JPS6355109A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPS6355109A
JPS6355109A JP19974286A JP19974286A JPS6355109A JP S6355109 A JPS6355109 A JP S6355109A JP 19974286 A JP19974286 A JP 19974286A JP 19974286 A JP19974286 A JP 19974286A JP S6355109 A JPS6355109 A JP S6355109A
Authority
JP
Japan
Prior art keywords
aluminum nitride
containing compound
powder
aqueous solution
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19974286A
Other languages
Japanese (ja)
Inventor
Noboru Hashimoto
登 橋本
Hisamitsu Takahashi
高橋 久光
Shigeto Deki
成人 出来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19974286A priority Critical patent/JPS6355109A/en
Publication of JPS6355109A publication Critical patent/JPS6355109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To inexpensively produce high-purity aluminum nitride fine powder to be readily sintered, by making an aluminum oxide precursor, a carbon- containing compound and a nitrogen - containing compound into an aqueous solution and calcining blended powder obtained from the solution. CONSTITUTION:An aluminum oxide precursor, a carbon-containing compound and a nitrogen-containing compound are made into an aqueous solution. A water-soluble compound such as aluminum nitrate, aluminum sulfate, etc., is used as the aluminum oxide precursor. A water-soluble compound such as methyl cellulose, polyethylene oxide, etc., may be cited as the carbon-containing compound. A water-soluble compound such as glycine, carbonylhydrazide, etc., is suitable as the nitrogen-containing compound. The aqueous solution is evaporated and dried to give fine powder wherein the precursor and the compounds are uniformly blended in a molecular order. Then the blended powder is calcined in a nonoxidizing atmosphere such as Ar, N2, etc., at >=about 900 deg.C, preferably about 1,200-1,800 deg.C to give aluminum nitride powder.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高熱伝導性基板を製造するのに適した窒化
アルミニウム粉末の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing aluminum nitride powder suitable for producing highly thermally conductive substrates.

〔背景技術〕[Background technology]

IC等に代表される半導体素子の高集積化や大電力化が
進み、これに伴って、放熱性の良い電気絶縁材料が要求
されるようになった。これに応えて各種の高熱伝導性基
板が提案されている。その中でも特に窒化アルミニウム
セラミック基板が、熱伝導性、熱膨張性、電気絶縁性等
の点にすぐれていると言うことから、実用化が進んでい
る。
BACKGROUND OF THE INVENTION As semiconductor devices such as ICs have become more highly integrated and have more power, electrical insulating materials with good heat dissipation properties have become required. In response to this demand, various highly thermally conductive substrates have been proposed. Among these, aluminum nitride ceramic substrates are being put into practical use because they are said to have excellent thermal conductivity, thermal expansion properties, electrical insulation properties, and the like.

ところが、この窒化アルミニウムセラミック基板は、価
格が高いという欠点がある。この高価格の原因としては
、特に、原料となる窒化アルミニウム粉末が高価格であ
ること、焼結に高温を有することなどが挙げられる。
However, this aluminum nitride ceramic substrate has the drawback of being expensive. The reasons for this high price include, in particular, the high cost of aluminum nitride powder as a raw material and the high temperature required for sintering.

従来から窒化アルミニウム粉末は、アルミニウムの直接
窒化やアルミナの炭素還元等にによって製造されている
が、たとえば、アルミニウムの直接窒化法においては、
高純度で粒径の小さい窒化アルミニウム粉末を得ること
が困難であり、アルミナの炭素還元法においては、反応
に高温を要する、原料価格が高い等の問題があった。ア
ルミナの炭素還元法の改良として、アルミニウム源を溶
液状態で混合する方法などが提案されているが、けん濁
状態での混合であり、分子オーダーでの混合がなされな
いため、反応に高温を要する等により、製造価格が高い
などの問題が残っている。
Conventionally, aluminum nitride powder has been produced by direct nitriding of aluminum or carbon reduction of alumina. For example, in the direct nitriding method of aluminum,
It is difficult to obtain aluminum nitride powder with high purity and small particle size, and the carbon reduction method of alumina has problems such as requiring high temperature for reaction and high raw material costs. As an improvement to the carbon reduction method for alumina, a method has been proposed in which the aluminum source is mixed in a solution state, but since the mixing is in a suspended state and the mixing is not done on a molecular level, the reaction requires high temperatures. However, there remain problems such as high manufacturing costs.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みて、裔純度で微粒子
の易焼結性を有する窒化アルミニウム粉末を安価で得る
ことができる窒化アルミニウム粉末の製法を提供するこ
とを目的としている。
In view of the above circumstances, an object of the present invention is to provide a method for producing aluminum nitride powder that can inexpensively obtain aluminum nitride powder that has fine particle purity and is easy to sinter.

〔発明の開示〕[Disclosure of the invention]

この発明は、このような目的を達成するために、アルミ
ニウム酸化物前駆体、炭素含有化合物、および、窒素含
有化合物を水溶液として混合し、前記化合物の混合粉末
を得、この混合粉末を非酸化性雰囲気で焼成して窒化ア
ルミニウム粉末を得るようにする窒化アルミニウム粉末
の製法を要旨としている。
In order to achieve such an object, the present invention mixes an aluminum oxide precursor, a carbon-containing compound, and a nitrogen-containing compound as an aqueous solution, obtains a mixed powder of the compounds, and converts this mixed powder into a non-oxidizing powder. The gist of this paper is a method for producing aluminum nitride powder by firing in an atmosphere to obtain aluminum nitride powder.

以下に、この発明を工程にしたがって順に詳しく説明す
る。
The present invention will be explained in detail below, step by step.

■ アルミニウム酸化物前駆体、炭素含有化合物、およ
び、窒素含有化合物を水溶液として混合する。この水溶
液では、分子オーダーで各成分が均質に混合されている
(2) Mixing an aluminum oxide precursor, a carbon-containing compound, and a nitrogen-containing compound as an aqueous solution. In this aqueous solution, each component is homogeneously mixed on a molecular order.

アルミニウム酸化物前駆体としては、硝酸アルミニウム
、硫酸アルミニウムなど水溶性のものが挙げられる。
Examples of the aluminum oxide precursor include water-soluble ones such as aluminum nitrate and aluminum sulfate.

炭素含有化合物としては、メチルセルロース。Methylcellulose is a carbon-containing compound.

ポリエチレンオキサイド、ポリビニルアルコール、リグ
ニンなどの水溶性のものが挙げられる。
Examples include water-soluble materials such as polyethylene oxide, polyvinyl alcohol, and lignin.

窒素含有化合物としては、グリシン、カルボニルヒドラ
ジド、エチレンジアミンなどの水溶性のものが挙げられ
る。
Examples of the nitrogen-containing compound include water-soluble compounds such as glycine, carbonyl hydrazide, and ethylenediamine.

■ 前記混合水溶液から、蒸発乾燥などにより、アルミ
ニウム酸化物前駆体、炭素含有化合物、および、窒素含
有化合物が分子オーダーで均質に混合された混合微細粉
末を得る。
(2) A mixed fine powder in which an aluminum oxide precursor, a carbon-containing compound, and a nitrogen-containing compound are homogeneously mixed on a molecular order is obtained from the mixed aqueous solution by evaporation drying or the like.

乾燥温度としては、100〜200℃が適当である。A suitable drying temperature is 100 to 200°C.

■ この混合物粉末を非酸化性雰囲気で焼成して窒化ア
ルミニウム粉末を得る。混合物粉末は、混合物中に窒素
源を有しているため、局所的に還元雰囲気が形成され混
合物内部から窒化反応が促進され、窒化アルミニウムが
迅速に形成される。
(2) This mixed powder is fired in a non-oxidizing atmosphere to obtain aluminum nitride powder. Since the mixture powder has a nitrogen source in the mixture, a reducing atmosphere is locally formed, nitriding reaction is promoted from inside the mixture, and aluminum nitride is rapidly formed.

非酸化性雰囲気としては、アルゴン、窒素、−酸化炭素
さらに好ましくは、アンモニアなどが用いられる。
As the non-oxidizing atmosphere, argon, nitrogen, carbon oxide, and more preferably ammonia are used.

焼成温度は、900°C以上、好ましくは、1200〜
1800”Cである。なお、残留炭素は、窒化アルミニ
ウム形成後、600〜700℃の酸化性雰囲気中で加熱
処理するようにすれば除去できる。
The firing temperature is 900°C or higher, preferably 1200°C or higher.
1800"C. Note that residual carbon can be removed by heat treatment in an oxidizing atmosphere at 600 to 700C after aluminum nitride is formed.

この発明の製法によれば、アルミニウム酸化物前駆体、
炭素含有化合物、および、窒素含有化合物が分子オーダ
ーで均質に混合された微細粉末を、非酸化性雰囲気で焼
成するので、微細で均質な窒化アルミニウム粉末を迅速
に且つ安価に得ることができる。しかも、微細粉末ゆえ
に、焼結性がよい。
According to the production method of this invention, an aluminum oxide precursor,
Since the fine powder in which the carbon-containing compound and the nitrogen-containing compound are homogeneously mixed on a molecular order is fired in a non-oxidizing atmosphere, fine and homogeneous aluminum nitride powder can be obtained quickly and at low cost. Moreover, since it is a fine powder, it has good sinterability.

つぎに、実施例を詳しく説明する。Next, examples will be explained in detail.

(実施例1) 硝酸アルミニウム・9水和物が1重量部に対し、メチル
セルロース(信越化学工業■製SMタイプ)が0.17
重量部、グリシンが0.29重量部となるように混合し
た水溶液を作った。この水溶液を蒸発させ150℃で乾
燥して混合粉末を得たのち、1500℃の窒素雰囲気中
で10時間焼成して窒化アルミニウム粉末を得た。
(Example 1) Methyl cellulose (SM type manufactured by Shin-Etsu Chemical Co., Ltd.) was 0.17 parts by weight of aluminum nitrate nonahydrate.
An aqueous solution was prepared by mixing 0.29 parts by weight of glycine and 0.29 parts by weight. This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then calcined in a nitrogen atmosphere at 1500°C for 10 hours to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度が98%以上
、平均粒径が約2μmであった。
Note that this aluminum nitride powder had a purity of 98% or more and an average particle size of about 2 μm.

(実施例2) 硝酸アルミニウム・9水和物が1重量部に対し、メチル
セルロース(信越化学工業■製SMタイプ)が0.13
重量部、グリシンが0.87重量部となるように混合し
た水溶液を作った。この水溶液を蒸発させ150°Cで
乾燥して混合粉末を得たのち、1400℃のアンモニア
雰囲気中で5時間焼成して窒化アルミニウム粉末を得た
(Example 2) Methyl cellulose (SM type manufactured by Shin-Etsu Chemical Co., Ltd.) was 0.13 parts by weight of aluminum nitrate nonahydrate.
An aqueous solution was prepared by mixing glycine in an amount of 0.87 parts by weight. This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then calcined in an ammonia atmosphere at 1400°C for 5 hours to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度が98%以上
、平均粒径が約2μmであった。
Note that this aluminum nitride powder had a purity of 98% or more and an average particle size of about 2 μm.

(実施例3) 硫酸アルミニウムが1重量部に対し、メチルセルロース
(信越化学工業a2)製SMタイプ)が0.25重足部
、グリシンが0.44重量部となるように混合した水溶
液を作った。この水溶液を蒸発させ150℃で乾燥して
混合粉末を得たのち、160Q ”cの窒素雰囲気中で
3時間焼成して窒化アルミニウム粉末を得た。
(Example 3) An aqueous solution was prepared by mixing 1 part by weight of aluminum sulfate, 0.25 parts by weight of methyl cellulose (SM type manufactured by Shin-Etsu Chemical A2), and 0.44 parts by weight of glycine. . This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then calcined for 3 hours in a nitrogen atmosphere of 160Q''c to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度が98%以上
、平均粒径が3μm以下であった。
Note that this aluminum nitride powder had a purity of 98% or more and an average particle size of 3 μm or less.

(実施例4) 硝酸アルミニウム・9水和物が1重量部に対し、ケン化
度90%のポリビニルアルコールが0.12重世部、カ
ルボッヒドラジドが0.18重量部となるように混合し
た水溶液を作った。この水溶液を蒸発させ150℃で乾
燥して混合粉末を得たのち、1500℃の窒素雰囲気中
で3時間焼成して窒化アルミニウム粉末を得た。
(Example 4) 1 part by weight of aluminum nitrate nonahydrate was mixed with 0.12 parts by weight of polyvinyl alcohol with a degree of saponification of 90% and 0.18 parts by weight of carbohydrazide. I made an aqueous solution. This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then calcined for 3 hours in a nitrogen atmosphere at 1500°C to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度が98%以上
、平均粒径が約2μmであった。
Note that this aluminum nitride powder had a purity of 98% or more and an average particle size of about 2 μm.

(実施例5) 硝酸アルミニウム・9水和物が1重量部に対し、ケン化
度90%のポリビニルアルコールが0.2重量部、エチ
レンジアミンが0.53重量部となるように混合した水
溶液を作った。この水溶液を蒸発させ150℃で乾燥し
て混合粉末を得たのち、1450 ”Cの窒素雰囲気中
で10時間焼成して窒化アルミニウム粉末を得た。
(Example 5) An aqueous solution was prepared by mixing 1 part by weight of aluminum nitrate nonahydrate, 0.2 parts by weight of polyvinyl alcohol with a degree of saponification of 90%, and 0.53 parts by weight of ethylenediamine. Ta. This aqueous solution was evaporated and dried at 150°C to obtain a mixed powder, which was then calcined in a nitrogen atmosphere at 1450''C for 10 hours to obtain aluminum nitride powder.

なお、この窒化アルミニウム粉末は、純度が98%以上
、平均粒径が約1μmであった。
Note that this aluminum nitride powder had a purity of 98% or more and an average particle size of about 1 μm.

以上実施例1〜5で得た窒化アルミニウム粉末に対して
焼結補助剤としてのYZO:lを3wt%混合し、成形
後、1650℃の窒素雰囲気中で3時間焼成することに
よって、密度98%以上の焼結窒化アルミニウムセラミ
ックを得ることができたこの発明にかかる窒化アルミニ
ウム粉末の製法は、上記実施例に限らない。実施例では
、炭素含有化合物および窒素含有化合物をそれぞれ用い
るようになっていたが、これらの代わりに炭素と窒素を
ともに含有する水溶性化合物を用いるようにしても構わ
ない。通常、窒化アルミニウムの焼結時には、焼結性を
向上させるために焼結補助剤として、酸化イツトリウム
などの希土類金属酸化物、酸化カルシウムなどのアルカ
リ土類金属酸化物を添加するのであるが、混合水溶液を
作る際に、塩化イツトリウムや硝酸カルシウムなどを同
時にこの混合水溶液中に添加するようにすれば、焼結補
助剤が均一に分散された窒化アルミニウム粉末がこの製
法によって得ることができる。
The aluminum nitride powder obtained in Examples 1 to 5 was mixed with 3 wt% of YZO:l as a sintering aid, and after molding, it was baked in a nitrogen atmosphere at 1650°C for 3 hours to achieve a density of 98%. The method for producing aluminum nitride powder according to the present invention, by which the above sintered aluminum nitride ceramic can be obtained, is not limited to the above embodiments. In the examples, a carbon-containing compound and a nitrogen-containing compound are respectively used, but a water-soluble compound containing both carbon and nitrogen may be used instead. Normally, when sintering aluminum nitride, rare earth metal oxides such as yttrium oxide and alkaline earth metal oxides such as calcium oxide are added as sintering aids to improve sintering properties. By simultaneously adding yttrium chloride, calcium nitrate, etc. to the mixed aqueous solution when preparing the aqueous solution, aluminum nitride powder in which the sintering aid is uniformly dispersed can be obtained by this manufacturing method.

〔発明の効果〕〔Effect of the invention〕

この発明′の窒化アルミニウム粉末の製法は、以上のよ
うに、アルミニウム酸化物前駆体、炭素含有化合物、お
よび、窒素含有化合物を水溶液として混合し、前記水溶
液から前記化合物の混合粉末を得、この混合粉末を非酸
化性雰囲気で焼成して窒化アルミニウム粉末を得るよう
になっているので、高純度で微粒子の易焼結性を有する
窒化アルミニウム粉末を安価で得ることができる。
As described above, the method for producing aluminum nitride powder of the present invention involves mixing an aluminum oxide precursor, a carbon-containing compound, and a nitrogen-containing compound as an aqueous solution, obtaining a mixed powder of the compounds from the aqueous solution, and Since the powder is fired in a non-oxidizing atmosphere to obtain the aluminum nitride powder, it is possible to obtain the aluminum nitride powder with high purity and easy sinterability in the form of fine particles at a low cost.

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウム酸化物前駆体、炭素含有化合物、お
よび、窒素含有化合物を水溶液として混合し、前記水溶
液から前記化合物の混合粉末を得、この混合粉末を非酸
化性雰囲気で焼成して窒化アルミニウム粉末を得るよう
にする窒化アルミニウム粉末の製法。
(1) Mix an aluminum oxide precursor, a carbon-containing compound, and a nitrogen-containing compound as an aqueous solution, obtain a mixed powder of the compound from the aqueous solution, and sinter this mixed powder in a non-oxidizing atmosphere to powder aluminum nitride. A method for producing aluminum nitride powder to obtain
JP19974286A 1986-08-26 1986-08-26 Production of aluminum nitride powder Pending JPS6355109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19974286A JPS6355109A (en) 1986-08-26 1986-08-26 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19974286A JPS6355109A (en) 1986-08-26 1986-08-26 Production of aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPS6355109A true JPS6355109A (en) 1988-03-09

Family

ID=16412875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19974286A Pending JPS6355109A (en) 1986-08-26 1986-08-26 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS6355109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985225A (en) * 1987-10-26 1991-01-15 Matsushita Electric Works, Ltd. Process for producing aluminum nitride powders
WO2010008038A1 (en) * 2008-07-17 2010-01-21 株式会社ブリヂストン Aluminum nitride powder manufacturing method, aluminum nitride precursor, and manufacturing method for aluminum nitride sintered body using aluminum nitride powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638206A (en) * 1986-06-27 1988-01-14 Mitsui Toatsu Chem Inc Production of aluminum nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638206A (en) * 1986-06-27 1988-01-14 Mitsui Toatsu Chem Inc Production of aluminum nitride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985225A (en) * 1987-10-26 1991-01-15 Matsushita Electric Works, Ltd. Process for producing aluminum nitride powders
WO2010008038A1 (en) * 2008-07-17 2010-01-21 株式会社ブリヂストン Aluminum nitride powder manufacturing method, aluminum nitride precursor, and manufacturing method for aluminum nitride sintered body using aluminum nitride powder

Similar Documents

Publication Publication Date Title
KR950005761B1 (en) Process for producing aluminum nitride powders
JP3481778B2 (en) Aluminum nitride sintered body and method for producing the same
JPS63210003A (en) Production of aluminum nitride powder
JPS6355109A (en) Production of aluminum nitride powder
JPS63210002A (en) Production of aluminum nitride powder
JP2577378B2 (en) Manufacturing method of aluminum nitride sintered body
JPS61155210A (en) Preparation of easily sinterable aluminum nitride powder
JPH0468242B2 (en)
JP2548192B2 (en) Method for manufacturing aluminum nitride sintered body
JPH0230608A (en) Production of aluminum nitride powder
JPH02192409A (en) Production of aluminum nitride powder and aluminum nitride sintered compact
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JPH0637286B2 (en) Manufacturing method of aluminum nitride
JPH02289409A (en) Production of aluminum nitride powder and aluminum nitride sintered body
JP4181359B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body
JPH0465307A (en) Production of aluminum nitride powder
JPH02188413A (en) Production of aluminum nitride powder and aluminum nitride sintered body
JPH02199008A (en) Production of aluminum nitride powder and sintered aluminum nitride compact
JPS63222074A (en) Manufacture of aluminum nitride sintered body
JPH0735302B2 (en) Method for manufacturing aluminum nitride sintered body
JPH0686286B2 (en) Manufacturing method of aluminum nitride
JP2536448B2 (en) Aluminum nitride sintered body
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6265912A (en) Aluminum nitride ceramic powder for slip forming