JPH03174364A - Silicon nitride-based sintered body - Google Patents

Silicon nitride-based sintered body

Info

Publication number
JPH03174364A
JPH03174364A JP1312736A JP31273689A JPH03174364A JP H03174364 A JPH03174364 A JP H03174364A JP 1312736 A JP1312736 A JP 1312736A JP 31273689 A JP31273689 A JP 31273689A JP H03174364 A JPH03174364 A JP H03174364A
Authority
JP
Japan
Prior art keywords
powder
rare earth
sintered body
silicon nitride
si3n4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1312736A
Other languages
Japanese (ja)
Other versions
JP2742619B2 (en
Inventor
Akira Saito
彰 斉藤
Masaki Terasono
正喜 寺園
Kazunori Koga
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1312736A priority Critical patent/JP2742619B2/en
Priority to US07/618,480 priority patent/US5114889A/en
Publication of JPH03174364A publication Critical patent/JPH03174364A/en
Application granted granted Critical
Publication of JP2742619B2 publication Critical patent/JP2742619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance deflection strength and toughness by constituting the sintered body of Si3N4, oxide of rare earth elements and (excess O2/oxide of rare earth elements) which have a specified molar ratio and incorporating fine Fe powder at a low content in the sintered body. CONSTITUTION:Si3N4 powder having 3-20m<2>/g BET specific surface area, >=95% alpha-rate of change and 0.8-1.4wt.% O2 content is washed by acid such as hydrochloric acid. This treated treated Si3N4, rare earth elements and SiO2 are weighted at prescribed amount and mixed. Thereafter a binder is added and the mixture is granulated and molded. Then the molded body is heated to remove the binder thereafter calcined at 1200-1600 deg.C in an inert gas atmosphere. Furthermore powder such as BN powder which is bad in wetting to glass is applied to the surface of the molded body at about 1-10mm. Then the impurities in BN powder are removed by heat-treating the molded body at 1200-1450 deg.C at a reduced pressure. Thereafter glass powder is applied to the surface and the molded body is roasted at 1450-1800 deg.C in the gaseous N2 atmosphere by an HIP method. An Si3N4-based sintered body is obtained which incorporates 70-99mol% (hereinafter shown in %) Si3N4, 0.1-5% oxide of rare earth elements, <=25% excess O2 (expressed in terms of SiO2), 2-55 molar ratio (excess O2/oxide of rare earth elements) and <=50ppm Fe content and has <=7mum mean particle diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスタービンやターボロータ等の熱機関に好
適で高温における抗折強度、靭性に優れた窒化珪素質焼
結体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon nitride sintered body that is suitable for heat engines such as gas turbines and turbo rotors and has excellent bending strength and toughness at high temperatures.

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬度
、熱的化学的安定性に優れることからエンジニアリング
セラミックス、特に熱機関用材料として注目されている
(Prior Art) Silicon nitride sintered bodies have traditionally attracted attention as engineering ceramics, particularly as materials for heat engines, because of their excellent strength, hardness, and thermal and chemical stability at high temperatures.

一般に、これら窒化珪素質焼結体を製造するには窒化珪
素自体が難焼結性であることから、希土類元素酸化物等
の各種の焼結助剤を添加し、ホットプレス法、常圧焼成
法またはガス圧力焼成法等が採用されている。また、最
近では所望の組成からなる窒化珪素成形体の表面にガラ
ス等からなる不透過性シールを形威し、高圧力下で焼成
する(以下、シールHIPという)ことにより高密度、
高強度の焼結体を得る方法が提案されている。
Generally, in order to manufacture these silicon nitride sintered bodies, silicon nitride itself is difficult to sinter, so various sintering aids such as rare earth element oxides are added, and hot press method or atmospheric pressure sintering is performed. method or gas pressure firing method, etc. are adopted. Recently, an impermeable seal made of glass or the like is formed on the surface of a silicon nitride molded body having a desired composition, and is fired under high pressure (hereinafter referred to as seal HIP) to achieve high density,
A method of obtaining a high-strength sintered body has been proposed.

一方、&II威の点からは、前述したようにY z 0
3等の希土類元素酸化物の他、Ah(h 、MgO等の
酸化物が焼結助剤として最も一般的に使用されているが
、焼結体の高温特性を考慮した場合、A l t Ox
やMgOなどが焼結体中に含まれると焼結体の粒界に低
融点物質が生成されるために高温強度や高温耐酸化性が
低下するという見地から、上記の酸化物を実質的に含ま
ない5i3Na−REzOx (希土類酸化物)−5i
n、の単純三元組成系が検討されている。
On the other hand, from the point of view of &II power, as mentioned above, Y z 0
In addition to oxides of rare earth elements such as 3 and 3, oxides such as Ah(h) and MgO are most commonly used as sintering aids.
If sintered bodies contain oxides such as MgO or MgO, low melting point substances will be generated at the grain boundaries of the sintered body, resulting in a decrease in high temperature strength and high temperature oxidation resistance. 5i3Na-REzOx (rare earth oxide)-5i
A simple ternary composition system of n, has been studied.

また、焼結体の組織の点からは、強度並びに高温特性を
決定する要因として焼結体中の粒界相が注目されており
、粒界相自体の強度を向上させることを目的として粒界
相を実質上結晶化させる試みがなされている。そこで最
近に至っては、上記の単純三元系の組成に対し、焼成条
件の検討あるいは焼結体の熱処理等によって粒界にSi
3N、−RE、0、(希土類酸化物)〜SiO□からな
る各種の結晶相、例えばアパタイト、YAM、ワラスト
ナイト等を析出させることも行われている。
In addition, from the perspective of the structure of the sintered body, the grain boundary phase in the sintered body has been attracting attention as a factor that determines the strength and high-temperature properties, and the grain boundary phase has been developed to improve the strength of the grain boundary phase itself. Attempts have been made to substantially crystallize the phase. Therefore, recently, for the above simple ternary composition, Si has been added to the grain boundaries by examining the firing conditions or by heat treating the sintered body.
Various crystal phases consisting of 3N, -RE, 0, (rare earth oxide) to SiO□, such as apatite, YAM, wollastonite, etc., have also been precipitated.

しかし、粒界相の結晶化は高温強度に対しある程度の効
果を有するものの、粒界に特定の結晶相のみを安定して
析出させることは非常に困難であり、また、場合によっ
ては粒界相に結晶相以外に低融点のガラス相が生成する
ことによって特性を劣化させる場合もある。
However, although the crystallization of the grain boundary phase has some effect on high-temperature strength, it is extremely difficult to stably precipitate only a specific crystal phase at the grain boundary, and in some cases, the grain boundary phase In some cases, a glass phase with a low melting point is formed in addition to the crystalline phase, resulting in deterioration of the properties.

そこで、本発明者等は、上記の三元系のM威においてS
iO□/REzOzモル比が2を越え、25以下からな
るSin、を過剰に含む組成をシー・ルHIP法によっ
て低温焼成することによって、微細な窒化組織からなり
、粒界相が珪素、希土類元素、酸素および窒素から構成
される室温強度、高温強度並びに耐酸化性に優れた焼結
体が得られることを提案した。
Therefore, the present inventors proposed that S in the above ternary system M
By firing a composition containing an excessive amount of Sin with a molar ratio of iO proposed that a sintered body composed of oxygen and nitrogen with excellent room temperature strength, high temperature strength, and oxidation resistance could be obtained.

(発明が解決しようとする問題点) しかしながら、上記の焼結体は従来品に比較して抗折強
度、耐酸化性については優れた特性を有するが、特性の
バラツキが未だ解決されず、生産性において特性の安定
した焼結体を得ることが困難であるという欠点を有して
いた。
(Problems to be solved by the invention) However, although the above-mentioned sintered body has superior properties in terms of bending strength and oxidation resistance compared to conventional products, the dispersion of properties has not yet been resolved, and production However, it has the disadvantage that it is difficult to obtain a sintered body with stable properties.

(発明の目的) よって、本発明は上記の優れた強度並び耐酸化性を有し
、量産性に優れた窒化珪素質焼結体を提供することを目
的とするものである。
(Objective of the Invention) Therefore, an object of the present invention is to provide a silicon nitride sintered body that has the above-mentioned excellent strength and oxidation resistance and is excellent in mass production.

(問題点を解決するための手段) 本発明者等は、先の5iJn−REzOs (希土類酸
化物)−5iO□系の焼結体において、そのバラツキの
原因について低強度を示した試験片の組織やその破壊源
等を観察したところ、その殆どの組織内に異常粒成長が
存在することがわかった。さらに、この異常粒成長部分
について組織分析したところ、鉄(Fe)が存在し、こ
れが焼結助剤との反応によって低融点物質が生成され、
これによって窒化珪素が異常粒成長していることを突き
止めた。
(Means for Solving the Problems) The present inventors have investigated the cause of the variation in the structure of test pieces that showed low strength in the 5iJn-REzOs (rare earth oxide)-5iO□ system sintered bodies. When we observed the fracture sources, it was found that abnormal grain growth existed in most of the structures. Furthermore, when we analyzed the structure of this abnormal grain growth area, we found that iron (Fe) was present, and a low melting point substance was produced by the reaction with the sintering aid.
This revealed that silicon nitride had abnormal grain growth.

そこで、原料あるいは製造過程において鉄(Fe)の混
入を極力低減させることによって異常粒成長が殆ど発生
せず、特性のバラツキが解消されることを知見し、本発
明に至った。
Therefore, it was discovered that by minimizing the amount of iron (Fe) mixed in the raw materials or in the manufacturing process, abnormal grain growth hardly occurs and variations in properties can be eliminated, leading to the present invention.

即ち、本発明は、窒化珪素が70乃至99モル%と、希
土類元素酸化物が0.1〜5モル%と、過剰酸素がSi
n、換算で25モル%以下からなり、(過剰酸素/希土
類元素酸化物)モル比が2より大きく、25以下の範囲
にあり、且つ窒化珪素結晶の平均結晶粒径が7μ履以下
の@細な組織からなる窒化珪素質焼結体中の鉄(Fe)
含有量を50ppm以下に低減することによって前記目
的が達成されるものである。
That is, in the present invention, silicon nitride is 70 to 99 mol%, rare earth element oxide is 0.1 to 5 mol%, and excess oxygen is Si
n, calculated as 25 mol% or less, the (excess oxygen/rare earth element oxide) molar ratio is greater than 2 and is in the range of 25 or less, and the average crystal grain size of the silicon nitride crystal is 7 μm or less @fine Iron (Fe) in a silicon nitride sintered body consisting of a
The above objective is achieved by reducing the content to 50 ppm or less.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明における大きな特徴は、その組成が窒化珪ff1
70〜99モル%、特に80〜93.5モル%と、希土
類元素酸化物0.1〜5モル%、特に0.5〜4モル%
、過剰酸素(SiO□換算)で25モル%以下、特に6
〜20モル%の割合からなるとともに、(過剰酸素/希
土類元素酸化物)モル比が2より大きく、25以下、特
に3〜20の割合からなる点にある。なお、過剰酸素と
は焼結体の系全体に含まれる全酸素量から希土類元素酸
化物として混入した化学量論的量で混入した酸素を除い
た酸素量で、具体的には窒化珪素原料中の不純物酸素、
あるいはSin、として添加された酸素から構成される
ものであり、本発明ではいずれもSin、換算量を示す
ものである。
The major feature of the present invention is that its composition is silicon nitrideff1
70-99 mol%, especially 80-93.5 mol% and rare earth element oxides 0.1-5 mol%, especially 0.5-4 mol%
, 25 mol% or less in excess oxygen (calculated as SiO□), especially 6
The molar ratio (excess oxygen/rare earth element oxide) is greater than 2 and less than 25, particularly from 3 to 20. Note that excess oxygen is the amount of oxygen excluding the stoichiometric amount of oxygen mixed in as rare earth element oxides from the total amount of oxygen contained in the entire system of the sintered body, and specifically, the amount of oxygen in the silicon nitride raw material. impurity oxygen,
Alternatively, it is composed of oxygen added as Sin, and in the present invention, all values are shown in converted amounts as Sin.

本発明は、上記組成を用いて比較的低温で焼威し、微細
な組織構造を有する焼結体を得る場合、特に不純物とし
て鉄(Fe)がその特性に対し大きく影響を与えること
に着目したものである。
The present invention focuses on the fact that when the above-mentioned composition is fired at a relatively low temperature to obtain a sintered body having a fine microstructure, iron (Fe) as an impurity has a large influence on the properties of the sintered body. It is something.

その理由は明らかではないが、本発明者等は次のように
考察する。
Although the reason is not clear, the present inventors consider the following.

この組成系を用いて、例えばガス圧力焼成等で高温焼成
する場合は、助剤成分によって粘度の低い液相が生成さ
れることによって焼結が進行するが、この時、焼結体内
に存在する不純物金属はほとんど粘度の低い粒界に分散
されるために、不純物による特性への影響は殆どないと
考えられる。
When this composition system is used to perform high-temperature firing, such as gas pressure firing, sintering progresses as a liquid phase with low viscosity is generated by the auxiliary component, but at this time, the sintered body Since most of the impurity metals are dispersed in grain boundaries with low viscosity, it is thought that the impurities have almost no effect on the properties.

しかしながら、上記の組成系を熱間静水圧焼成等の手法
によって低温焼成すると、焼結過程において助剤成分に
よって液相が生成されるもののその粘度は非常に高い状
態に保たれたままで焼結は進行する。この時、粒界内に
鉄等の不純物金属が存在すると、助剤等との反応により
低融点物質が生成されるとともに他の粒界自体の粘度が
高いことに起因して生成された低融点物質のみが粒界内
を移動し凝集し、その凝集部で窒化珪素が異常粒成長し
、破壊源となるためと推察される。
However, when the above composition system is fired at a low temperature using a method such as hot isostatic pressure firing, although a liquid phase is generated by the auxiliary components during the sintering process, the viscosity remains extremely high and sintering is not possible. proceed. At this time, if impurity metals such as iron are present in the grain boundaries, low melting point substances are generated by reaction with auxiliaries, etc., and low melting point substances are generated due to the high viscosity of other grain boundaries themselves. It is presumed that this is because only the substance moves within the grain boundaries and aggregates, and the silicon nitride grows abnormally in the agglomerated areas, becoming a source of destruction.

本発明は、上記の知見からその鉄(Fe)の量について
検討をおこなったところ、その量が焼結体中に50pp
m以下、特に30 p pm以下に制御することを特徴
とし、これにより前述したような特性への影響を抑制し
、焼結体の特性のバラツキを低減できる。
In the present invention, based on the above knowledge, we investigated the amount of iron (Fe) and found that the amount was 50pp in the sintered body.
m or less, particularly 30 ppm or less, thereby suppressing the effects on the properties as described above and reducing variations in the properties of the sintered body.

上記の構成からなる窒化珪素質焼結体を製造する方法と
しては、前述した組成を低温で焼成することを基本とし
、鉄の混入を極力避けることが必要である。具体的な例
としてはシールHIP法が好適である。以後、シールH
IP法を例にとって説明する。
The method for manufacturing the silicon nitride sintered body having the above structure is based on firing the above-mentioned composition at a low temperature, and it is necessary to avoid iron contamination as much as possible. As a specific example, the seal HIP method is suitable. From now on, Seal H
This will be explained using the IP law as an example.

まず、原料粉末として窒化珪素粉末、希土類元素酸化物
粉末、さらに場合によりSin、粉末を用いる。窒化珪
素粉末は、焼結性を促進するためBET比表面積が3〜
20 m”/g 、α化率95%以上であることが望ま
しい。また、酸素含有量は一般に市販品で0.8〜1.
4重量%程度含有されるが、Sin、の添加によって任
意に調整できる。
First, as raw material powders, silicon nitride powder, rare earth element oxide powder, and optionally Sin powder are used. Silicon nitride powder has a BET specific surface area of 3 to 3 to promote sinterability.
20 m"/g and a pregelatinization rate of 95% or more. In addition, commercially available products generally have an oxygen content of 0.8 to 1.
The content is about 4% by weight, but it can be adjusted arbitrarily by adding Sin.

まず、系内に混入する鉄の殆どは原料粉末中の不純物で
ある。通常、窒化珪素粉末中には金属不純物として鉄が
60 p pm以上存在する0本発明によれば、まずこ
の窒化珪素粉末中の鉄を除去することが最も効率的であ
る。
First, most of the iron mixed into the system is impurities in the raw material powder. Generally, 60 ppm or more of iron exists as a metal impurity in silicon nitride powder.According to the present invention, it is most efficient to first remove iron from this silicon nitride powder.

原料中の鉄を除去する方法としては、例えば原料を塩酸
、硝酸等の酸で洗浄することによって用意に除去するこ
とができる。
As a method for removing iron in the raw material, for example, iron can be easily removed by washing the raw material with an acid such as hydrochloric acid or nitric acid.

次に、このようにして処理された粉末を用いて前述した
U戒に秤量混合し、バインダーを添加して造粒後、成形
する。成形は周知の方法を採用でき、具体的にはプレス
成形、押し出し成形、鋳込み成形、射出成形等が採用で
きる。
Next, the thus treated powder is weighed and mixed with the above-mentioned U-kai, a binder is added thereto, and after granulation, it is molded. A well-known method can be used for the molding, and specifically, press molding, extrusion molding, cast molding, injection molding, etc. can be used.

成形体は脱バインダーした後、焼成工程においてシール
材であるガラス等との反応を防止することを目的として
BN粉末等のガラスと濡れ性の悪い粉末を成形体表面に
塗布する。成形体表面へのBN等のガラスとの濡れ性の
悪い粉末の塗布は、BN等の粉末をスラリー化して成形
体に塗布するか、またはスラリーをスプレー塗布するこ
ともできる。なお、成形体表面への塗布量はその厚みが
l〜10mm程度が望ましい。
After removing the binder from the molded body, a powder having poor wettability with glass, such as BN powder, is applied to the surface of the molded body in order to prevent reaction with glass, which is a sealing material, during the firing process. To apply a powder such as BN that has poor wettability with glass to the surface of the molded body, the powder such as BN may be made into a slurry and applied to the molded body, or the slurry may be spray-coated. Note that the amount of coating applied to the surface of the molded product is preferably such that the thickness thereof is about 1 to 10 mm.

上記BN等の粉末塗布後に乾燥工程が必要であり、この
時成形体にクラックが生じやすいため、BN塗布前の成
形体を一旦1200〜1600″Cの不活性ガス雰囲気
下で仮焼しておくことが望ましい。
A drying process is required after applying the above-mentioned powder such as BN, and since cracks are likely to occur in the molded product at this time, the molded product is temporarily calcined in an inert gas atmosphere at 1200 to 1600"C before BN is applied. This is desirable.

また、BN粉末中には、BzO□等の不純物が存在し、
これが焼成時、焼結体中に混入して低融点の粒界を形威
し焼結体の高温特性を劣化させることから、焼成前に1
200〜1450°Cの減圧下で熱処理し、この不純物
を除去することが望ましい、なお、この時の条件は窒化
珪素の分解が生じない条件で行うことが必要である。
In addition, impurities such as BzO□ are present in the BN powder,
During firing, this gets mixed into the sintered body and forms grain boundaries with a low melting point, deteriorating the high-temperature properties of the sintered body.
It is desirable to remove these impurities by heat treatment under reduced pressure at 200 to 1450°C, and the conditions at this time must be such that silicon nitride does not decompose.

次に、BNが塗布された成形体に対し焼成時シールを形
成するガラス粉末をその表面に塗布するかあるいはガラ
ス製カプセル内に封入する。また他の方法として、前記
成形体を内部にガラス粉末が充填された耐熱容器内に埋
めることもできる。
Next, glass powder that forms a seal during firing is applied to the surface of the molded body coated with BN, or the molded body is sealed in a glass capsule. Alternatively, the molded body may be buried in a heat-resistant container filled with glass powder.

その後、成形体をHIP法により高温高圧下で焼成する
Thereafter, the molded body is fired under high temperature and high pressure using the HIP method.

HIP法による焼成では、減圧下で炉内の温度を昇温し
で成形体に含まれる水分を除去した後、成形体表面に存
在するガラスの軟化点以上の焼成温度にまで昇温すると
同時に、該温度における窒化珪素の分解平衡圧と同等も
しくは0.01〜0.2MPa程度の分圧の窒素ガスを
導入しつつガラスを軟化させ成形体表面にガラスによる
ガス不透過性膜を形成する。この時の焼成温度は145
0〜1800 ’C1特に1500〜1750°Cに設
定される。ガス不透過性膜が成形体表面に完全に形成さ
れた後は、圧力媒体として窒素、アルゴンの不活性ガス
を用いて炉内圧力を充分に緻密化しうる条件下、例えば
50MPa以上の圧力まで上昇させる。この段階で、希
土類酸化物、Sin、および窒化珪素により液相が生成
されて焼成が進行し、その緻密化はほぼ終了する。その
後、最高温度圧力下で所定時間保持して結晶を成長させ
た後、温度と圧力を下げ焼成を終了する。
In firing by the HIP method, the temperature in the furnace is raised under reduced pressure to remove moisture contained in the molded body, and then the temperature is raised to a firing temperature higher than the softening point of the glass present on the surface of the molded body, and at the same time, While introducing nitrogen gas at a partial pressure equal to the decomposition equilibrium pressure of silicon nitride at this temperature or about 0.01 to 0.2 MPa, the glass is softened to form a gas-impermeable glass film on the surface of the molded body. The firing temperature at this time is 145
It is set to 0 to 1800'C1, especially 1500 to 1750°C. After the gas-impermeable film is completely formed on the surface of the compact, the furnace pressure is increased to a pressure of 50 MPa or higher, for example, under conditions that can sufficiently densify the furnace pressure using an inert gas such as nitrogen or argon as a pressure medium. let At this stage, a liquid phase is generated by the rare earth oxide, Sin, and silicon nitride, the firing progresses, and the densification is almost completed. Thereafter, the crystal is grown by holding it at the maximum temperature and pressure for a predetermined period of time, and then the temperature and pressure are lowered to complete the firing.

このようにして得られる焼結体は、微細なβ−窒化珪素
結晶相とともにα−窒化珪素結晶相が残存しており、該
結晶相の粒界には珪素、希土類元素、酸素、窒素が存在
する。上記のような製法によれば高融点ガラス相の他に
5izNzOで表わさせるシリコンオキシナイトライド
結晶相あるいはREzOx  ・2 S i 0x(R
E :希土類元素)で表されるグイシリケート結晶相が
生成する場合もある。このような粒界組織は従来から知
られた各種結晶相に比較して高温強度、耐酸化性におい
て優れた特性を有するヒともに安定して製造することが
できるというメリットを有する。
In the sintered body thus obtained, an α-silicon nitride crystal phase remains together with a fine β-silicon nitride crystal phase, and silicon, rare earth elements, oxygen, and nitrogen are present at the grain boundaries of this crystal phase. do. According to the above manufacturing method, in addition to the high melting point glass phase, a silicon oxynitride crystal phase represented by 5izNzO or REzOx 2 S i 0x (R
A guisilicate crystal phase represented by E (rare earth element) may also be formed. Such a grain boundary structure has the advantage that it has superior properties in terms of high temperature strength and oxidation resistance compared to various conventionally known crystal phases, and can be produced stably.

それに加え、鉄の含有量が低減されていることに起因し
て窒化珪素の異常粒成長が抑制され、特性の安定性に優
れた焼結体を得ることができる。
In addition, due to the reduced iron content, abnormal grain growth of silicon nitride is suppressed, and a sintered body with excellent stability of properties can be obtained.

また、この焼結体に対し、所定の条件、例えば非酸化性
雰囲気で1200〜1700°Cの温度で熱処理し、あ
るいは酸化性雰囲気で熱処理することによって特性の改
善を図ることもできる。
Further, the characteristics can be improved by heat treating this sintered body under predetermined conditions, for example, at a temperature of 1200 to 1700° C. in a non-oxidizing atmosphere or in an oxidizing atmosphere.

本発明において焼結体の組成を前述した割合に限定した
のはいずれも優れた特性を得るために重要な要因であり
、窒化珪素、希土類酸化物、過剰酸素のいずれかが前述
の範囲を逸脱しても室温強度ならびに高温強度が低下し
、また(過剰酸素/希土類元素酸化物)モル比が2以下
では高温における耐酸化性が劣化し易く、逆に25を越
えると低融点のガラスが生成されやすくなり高温特性が
劣化するためである。さらに、平均結晶粒径を7μm以
下に設定したのは、室温強度、高温強度を高めるためで
、粒成長を促進し粒径が7μ■を越えると所望を強度が
得られないためである。
In the present invention, the composition of the sintered body is limited to the above-mentioned proportions, all of which are important factors for obtaining excellent properties. If the molar ratio (excess oxygen/rare earth element oxide) is less than 2, the oxidation resistance at high temperatures tends to deteriorate, and if it exceeds 25, glass with a low melting point will be formed. This is because the high-temperature characteristics deteriorate. Furthermore, the reason why the average crystal grain size is set to 7 μm or less is to increase the room temperature strength and high temperature strength, and because grain growth is promoted and if the grain size exceeds 7 μm, the desired strength cannot be obtained.

なお、本発明おいて用いられる希土類元素としてはYが
最も一般的であるが、Er5Yb、H。
Note that Y is the most common rare earth element used in the present invention, but Er5Yb, H.

、Dy、Gd等の重希土類元素が特性の安定性の点で望
ましい。
Heavy rare earth elements such as , Dy, and Gd are preferable from the viewpoint of stability of properties.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例) 原料粉末として、窒化珪素粉末CBET比表面積5m”
7g、α化率99%、不純物酸素量i、 o重量%、F
e含有量62ppm)と、各種希土類酸化物あるいはS
iO□粉末を用いた。゛なお、窒化珪素粉末に対し、塩
酸による酸洗浄処理を施し、鉄の含有量の低減を図った
(Example) As raw material powder, silicon nitride powder CBET specific surface area 5 m"
7g, gelatinization rate 99%, impurity oxygen amount i, o weight%, F
e content 62 ppm) and various rare earth oxides or S
iO□ powder was used.゛The silicon nitride powder was subjected to acid cleaning treatment using hydrochloric acid to reduce the iron content.

これらの粉末を用い、第1表に示す!11戊に戒るよう
に調合し混合後、It/cd  でプレス成形後140
0″Cで仮焼した。
Using these powders, the results are shown in Table 1! 11 After blending and mixing, press molding at It/cd to 140
It was calcined at 0''C.

得られた成形体に対し、 粒径l〜5μmのの8N粉末
のペーストを1=10mmの厚みで塗布後、0.2To
rrの減圧下で1350℃で熱処理し、不純物の除去を
行った。
After applying a paste of 8N powder with a particle size of 1 to 5 μm to a thickness of 1=10 mm to the obtained molded body, 0.2 To
Impurities were removed by heat treatment at 1350° C. under reduced pressure of rr.

その後、5iOzを主成分とするガラスをl〜10mm
の厚みで塗布した。
After that, 1~10mm of glass mainly composed of 5iOz
It was applied to a thickness of .

このように処理された成形体を熱間静水圧焼成炉に配置
して、第1表の焼成条件で焼成した。
The molded body thus treated was placed in a hot isostatic pressure firing furnace and fired under the firing conditions shown in Table 1.

次に、ガラス除去後の焼結体に対し、鉄の含有量をIC
P分析で定量するとともに、各焼結体から試験片をそれ
ぞれ14個切り出し、JISRI601に従い、室温、
1200°Cおよび1400℃における4点曲げ抗折強
度および1400″Cにおける酸化重量増の各平均値を
求めた。
Next, the iron content of the sintered body after glass removal was determined by IC.
In addition to quantifying P by analysis, 14 test pieces were cut out from each sintered body and heated at room temperature according to JISRI601.
The average values of four-point bending strength at 1200°C and 1400°C and oxidation weight gain at 1400″C were determined.

また、各試料について8個の抗折試験片の破壊源を観察
し、破壊源が鉄による異常粒成長であったものの個数を
調べた。
In addition, the source of fracture in eight bending test pieces for each sample was observed, and the number of specimens in which the source of fracture was abnormal grain growth due to iron was determined.

また、焼結体の電子顕微鏡写真から窒化珪素結晶粒子の
平均粒径を算出した。
Furthermore, the average particle size of silicon nitride crystal particles was calculated from an electron micrograph of the sintered body.

結果は第1表に示した。The results are shown in Table 1.

また比較例として、鉄の量の異なる2種の原料を用いて
成形体を作製し、ガス圧力焼成法により第1表の条件で
焼威し、同様に特性の評価を行った。
In addition, as a comparative example, molded bodies were produced using two types of raw materials with different amounts of iron, and were fired under the conditions shown in Table 1 using the gas pressure firing method, and the properties were evaluated in the same manner.

(以下余白) 第1表中、Nα4の試料についてその抗折試験片の破壊
源となった異常粒成長部の組織構造の電子顕微鏡写真を
第1図に示した。
(The following is a blank space) In Table 1, FIG. 1 shows an electron micrograph of the structure of the abnormal grain growth area that was the source of fracture in the bending test piece for the Nα4 sample.

第1表によれば、鉄の含有量が50ppmを越えるNa
4の試料は、第1図の破壊源の中心部からFeおよびS
iが検出され、その周囲が異常粒成長していることが理
解される。また特性的にもバラツキがありその平均値も
低いものであった。
According to Table 1, Na with iron content exceeding 50 ppm
Sample No. 4 has Fe and S from the center of the fracture source in Figure 1.
i is detected, and it is understood that there is abnormal grain growth around it. In addition, there were variations in characteristics, and the average value was also low.

これに対し、鉄の含有量を50ppm以下に抑えた本発
明品はその殆どが粒界破壊を示し、異常粒成長も殆どな
く、特性も良好であった。
On the other hand, most of the products of the present invention in which the iron content was suppressed to 50 ppm or less showed grain boundary fracture, almost no abnormal grain growth, and had good properties.

一方、&ll威の上では(過剰酸素/希土類元素酸化物
)モル比が2より低いN117の試料では耐酸化性が悪
く、上記モル比が25を越えるkloの試料では140
0°Cにおける強度が低い。
On the other hand, the oxidation resistance of N117 samples with a (excess oxygen/rare earth element oxide) molar ratio lower than 2 is poor, and the oxidation resistance of N117 samples with a molar ratio exceeding 25 is 140.
Low strength at 0°C.

また、比較例として本発明の範囲内にある組成物を窒素
ガス加圧下で高温焼成したNa17.18の試料ではい
ずれも組織上に鉄による異常粒成長はなく、破壊源も粒
界破壊であり、鉄の影響が殆どないことが分かった。し
かし両者とも結晶粒径が大きく、特性的には本発明品よ
り劣るものであった。
In addition, as a comparative example, in the samples of Na17.18, which were prepared by firing a composition within the scope of the present invention at high temperature under nitrogen gas pressure, there was no abnormal grain growth due to iron on the structure, and the source of fracture was intergranular fracture. It was found that there was almost no effect of iron. However, both had large crystal grain sizes and were inferior to the products of the present invention in terms of characteristics.

(発明の効果) 以上詳述した通り、本発明の窒化珪素質焼結体によれば
、5iJ4REzO*(希土類酸化物)−5iO□(過
剰酸素)の単純三元組成においてその過剰酸素量を多く
含む系において、焼結体中に含まれる鉄含有量を低減す
ることにより、室温、高温強度に優れた焼結体の特性バ
ラツキを低減できる。
(Effects of the Invention) As detailed above, according to the silicon nitride sintered body of the present invention, the amount of excess oxygen can be increased in a simple ternary composition of 5iJ4REzO* (rare earth oxide)-5iO□ (excess oxygen). By reducing the iron content in the sintered body, it is possible to reduce the variation in properties of the sintered body, which has excellent room temperature and high temperature strength.

これにより、窒化珪素質焼結体の熱機関等の高温用構造
材料をはしめ、各種機械構造部品としてその量産化をさ
らに推進することができるともにその特性の信頼性を高
めることができる。
This makes it possible to further promote mass production of the silicon nitride sintered body as a high-temperature structural material for heat engines, etc., as various mechanical structural parts, and to improve the reliability of its characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鉄による異常粒成長部のMi織構造を示す電
子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the Mi woven structure of the abnormal grain growth area due to iron.

Claims (1)

【特許請求の範囲】[Claims]  窒化珪素70乃至99モル%と、希土類元素酸化物0
.1〜5モル%と、過剰酸素(SiO_2換算量)25
モル%以下からなり、(過剰酸素/希土類元素酸化物)
モル比が2より大きく、25以下の範囲にあり、且つ窒
化珪素結晶の平均粒径が7μm以下の窒化珪素質焼結体
であって、該焼結体中における鉄(Fe)の含有量が5
0ppm以下であることを特徴とする窒化珪素質焼結体
70 to 99 mol% silicon nitride and 0 rare earth element oxides
.. 1 to 5 mol% and excess oxygen (SiO_2 equivalent amount) 25
Consisting of mol% or less (excess oxygen/rare earth element oxide)
A silicon nitride sintered body having a molar ratio of more than 2 and less than or equal to 25, and an average grain size of silicon nitride crystals of 7 μm or less, wherein the iron (Fe) content in the sintered body is 5
A silicon nitride sintered body characterized by having a content of 0 ppm or less.
JP1312736A 1989-11-27 1989-11-30 Silicon nitride sintered body Expired - Fee Related JP2742619B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1312736A JP2742619B2 (en) 1989-11-30 1989-11-30 Silicon nitride sintered body
US07/618,480 US5114889A (en) 1989-11-27 1990-11-27 Silicon nitride sintered body and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312736A JP2742619B2 (en) 1989-11-30 1989-11-30 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03174364A true JPH03174364A (en) 1991-07-29
JP2742619B2 JP2742619B2 (en) 1998-04-22

Family

ID=18032803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312736A Expired - Fee Related JP2742619B2 (en) 1989-11-27 1989-11-30 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2742619B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157030A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Production of silicon nitride sintered compact
JP2004214075A (en) * 2003-01-07 2004-07-29 Nikko Materials Co Ltd HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT
JP2011133011A (en) * 2009-12-24 2011-07-07 Kyocera Corp Noncontact type seal ring, and shaft seal device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211575A (en) * 1984-04-05 1985-10-23 Fujitsu Ltd Quantized projecting method
JPS62223066A (en) * 1986-03-19 1987-10-01 工業技術院長 Manufacture of high temperature strength silicon nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211575A (en) * 1984-04-05 1985-10-23 Fujitsu Ltd Quantized projecting method
JPS62223066A (en) * 1986-03-19 1987-10-01 工業技術院長 Manufacture of high temperature strength silicon nitride sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157030A (en) * 1995-12-07 1997-06-17 Denki Kagaku Kogyo Kk Production of silicon nitride sintered compact
JP2004214075A (en) * 2003-01-07 2004-07-29 Nikko Materials Co Ltd HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT
JP2011133011A (en) * 2009-12-24 2011-07-07 Kyocera Corp Noncontact type seal ring, and shaft seal device using the same

Also Published As

Publication number Publication date
JP2742619B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JPS64349B2 (en)
JPH03174364A (en) Silicon nitride-based sintered body
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JP2642429B2 (en) Silicon nitride sintered body and method for producing the same
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JPH03183660A (en) Production of silicon nitride sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH06100376A (en) Sintered beta-sialon and its production
JP2783702B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH03164472A (en) Production of silicon nitride sintered body
JP2811493B2 (en) Silicon nitride sintered body
JPH02233560A (en) High-strength calcined sialon-based compact
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JPH07223863A (en) Silicon nitride sintered compact
JPH0321500B2 (en)
JPH06166569A (en) Production of sintered silicon nitride
JPH04280871A (en) Silicon nitride sintered product and production thereof
JPH06122556A (en) Sintered compact of siliceous nitride and its production
JPH0940464A (en) Silicon nitride-base sintered compact and its production
JPH0570239A (en) Production of silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees