JPS61132511A - Production of tib2 powder - Google Patents

Production of tib2 powder

Info

Publication number
JPS61132511A
JPS61132511A JP25133684A JP25133684A JPS61132511A JP S61132511 A JPS61132511 A JP S61132511A JP 25133684 A JP25133684 A JP 25133684A JP 25133684 A JP25133684 A JP 25133684A JP S61132511 A JPS61132511 A JP S61132511A
Authority
JP
Japan
Prior art keywords
powder
tib2
weight ratio
particle size
tio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25133684A
Other languages
Japanese (ja)
Inventor
Takeshi Ogasawara
小笠原 武司
Takahisa Koshida
孝久 越田
Kimiaki Sasaki
王明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd, Kawasaki Steel Corp filed Critical Kawasaki Refractories Co Ltd
Priority to JP25133684A priority Critical patent/JPS61132511A/en
Publication of JPS61132511A publication Critical patent/JPS61132511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:A mixture of powdery TiO2, powdery B2O3 and a carbon substance is heated under specific conditions to make a uniform and fine powder of TiB2. CONSTITUTION:A TiO2 powder, a B2O3 powder and a carbon substance are mixed in a proportion of 1:(1.13-2.18):(0.80-1.13) and the mixture is heated at 1,300-1,600 deg.C under reduced pressure lower than 50Torr to give a fine powder of TiB2 of 0.5-2 micrometer particle sizes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は均一かつ嶺細なTiB2粉末の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing uniform and fine TiB2 powder.

〔従来の技術〕[Conventional technology]

TiB2は高融点、高硬度を持ち、耐熱性、耐摩耗性等
に優れることがら超硬耐熱材料として注目されており、
切削工具材料、ロケット材料、熱機関部品等に利用され
ている。しかしこのような特長を有するTiB2は難焼
結性物質であり1通常はホットプレス法によって焼結体
を得ており。
TiB2 has a high melting point, high hardness, and is attracting attention as a carbide heat-resistant material because of its excellent heat resistance and wear resistance.
It is used for cutting tool materials, rocket materials, heat engine parts, etc. However, TiB2, which has such characteristics, is a material that is difficult to sinter, and sintered bodies are usually obtained by hot pressing.

特にその原料粉末として均一かつ微細なTiB2が要求
されている。
In particular, uniform and fine TiB2 is required as the raw material powder.

TiB2粉末を工業的ミ製造する方法には。A method for industrially producing TiB2 powder.

公知なものとしてT i O2をCによってアルゴン等
の不活性ガス雰囲気中にて1400℃以上で還元すると
同時に8203を用いて少なくとも1600℃以上で硼
化する方法が挙げられる。
A known method includes reducing T i O2 with C at 1400° C. or higher in an atmosphere of an inert gas such as argon, and at the same time borating using 8203 at at least 1600° C. or higher.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこの方法によって得られたTiB2粉末の粒径は
、熱処理温度が高いために粒成長が避けられず、一般に
は、2〜20#Lm程度になり、そのほとんどが51L
m以上である。しかも粒度分布の巾も大きくなる。また
未反応のCが遊離炭素としてかなり残留しているという
欠点がある。
However, the particle size of the TiB2 powder obtained by this method is generally about 2 to 20 #Lm, and most of them are about 51Lm because grain growth is unavoidable due to the high heat treatment temperature.
m or more. Furthermore, the width of the particle size distribution also increases. Another drawback is that a considerable amount of unreacted C remains as free carbon.

本発明は以上の欠点を解決することを目的としたもので
あり1粒径が均一でかつ2pm以下のTiB2粉末を製
造する方法を提供するものである。
The present invention aims to solve the above-mentioned drawbacks and provides a method for producing TiB2 powder having a uniform grain size of 2 pm or less.

〔問題解決のための手段〕[Means for problem solving]

T i O2をCで還元し、さらにB203で硼化して
TiB2を得る反応は次式のように表わされる。
The reaction of reducing T i O2 with C and further boronizing with B203 to obtain TiB2 is expressed by the following formula.

T i 02 +B203 +5C #  TiB2+5CO ここで化学量論的にはTiO2:1に対してB203 
 : 0.87 (重量比)およびC:0.75(重量
比〕が必要であるが、該反応に8いて、B2O3は高温
下での蒸気圧が高いために揮発損失しやすいことから過
剰に添加しなければならない。ざらにCについても未反
応T i O2の残留をなくすために過剰量が必要であ
る。
T i 02 +B203 +5C # TiB2+5CO Here, stoichiometrically, B203 for TiO2:1
: 0.87 (weight ratio) and C: 0.75 (weight ratio). An excess amount of C is also required to eliminate the residual unreacted T i O2.

そこで本発明者等の実験によれば、出発原料としてT 
i O2粉末1に対してB203粉末を1.13〜2.
18(重量比)、炭素質物質0.80〜1.13(重量
比)を均一になるように混合する。
According to the experiments conducted by the present inventors, T.
i O2 powder to 1:1.13-2.
18 (weight ratio) and carbonaceous material 0.80 to 1.13 (weight ratio) are mixed uniformly.

そしてこの混合物を保形性が可能な程度に、圧縮成型し
、50 Torr以下、より好ましくは20T arr
以下の減圧下にて1300−1600°Cの温度まで昇
温加熱した結果、粒径が0.5〜24m程度の微細なT
iB2粉末を得ることができることが判明した。
Then, this mixture is compression molded to the extent that shape retention is possible, and the temperature is 50 Torr or less, more preferably 20 Torr or less.
As a result of heating to a temperature of 1300-1600°C under the following reduced pressure, fine T with a particle size of about 0.5 to 24 m was produced.
It has been found that iB2 powder can be obtained.

原料粉末の組成比および製造条件を限定した理由につい
ては以下に詳細に説明する。
The reason for limiting the composition ratio of the raw material powder and the manufacturing conditions will be explained in detail below.

まず8203 Mについては、T i O2粉末lに対
して1.13〜2. J、 8 (重量比)が好ましく
、これは化学量論組成の1.3〜2.5倍量に相当する
First, for 8203 M, the ratio is 1.13 to 2. J, 8 (weight ratio) is preferred, which corresponds to 1.3 to 2.5 times the stoichiometric composition.

しかし1.13(重量比)以下になると、加熱時のB2
O3の揮発損失にもとづくB源の不足となり、反応生成
物がTiB2の他にTiCの2相となり、好ましくない
。一方2.18(重量比)以上になると1反応生成物は
T t B 2単−相になるが、反応に関与しないB2
O3が多くなり経済性の面で適切でない。
However, if it becomes less than 1.13 (weight ratio), B2 during heating
The B source becomes insufficient due to the volatilization loss of O3, and the reaction product becomes two phases of TiC in addition to TiB2, which is not preferable. On the other hand, when the weight ratio exceeds 2.18, 1 reaction product becomes a T t B 2 single phase, but B2 that does not participate in the reaction
The amount of O3 increases, making it unsuitable from an economic point of view.

次にC量については0.80−1.13(重量比)の範
囲が好ましく、O,aO(重量比)以下では、C源の不
足にもとづく未反応のT i O2が残留しやすくなり
、1.13(重量比)以上では遊gI炭素としてTiB
2粉末中に残留するために純度的に好ましくない。
Next, the amount of C is preferably in the range of 0.80-1.13 (weight ratio), and if it is less than O, aO (weight ratio), unreacted TiO2 tends to remain due to lack of C source, At 1.13 (weight ratio) or more, TiB is used as free gI carbon.
2. Since it remains in the powder, it is unfavorable in terms of purity.

次に製造条件について粉末製造用炉内圧が50T or
r以上になると、1300〜1600℃の温度範囲では
、該反応が十分に進行せずこれを促進するには、加熱温
度を高める必要があり、これは生成したTiB2の粒成
長を促がし本発明の目的である均一、かつ微細なT i
 B 2粉末を得ることが困難となる。
Next, regarding the manufacturing conditions, the pressure inside the furnace for powder manufacturing is 50T or
When the temperature exceeds r, the reaction does not proceed sufficiently in the temperature range of 1300 to 1600°C, and it is necessary to increase the heating temperature to promote it. Uniform and fine Ti which is the object of the invention
It becomes difficult to obtain B2 powder.

また加熱温度について1300℃以下では、該反応が進
まないか、または1反応時間が非常に長くなる。さらに
、1600℃以上では粒成長が避けられないので好まし
くない。
Further, if the heating temperature is 1300° C. or lower, the reaction will not proceed or one reaction time will be extremely long. Further, if the temperature is 1600° C. or higher, grain growth is unavoidable, which is not preferable.

以上の条件によって得られたT i B 2粉末は従来
の方法によるものに比べて均一で、微細な粒径を有する
ものである。
The T i B 2 powder obtained under the above conditions is more uniform and has a finer particle size than that obtained by the conventional method.

〔実施例〕〔Example〕

実施例1 平均粒径0.1.g、mのT iO2粉末1に対して平
均粒径LOpmのB203粉末1.31(重量比)およ
び平均粒径20mpmの炭素粉末0.83(重量比)を
アルミナ製ボールミルによって混合し、この混合物をタ
ブレット状(約15mmφ×10mmH)に成型後、タ
フ −77炉で0.3Torr、1400℃、1時間の
条件で加熱処理した。得られたTiB2粉末は残留Cが
0.2%で、粒径0.5〜1沖mの微細な粉末であった
Example 1 Average particle size 0.1. B203 powder with an average particle size of LOpm 1.31 (weight ratio) and carbon powder with an average particle size of 20 mpm 0.83 (weight ratio) were mixed with 1 g, m of TiO2 powder using an alumina ball mill, and this mixture After molding into a tablet shape (approximately 15 mmφ x 10 mmH), it was heat-treated in a Tough-77 furnace at 0.3 Torr and 1400° C. for 1 hour. The obtained TiB2 powder had a residual C content of 0.2% and was a fine powder with a particle size of 0.5 to 1 mm.

実施例2 実施例1と同様の方法で得た混合物の成型体をタンマン
炉で1Torr、1500℃、1時間の条件で加熱処理
した。得られたTiB2粉末は残留Cが0.3%で粒径
0.5〜11−5pの微細な粉末であった。
Example 2 A molded body of the mixture obtained in the same manner as in Example 1 was heat-treated in a Tammann furnace at 1 Torr, 1500° C., and for 1 hour. The obtained TiB2 powder was a fine powder with a residual C content of 0.3% and a particle size of 0.5 to 11-5p.

比較例 実施例1と同様の方法で得た混合物の成型体を、タンマ
ン炉でアルゴンガス気流中において。
Comparative Example A molded body of the mixture obtained in the same manner as in Example 1 was placed in a Tammann furnace in an argon gas stream.

1700’c!、1時間の条件で加熱処理して得られた
T i B 2粉末は、残留Cが0.4%で粒径が2〜
8pmであり1本発明による方法に比べると大きいもの
であった。
1700'c! The T i B 2 powder obtained by heat treatment under the conditions of , 1 hour has a residual C of 0.4% and a particle size of 2 to
8 pm, which was larger than the method according to the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明方法により従来の2〜20gmのTiB2に比し
、均一で2ルm以下の微細なT i B 2の粉末を製
造することが粧能となり、超硬耐熱材料等先進分野のす
ぐれた材料を容易に得ることかできる効果を奏する。
By the method of the present invention, compared to the conventional TiB2 of 2 to 20 gm, it is possible to produce uniform and fine TiB2 powder of 2 μm or less, and it can be used as an excellent material in advanced fields such as carbide heat-resistant materials. This has the effect of making it easy to obtain.

Claims (1)

【特許請求の範囲】[Claims] 1 TiO_2粉末1に対してB_2O_3粉末を1.
13〜2.18(重量比)、炭素質物質を0.80〜1
.13(重量比)混合し、50Torr以下の減圧下に
て1300〜1600℃の範囲内で加熱することを特徴
とするTiB_2粉末の製造方法。
1 B_2O_3 powder for 1 part of TiO_2 powder.
13-2.18 (weight ratio), carbonaceous material 0.80-1
.. A method for producing TiB_2 powder, which is characterized by mixing 13 (weight ratio) and heating within a range of 1300 to 1600°C under reduced pressure of 50 Torr or less.
JP25133684A 1984-11-28 1984-11-28 Production of tib2 powder Pending JPS61132511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25133684A JPS61132511A (en) 1984-11-28 1984-11-28 Production of tib2 powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25133684A JPS61132511A (en) 1984-11-28 1984-11-28 Production of tib2 powder

Publications (1)

Publication Number Publication Date
JPS61132511A true JPS61132511A (en) 1986-06-20

Family

ID=17221307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25133684A Pending JPS61132511A (en) 1984-11-28 1984-11-28 Production of tib2 powder

Country Status (1)

Country Link
JP (1) JPS61132511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503930A2 (en) * 1991-03-13 1992-09-16 Advanced Ceramics Corporation Production of titanium diboride and boron nitride powders
WO2013023460A1 (en) * 2012-03-07 2013-02-21 深圳市新星轻合金材料股份有限公司 Cycled preparation method that uses mixture of sodium-based titanium and boron fluoride salts as intermediate raw material and produces titanium boride and simultaneously sodium cryolite
EP2636645A1 (en) * 2012-03-07 2013-09-11 Shenzhen Sunxing Light Alloys Materials Co., Ltd Cyclic preparation method for producing titanium boride from intermediate feedstock potassium-based titanium-boron-fluorine salt mixture and producing potassium cryolite as byproduct

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503930A2 (en) * 1991-03-13 1992-09-16 Advanced Ceramics Corporation Production of titanium diboride and boron nitride powders
WO2013023460A1 (en) * 2012-03-07 2013-02-21 深圳市新星轻合金材料股份有限公司 Cycled preparation method that uses mixture of sodium-based titanium and boron fluoride salts as intermediate raw material and produces titanium boride and simultaneously sodium cryolite
EP2636644A1 (en) * 2012-03-07 2013-09-11 Shenzhen Sunxing Light Alloys Materials Co., Ltd Cyclic preparation method for producing titanium boride from intermediate feedstock sodium-based titanium-boron-fluorine salt mixture and producing sodium cryolite as byproduct
EP2636645A1 (en) * 2012-03-07 2013-09-11 Shenzhen Sunxing Light Alloys Materials Co., Ltd Cyclic preparation method for producing titanium boride from intermediate feedstock potassium-based titanium-boron-fluorine salt mixture and producing potassium cryolite as byproduct
GB2510008A (en) * 2012-03-07 2014-07-23 Shenzhen Sunxing Light Alloys Materials Co Ltd Cycled preparation method that uses mixture of sodium-based titanium and boron fluoride salts as intermediate raw material and produces titanium boride
GB2510008B (en) * 2012-03-07 2015-09-09 Shenzhen Sunxing Light Alloys Materials Co Ltd Cyclic preparation method for producing titanium boride from intermediate feedstock Na-based Ti-B-F salt mixture and producing sodium cryolite as byproduct

Similar Documents

Publication Publication Date Title
US4224073A (en) Active silicon carbide powder containing a boron component and process for producing the same
US3215545A (en) Titanium diboride articles and method for making same
JPS61132511A (en) Production of tib2 powder
JPH0375485B2 (en)
US2606110A (en) Reduction of the powders of the oxides of iron or iron alloys
JPH0226871A (en) Production of aluminum nitride sintered compact having excellent transparency
JPS62132711A (en) Production of aluminum nitride based powder
JPH0649565B2 (en) Method for producing α-type silicon nitride powder
US2073826A (en) Method of making borides
JPS6337069B2 (en)
JPS62275091A (en) Production of tungsten single crystal
JPH01145380A (en) Production of silicon nitride sintered form
JPH0327481B2 (en)
JPS59446B2 (en) Titanium tungsten
JPH0122226B2 (en)
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JPS61232212A (en) Production of metallic carbide powder
JPS5849500B2 (en) Method for manufacturing foamed glass sintered product
JPS63270359A (en) Sintered tin composite ceramics
JPH0283261A (en) Silicon nitride-based target material for sputtering
JPS6337068B2 (en)
JPS5820904B2 (en) Thank you for your understanding.
JPH01172276A (en) Production of compound ceramic comprising beta-sialon
JPH0360409A (en) Production of silicon nitride powder
JPS5891008A (en) Manufacture of alpha-type silicon nitride powder