3.6 parts of urea per 1 coulometric part of basic aluminum lactate
An aqueous solution was prepared by mixing 1 part of nitrate and 0.05 part of coulometric amount of isoI.lium nitrate hexahydrate. In addition,
Basic aluminum lactate has an aluminum content of AI
! The silver content was 37% in terms of to*7, and the lactic acid content was 56%. Next, this aqueous solution was evaporated to dryness at a drying temperature of 80°C. After crushing the obtained solid material, using a mold, it was made into a P with a diameter of 25 mm and a thickness of 3 mm.
After forming a root plate-shaped rod, it was heated in a nitrogen atmosphere at 1850℃ for 4 hours.
A time-fired j2, aluminum nitride, rim sintered body was obtained.

実施例4 アルミ′−1リムトリイソプロポキシド(アルミニ1″
)人トリイソブ1コ21ミキサイド)1重量部、尿素3
゜8重間部、硝酸イソトリウム6水和物0.0331i
量部を、テトラメチルアンモニウムハイドロオキ4り・
イ1′15%水溶液2.97重量部に加え、室温で1時
間かく拌した後、この溶液を80℃の乾燥温度で蒸′9
.乾固、\−1工た。得られた固形物を粉砕した後、実
施例1と同様に成形体を得た後、1850℃の温度下、
窒素雰囲気で4時間焼成し、窒化アルミニウム焼結体を
得た。
Example 4 Aluminum'-1 rim triisopropoxide (aluminum 1"
) 1 part by weight of human triisobut 21 mixture), 3 parts by weight of urea
゜octium, isotria nitrate hexahydrate 0.0331i
4 parts of tetramethylammonium hydroxide
B1' Add to 2.97 parts by weight of a 15% aqueous solution, stir at room temperature for 1 hour, and then evaporate this solution at a drying temperature of 80°C.
.. Dry, \-1 k. After pulverizing the obtained solid material and obtaining a molded body in the same manner as in Example 1, at a temperature of 1850°C,
The aluminum nitride sintered body was obtained by firing in a nitrogen atmosphere for 4 hours.

一実施例5− 硝酸アルくニウム9水和物1重量部に対し、尿素が4.
0重量部、硝酸イツトリウム6水和物が0゜019重量
部となるように混合した水溶液を作製した。つぎに、こ
の水溶液を120℃の乾燥温度で蒸発乾固させた。得ら
れた固形物を粉砕してから実施例1と同様にして成形体
を得た後、1850℃の温度下、窒素雰囲気で4時間焼
成し、窒化アルミニウム焼結体を得た。
Example 5 - 4.0 parts of urea was added to 1 part by weight of alkium nitrate nonahydrate.
An aqueous solution was prepared by mixing 0 parts by weight of yttrium nitrate hexahydrate and 0.019 parts by weight of yttrium nitrate hexahydrate. Next, this aqueous solution was evaporated to dryness at a drying temperature of 120°C. The obtained solid was pulverized and a molded body was obtained in the same manner as in Example 1, and then fired at a temperature of 1850° C. in a nitrogen atmosphere for 4 hours to obtain an aluminum nitride sintered body.

一比較例1−0 塩基性塩化アルミニウム1重量部に対し、ヘキサメチレ
ンテトラミンが0.47重量部となるように混合した水
溶液を作製した。なお、塩基性塩化アルミニウムは、ア
ルミニウム含有量がAlt。
Comparative Example 1-0 An aqueous solution was prepared by mixing 1 part by weight of basic aluminum chloride with 0.47 parts by weight of hexamethylenetetramine. Note that basic aluminum chloride has an aluminum content of Alt.

、換算で50重量%であり、塩基度が84%のものを用
いた。つぎに、この水溶液を120℃の乾燥温度で蒸発
乾固させた。得られた固形物を、−旦、粉砕した後、成
形金型を用いて、直径25fl、厚み311の円板状の
成形体にしてから、1900℃の窒素雰囲気で8時間焼
成し、窒化アルミニウム焼結体を得た。
, and the basicity was 84%. Next, this aqueous solution was evaporated to dryness at a drying temperature of 120°C. The obtained solid material was first pulverized, and then made into a disc-shaped molded product with a diameter of 25 fl and a thickness of 311 cm using a molding die, and then fired in a nitrogen atmosphere at 1900°C for 8 hours to form aluminum nitride. A sintered body was obtained.

このようにして得られた実施例1〜5および比較例1の
窒化アルミニウム焼結体の密度と熱伝導率を測定した。
The density and thermal conductivity of the aluminum nitride sintered bodies of Examples 1 to 5 and Comparative Example 1 thus obtained were measured.

測定結果を第1表に記す。The measurement results are shown in Table 1.

第  1  表 実施例1〜5の窒化アル主ニウム焼結体は、第1表にみ
るように、比較例1のそれに比べて、大きな密度をもつ
緻密な焼結体であり、しかも、純度が高く高熱伝導率で
ある。実施例1〜5の焼結体をX線分析したところ、未
窒化の残留A72.08の存在を示すピークは殆ど検出
されなかったが、比較例1の焼結体をX線分析したとこ
ろ、未窒化の残留A l x Otの存在を示すピーク
が明瞭に検出された。
Table 1 As shown in Table 1, the aluminum nitride-based sintered bodies of Examples 1 to 5 are dense sintered bodies with higher densities than those of Comparative Example 1, and have a higher purity. High thermal conductivity. When the sintered bodies of Examples 1 to 5 were subjected to X-ray analysis, almost no peak indicating the presence of unnitrided residual A72.08 was detected, but when the sintered bodies of Comparative Example 1 were subjected to X-ray analysis, A peak indicating the presence of unnitrided residual Al x Ot was clearly detected.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明にかかる窒化アルミニウ
ム焼結体の製造方法では、窒化アルミニウム粉末の状態
を経ることなく、緻密で高熱伝導性の焼結体を直に製造
できる。そのため、優れた高熱伝導性(絶縁)基板が安
価かつ容易に得られるようになる。
As described above, in the method for producing an aluminum nitride sintered body according to the present invention, a dense and highly thermally conductive sintered body can be directly produced without going through the state of aluminum nitride powder. Therefore, an excellent high thermal conductivity (insulating) substrate can be obtained easily and inexpensively.

また、この製造方法において、混合物が、アルミニウム
含有化合物と尿素を水溶液状態で均一に混合させた後、
水分を除くようにして得たものであると、アルミニウム
含有化合物と尿素が十分に混jニり合うようになるため
、より高純度で均質/I(焼結体が得られるようになる
In addition, in this manufacturing method, after the mixture is uniformly mixed with an aluminum-containing compound and urea in an aqueous solution state,
If the product is obtained by removing moisture, the aluminum-containing compound and urea will be sufficiently mixed, so that a homogeneous sintered body with higher purity can be obtained.

Claims (1)

【特許請求の範囲】 1 アルミニウム含有化合物と尿素の混合物からなる所
定形状の成形体を、窒素を含む非酸化性雰囲気下で焼成
するようにする窒化アルミニウム焼結体の製造方法。 2 アルミニウム含有化合物が水溶性化合物であり、こ
れと尿素を水溶液状態で均一に混合させた後、水分を除
くことにより混合物を得る請求項1記載の窒化アルミニ
ウム焼結体の製造方法。 3 アルミニウム含有化合物が、アルミニウム多核錯体
およびアルミニウムアルコキシドのうちの少なくともひ
とつである請求項1または2記載の窒化アルミニウム焼
結体の製造方法。 4 成形体に焼結助剤が含まれてなる請求項1から3ま
でのいずれかに記載の窒化アルミニウム焼結体の製造方
法。
[Scope of Claims] 1. A method for producing an aluminum nitride sintered body, in which a molded body of a predetermined shape made of a mixture of an aluminum-containing compound and urea is fired in a non-oxidizing atmosphere containing nitrogen. 2. The method for producing an aluminum nitride sintered body according to claim 1, wherein the aluminum-containing compound is a water-soluble compound, and the mixture is obtained by uniformly mixing this and urea in an aqueous solution state and then removing water. 3. The method for producing an aluminum nitride sintered body according to claim 1 or 2, wherein the aluminum-containing compound is at least one of an aluminum polynuclear complex and an aluminum alkoxide. 4. The method for producing an aluminum nitride sintered body according to any one of claims 1 to 3, wherein the molded body contains a sintering aid.
JP1201819A 1989-08-02 1989-08-02 Production of aluminum nitride sintered compact Pending JPH0365563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201819A JPH0365563A (en) 1989-08-02 1989-08-02 Production of aluminum nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201819A JPH0365563A (en) 1989-08-02 1989-08-02 Production of aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH0365563A true JPH0365563A (en) 1991-03-20

Family

ID=16447431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201819A Pending JPH0365563A (en) 1989-08-02 1989-08-02 Production of aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH0365563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320899A (en) * 2013-07-01 2013-09-25 中国计量学院 Preparation method of nanometer aluminum nitride fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320899A (en) * 2013-07-01 2013-09-25 中国计量学院 Preparation method of nanometer aluminum nitride fiber

Similar Documents

Publication Publication Date Title
CN110451936B (en) Complex phase ceramic and preparation method and application thereof
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPH07503695A (en) Moisture-proof aluminum nitride powder and its manufacturing and usage methods
JPH0365563A (en) Production of aluminum nitride sintered compact
JPS63210003A (en) Production of aluminum nitride powder
JPS61201671A (en) High heat conductor and manufacture
JPS63210002A (en) Production of aluminum nitride powder
JPH02192409A (en) Production of aluminum nitride powder and aluminum nitride sintered compact
JPS6355108A (en) Aluminum nitride powder and production thereof
JPH0365564A (en) Production of aluminum nitride sintered compact
JPH02225307A (en) Production of aluminum nitride powder and sintered material of aluminum nitride.
JPH02289409A (en) Production of aluminum nitride powder and aluminum nitride sintered body
JPH02199008A (en) Production of aluminum nitride powder and sintered aluminum nitride compact
JPH0543333A (en) Production of high-strength sialon-based sintered compact
JPH0365565A (en) Production of aluminum nitride sintered compact
JPS6355109A (en) Production of aluminum nitride powder
JPH02188413A (en) Production of aluminum nitride powder and aluminum nitride sintered body
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JP2548192B2 (en) Method for manufacturing aluminum nitride sintered body
JPH02199007A (en) Production of aluminum nitride powder and sintered aluminum nitride compact
Seo et al. Effects of additives on the stacking fault annihilation in β-SiC powder compacts
JPH0459609A (en) Production of aluminum nitride powder
JP3593705B2 (en) Aluminum nitride powder and method for producing aluminum nitride sintered body using the same
JPH013050A (en) Manufacturing method of superconducting ceramics
JPH0468242B2 (en)