JPS5823327B2 - Method for producing β-type silicon carbide powder - Google Patents

Method for producing β-type silicon carbide powder

Info

Publication number
JPS5823327B2
JPS5823327B2 JP55081984A JP8198480A JPS5823327B2 JP S5823327 B2 JPS5823327 B2 JP S5823327B2 JP 55081984 A JP55081984 A JP 55081984A JP 8198480 A JP8198480 A JP 8198480A JP S5823327 B2 JPS5823327 B2 JP S5823327B2
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
type silicon
cobalt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55081984A
Other languages
Japanese (ja)
Other versions
JPS577809A (en
Inventor
加瀬薫
古川満彦
山本弘
北平孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP55081984A priority Critical patent/JPS5823327B2/en
Publication of JPS577809A publication Critical patent/JPS577809A/en
Publication of JPS5823327B2 publication Critical patent/JPS5823327B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 この発明はβ型炭化ケイ素粉末の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing β-type silicon carbide powder.

炭化ケイ素は高い高温強度とすぐれた耐熱耐食性を持ち
有望な耐熱セラミック材料として注目を集めている。
Silicon carbide is attracting attention as a promising heat-resistant ceramic material due to its high high-temperature strength and excellent heat and corrosion resistance.

これら炭化ケイ素焼結体は粉末冶金法によって作られる
ため原料となる炭化ケイ素粉末は微細で活性に富む物が
望ましい。
Since these silicon carbide sintered bodies are made by powder metallurgy, it is desirable that the silicon carbide powder used as a raw material be fine and highly active.

炭化ケイ素の合成法の1つは、酸化ケイ素をカーボンで
還元、炭化する。
One method for synthesizing silicon carbide is to reduce silicon oxide with carbon and carbonize it.

一般に1600℃以下の温度で作られるβ型炭化ケイ素
は低温型と呼ばれ、より高温で作られるα型に比べ微細
で活性なものが得られやすい。
β-type silicon carbide, which is generally produced at temperatures below 1600°C, is called a low-temperature type, and is more likely to be fine and active than α-type silicon carbide, which is produced at higher temperatures.

しかし、一般にはこれらβ型炭化ケイ素の合成が比較的
低温でのみ可能なことから製造に際し十分な収率を上げ
ることが出来なかった。
However, since the synthesis of these β-type silicon carbides is generally possible only at relatively low temperatures, it has not been possible to increase the yield sufficiently during production.

(通常β型炭化ケイ素は1600℃〜1700℃以上の
高温においてα型に転移する。
(Usually, β-type silicon carbide transforms to α-type at high temperatures of 1,600°C to 1,700°C or higher.

)本発明者等は高収率でβ型炭化ケイ素を得る目的から
各種微量添加物の炭化ケイ素合成に及ぼす影響を種々調
査の結果本発明の方法を完成するに至った。
) With the aim of obtaining β-type silicon carbide in high yield, the present inventors conducted various investigations into the effects of various trace additives on silicon carbide synthesis, and as a result, completed the method of the present invention.

本発明の特徴は、酸化ケイ素と炭素の混合物に、鉄、コ
バルトもしくはニッケル又はそれらの酸化物をそれぞれ
鉄、コバルト、ニッケルとして0.5モル%から3モル
%酸化ケイ素に添加し、非酸化性雰囲気において130
0℃〜1600℃の温度域で加熱することにあり、本発
明の方法によればβ型炭化ケイ素の微粉末が高い収率で
得られる。
The feature of the present invention is that iron, cobalt or nickel or their oxides are added to silicon oxide in a non-oxidizing state by adding 0.5 mol% to 3 mol% of iron, cobalt and nickel to the silicon oxide mixture. 130 in atmosphere
According to the method of the present invention, which involves heating in a temperature range of 0°C to 1600°C, fine powder of β-type silicon carbide can be obtained in a high yield.

これら添加物は酸化物として加えられた物も炭化途中に
おいて、いづれも金属に還元されるものと考えられる。
It is thought that these additives, even those added as oxides, are reduced to metals during carbonization.

これら添加物の反応途中における挙動の詳細は明らかで
はないが、後記実施例の項で詳しく述べる様に、本発明
の方法により鉄、コiバルトもしくはニッケル又はそれ
らの酸化物を添加した物は無添加の物に比べβ型炭化ケ
イ素の生成率が2〜3倍高くなった。
Although the details of the behavior of these additives during the reaction are not clear, as will be described in detail in the Examples section below, there are no products to which iron, cobalt, nickel, or their oxides are added by the method of the present invention. The production rate of β-type silicon carbide was 2 to 3 times higher than that of the additive.

3モル%以上の添加においては特に添加量を多くしただ
けの効果は認められず、これら添加物の添加量は鉄、コ
バルト:又はニッケルとして酸化ケイ素に対し3モル%
以下で十分であることが明らかとなった。
When adding 3 mol% or more, no effect is observed by increasing the amount of addition, and the amount of these additives is 3 mol% of iron, cobalt: or nickel relative to silicon oxide.
It has been found that the following is sufficient.

本発明の方法において加熱温度を1300℃〜1600
℃としたのは、周知のように1600℃以上では微細な
β型炭化ケイ素が得られず、又1300℃以下では炭化
ケイ素の収率が十分でないことによる。
In the method of the present invention, the heating temperature is 1300°C to 1600°C.
℃ because, as is well known, above 1600°C, fine β-type silicon carbide cannot be obtained, and below 1300°C the yield of silicon carbide is not sufficient.

以下実施例にそって本発明の方法をさらに詳しく説明す
る。
The method of the present invention will be explained in more detail below with reference to Examples.

実施例 1 試薬無水ケイ酸粉末とカーボンブラックを重量比で1:
0.7の割合に取り、さらに試薬酸化第2鉄粉末を所定
量添加した後4時間湿式でボールミル混合した後乾燥し
た。
Example 1 Reagent silicic acid anhydride powder and carbon black in a weight ratio of 1:1
After adding a predetermined amount of reagent ferric oxide powder, the mixture was mixed in a wet ball mill for 4 hours, and then dried.

次に上記混合物41をカーボンチューブに入れ真空炉中
1500℃に昇温した後2時間保持して炭化ケイ素の合
成を行なった。
Next, the mixture 41 was placed in a carbon tube, heated to 1500° C. in a vacuum furnace, and held for 2 hours to synthesize silicon carbide.

生成物は常温まで炉冷した後取り出し、空気中650℃
で2時間焙焼して余分なカーボンを除去した後、35%
弗酸でしり返し処理して未反応の酸化ケイ素ならびにそ
の他不純物を溶解除去し、さらに空気中500〜550
℃2時間焙焼して炭化ケイ素粉末を得た。
The product was cooled in the furnace to room temperature, then taken out and placed in air at 650°C.
After roasting for 2 hours to remove excess carbon, 35%
Repeated treatment with hydrofluoric acid to dissolve and remove unreacted silicon oxide and other impurities, and further
The mixture was roasted at ℃ for 2 hours to obtain silicon carbide powder.

比較のため酸化鉄を加えない物についても同様に処理し
て炭化ケイ素の合成を行なった。
For comparison, silicon carbide was synthesized using the same process without adding iron oxide.

X線回折の結果得られた粉末はいずれもβ型炭化ケイ素
であった。
All powders obtained as a result of X-ray diffraction were β-type silicon carbide.

酸化第2鉄を鉄として酸化ケイ素に1.7モル%添加し
た時の得られた炭化ケイ素粉末の外観写真を第1図に示
す。
FIG. 1 shows a photograph of the appearance of silicon carbide powder obtained when 1.7 mol % of ferric oxide was added to silicon oxide as iron.

生成粉末は微細で不規則な形状を有する。The resulting powder has a fine and irregular shape.

次に得られた粉末重量より炭化ケイ素の生成率を算出し
た。
Next, the production rate of silicon carbide was calculated from the weight of the obtained powder.

尚、生成率は炭化前の酸化ケイ素に対する炭化後の炭化
ケイ素の量をモル係で示した。
Note that the production rate is expressed as the amount of silicon carbide after carbonization relative to silicon oxide before carbonization, expressed as a molar ratio.

その結果を第2図中、白丸で示す。The results are shown by white circles in FIG.

第2図横軸は酸化ケイ素に対する鉄、コバルトもしくは
ニッケルの添加量、たて軸は炭化ケイ素の生成率である
The horizontal axis in FIG. 2 is the amount of iron, cobalt, or nickel added to silicon oxide, and the vertical axis is the production rate of silicon carbide.

第2図から明らかな様に酸化ケイ素に鉄を0.5モル係
以上添加することにより炭化ケイ素の生成率が大巾に向
上する。
As is clear from FIG. 2, the production rate of silicon carbide is greatly improved by adding 0.5 molar or more iron to silicon oxide.

又、3モル係以上の添加は特に多く添加するだけの効果
は認められず、鉄の添加は3モル係以下で十分であるこ
とも明らかである。
It is also clear that addition of iron in an amount of 3 mol or more does not have the effect of adding a large amount, and that addition of iron of 3 mol or less is sufficient.

実施例 2 試薬無水ケイ酸粉末とカーボンブラックを重量比で1:
0.7の割合に取り、さらに試薬水酸化ニッケルを加熱
分解して得た酸化ニッケル粉末を所定量添加した後実施
例1と同様に処理して炭化ケイ素の合成を行なった。
Example 2 Reagent silicic acid anhydride powder and carbon black in a weight ratio of 1:
After adding a predetermined amount of nickel oxide powder obtained by thermally decomposing the reagent nickel hydroxide, the mixture was treated in the same manner as in Example 1 to synthesize silicon carbide.

第3図に得られた粉末のX線回折図形を示す。FIG. 3 shows the X-ray diffraction pattern of the obtained powder.

得られた粉末はいずれもβ型炭化ケイ素であった。All of the obtained powders were β-type silicon carbide.

第4図に酸化ケイ素にニッケルを2.2モル%添加して
得られた炭化ケイ素粉末の外観写真を示す。
FIG. 4 shows a photograph of the appearance of silicon carbide powder obtained by adding 2.2 mol% of nickel to silicon oxide.

粉末は微細で一部ウィスカー状結晶の生成が見られる。The powder is fine and some whisker-like crystals are observed.

添加量と生成率の関係を第2図、斜線を付けた丸印で示
す。
The relationship between the amount added and the production rate is shown in FIG. 2 by the hatched circle.

ニッケルを添加したものは無添加のものに比べ2〜3倍
以上の高い生成率を示した。
The product to which nickel was added showed a production rate 2 to 3 times higher than that without the addition of nickel.

実施例 3 試験無水ケイ酸粉末とカーボンブラックを重量比で1:
0.7の割合に取り、さらに炭酸コバルトを加熱分解し
て得た酸化コバルト粉末を酸化ケイ素に対してコバルト
として3モル係になるよう添加した後実施例1と同様に
処理して炭化ケイ素の合成を行なった。
Example 3 Test silicic acid anhydride powder and carbon black in a weight ratio of 1:
After adding cobalt oxide powder obtained by thermally decomposing cobalt carbonate to a ratio of 3 molar cobalt to silicon oxide, the same treatment as in Example 1 was carried out to obtain silicon carbide. performed the synthesis.

得られた粉末は第3図に示したと同様にβ型炭化ケイ素
であった。
The obtained powder was β-type silicon carbide as shown in FIG.

第5図に得られた粉末の外観写真を示す。FIG. 5 shows a photograph of the appearance of the obtained powder.

炭化ケイ素の生成率を第2図中黒丸で示す。The production rate of silicon carbide is shown by the black circle in Figure 2.

コバルトを添加したものは無添加の物に比べ3倍以上の
高い生成率を示した。
The product to which cobalt was added showed a production rate more than three times higher than that without the addition of cobalt.

以上、実施例で明らかな様に本発明の方法によれば容易
にしかも高収率でβ型炭化ケイ素の合成を行なうことが
出来る。
As is clear from the Examples above, according to the method of the present invention, β-type silicon carbide can be synthesized easily and in high yield.

又、鉄、コバルト、ニッケルの炭化ケイ素の生成率に与
える効果はいずれもほぼ同程度であった。
Further, the effects of iron, cobalt, and nickel on the silicon carbide production rate were all approximately the same.

尚、本発明の実施にあたっては、すでに自然状態で前記
添加金属を含有するケイ酸塩鉱物をケイ素原料として利
用することも出来る。
In carrying out the present invention, silicate minerals that already contain the above-mentioned additive metal in their natural state can also be used as silicon raw materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は実施例1〜実施例3の結果を示すグラ
フ、粉末外観写真あるいはX線回折図形を示す。
1 to 5 show graphs, powder appearance photographs, or X-ray diffraction patterns showing the results of Examples 1 to 3.

Claims (1)

【特許請求の範囲】 1 酸化ケイ素と炭素の混合物に、鉄、コバルトもしく
はニッケル又はそれらの酸化物をそれぞれ鉄、コバルト
、ニッケルとして0.5モル%カラ3モル%酸化ケイ素
に添加し、非酸化性雰囲気にお。 いて1300℃〜1600℃の温度域で加熱することを
特徴とするβ型炭化ケイ素粉末の製造方法。
[Claims] 1. Iron, cobalt or nickel or their oxides are added to a mixture of silicon oxide and carbon at 0.5 mol% as iron, cobalt and nickel, respectively, to 3 mol% silicon oxide, and non-oxidized In a sexual atmosphere. 1. A method for producing β-type silicon carbide powder, which comprises heating in a temperature range of 1300°C to 1600°C.
JP55081984A 1980-06-16 1980-06-16 Method for producing β-type silicon carbide powder Expired JPS5823327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55081984A JPS5823327B2 (en) 1980-06-16 1980-06-16 Method for producing β-type silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55081984A JPS5823327B2 (en) 1980-06-16 1980-06-16 Method for producing β-type silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS577809A JPS577809A (en) 1982-01-16
JPS5823327B2 true JPS5823327B2 (en) 1983-05-14

Family

ID=13761736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55081984A Expired JPS5823327B2 (en) 1980-06-16 1980-06-16 Method for producing β-type silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS5823327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153628A (en) * 1984-08-24 1986-03-17 Sakata Shokai Ltd Setting method of exposure condition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172906A (en) * 1982-03-31 1983-10-11 三菱電機株式会社 Automatic grounding device for drawer type enclosed switchboard
DE3508171A1 (en) * 1985-03-07 1986-09-11 Elektroschmelzwerk Kempten GmbH, 8000 München METHOD FOR PRODUCING SINTER-ACTIVE SILICON CARBIDE AND / OR BORCARBIDE POWDER
US4659022A (en) * 1985-04-10 1987-04-21 Kennecott Corporation Production of silicon carbide with automatic separation of a high grade fraction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153628A (en) * 1984-08-24 1986-03-17 Sakata Shokai Ltd Setting method of exposure condition

Also Published As

Publication number Publication date
JPS577809A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
US4117096A (en) Process for producing powder of β-type silicon carbide
US4612297A (en) Process for preparation of silicon nitride powder of good sintering property
JPS5823327B2 (en) Method for producing β-type silicon carbide powder
JPH0123403B2 (en)
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0216270B2 (en)
JPS6146403B2 (en)
JPS5823346B2 (en) Production method of α-sialon sintered body
JPS61132509A (en) Production of silicon carbide
JPS5945915A (en) Preparation of beta-type silicon carbide powder
JPS5888107A (en) Continuous preparation of alpha-type silicon nitride
JPH0735304B2 (en) Method for manufacturing boron nitride sintered body
JPH0416502A (en) Production of boron nitride
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPS63147811A (en) Production of fine sic powder
JPH0264100A (en) Production of aln whisker
KR970001524B1 (en) Process for the preparation of silicon carbide powder
JPS5891028A (en) Manufacture of silicon carbide powder
JPS6183606A (en) Production of easily sinterable aluminum nitride powder
JPS5997507A (en) Manufacture of high purity silicon nitride powder consisting of isometric particles
JPS6311507A (en) Production of fine zirconium nitride and titanium nitride powder by high-pressure ammonia process
JPH03208864A (en) Production of mixed powder of boron nitride and aluminum nitride
JPH02157112A (en) Production of silicon nitride raw powder