JPS6337069B2 - - Google Patents

Info

Publication number
JPS6337069B2
JPS6337069B2 JP59141400A JP14140084A JPS6337069B2 JP S6337069 B2 JPS6337069 B2 JP S6337069B2 JP 59141400 A JP59141400 A JP 59141400A JP 14140084 A JP14140084 A JP 14140084A JP S6337069 B2 JPS6337069 B2 JP S6337069B2
Authority
JP
Japan
Prior art keywords
sic
sintered body
zrb
resistance
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59141400A
Other languages
Japanese (ja)
Other versions
JPS6121979A (en
Inventor
Otojiro Kida
Masaru Segawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59141400A priority Critical patent/JPS6121979A/en
Priority to DE8585108000T priority patent/DE3572468D1/en
Priority to EP85108000A priority patent/EP0170864B1/en
Priority to US06/749,829 priority patent/US4668643A/en
Publication of JPS6121979A publication Critical patent/JPS6121979A/en
Priority to US06/916,225 priority patent/US4678759A/en
Publication of JPS6337069B2 publication Critical patent/JPS6337069B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ZrB2(2硼化ジルコニウム)質焼結
体に関するものである。 一般的に金属硼化物セラミツクスは高融点で高
硬度、高強度、高耐蝕の特徴を有し、従来から切
削工具、機械関部品材料などとして用いられてい
るが、実際に実用化されているものの多くはチタ
ンの硼化物であつて、ジルコニウムの硼化物は殆
んど実用化されていないのが実状である。 本発明のZrB2複合焼結体は、高融点、高強度、
高耐蝕、高硬度、導電性、耐酸化性等の優れた特
徴を有するので高温耐蝕性部材、機械部材、発熱
体、電極、誘導炉用ルツボ等に広く使用できる材
料である。 (従来の技術) ZrB2質の複合焼結体として現在広く実用化さ
れているものは殆どないが特許などには種々のも
のが提案されている。 即ち、焼結助剤又は複合材などのZrB2焼結体
における副成分としてはMoSi2などの珪化物、
TaN,HfNなどの窒化物、ZrO2などの酸化物、
SiC,B4Cなどの炭化物、種々の金属などが知ら
れている。 (発明が解決しようとする問題点) 例えば珪化物については特公昭38−6098にはけ
い化ジルコニウムが、また米国特許第3705112号
にMoSi2などが開示されているが、これらのSi系
化合物は高温雰囲気下での焼結で溶融又は分解す
るため組織が多孔質で結晶の粒成長が大きくなる
ことが多く、そのため強度も、耐蝕性も十分でな
いことが多いし、耐酸化性もSiO2の皮膜として
の効果が予測されるがこれらの副成分のみで空気
中での使用には十分でない。 つぎに窒化物については、米国特許第3305374
に開示されているTaNは高硬度材料としてZrB2
TiB2等に添加され、工具材料、装飾材に応用さ
れているが高硬度、高強度の点では優れているが
高温耐蝕部材、発熱体、電極、誘導炉用ルツボ等
の高温酸化雰囲気下に使用する場合、耐酸化性、
耐スポール性、耐蝕性などの点で十分ではない。 つぎに炭化物については米国特許第3775137に
SiC、米国特許第3325300にB4CやSiCが開示され
ているなどしているが、米国特許第3775137の
SiCのみの添加では耐酸化性の点で不十分であ
り、又第3325300のMoSi2+B4C,MoSi2+SiC+
B4Cの添加ではMoSi2が焼結温度より低融点であ
り焼結中に融けて、分解したり、粒成長を促進す
るなど組織を多孔質化するため高密度化しにく
く、耐酸化性も十分ではない。 さらに窒化物と炭化物を併用する例について
は、米国特許第4199480に開示されている。 即ち、米国特許第4199480には、TiB2にSiCと
BNを加えた耐火物が示され、TiB2にかえて
ZrB2が使用されることも開示されている。 そして、この特許は、金属の真空蒸着用導電ボ
ートであつて、この材料が使用される雰囲気は真
空である。 しかしながらこの材料を空気中で加熱すると酸
化を受け易く、特にTiB2系では酸化を受けて白
色化してしまう。 さらに、この材料はSiCが15%より多いので、
溶鋼などの溶融金属、溶融スラグなどに対する耐
蝕性において十分でなく、ましてや雰囲気中で使
用されねばならないこれらの使用下での使用には
適切なものではない。 酸化物については特公昭47−38048にZrO2との
複合体などが開示されているが、これは正方晶
ZrO2の移転強化による高強度、高靭性化を目標
としたものであつて高温酸化雰囲気などの状況で
使用する場合には高強度、高靭性化は正方晶
ZrO2の単斜への移転により低下する事が認めら
れ、又耐酸化性、耐スポール性の点でも十分なも
のではない。 さらに特開昭47−31831,昭52−10084,昭57−
38365等はTiB2を主成分とする焼結体においては
六方晶系BNやAlNを副成分とするものや逆に
BNを主成分としてTiB2やZrB2を副成分として
添加しているものなどが、主に溶融金属容器又は
真空蒸発モーター等の非酸化物雰囲気下での使用
を用途にしたものが知られている。 しかしながら、このような例にみられるような
難焼結性のBNを添加した混合物では高密度化や
耐酸化性は著しく低く、空気中での使用には不適
なものしか得られない。 このような点に鑑み、優れた特質を備えていな
がらその特質を生かしきれず、極めて限られた用
途にしか実際に使われていないZrB2質焼結体に
ついて、従来の問題点を克服すべく研究を進めた
結果、優れた高密度、高強度、耐酸化性、耐蝕
性、さらに耐スポール性などの諸性能を兼ね備
え、かついくつかについてはその特質を著しく向
上せしめた焼結体の開発に成功したのである。 (問題を解決するための手段) 即ち、本発明は副成分としてSiC及びBNをそ
れぞれ重量%で1〜12%及び1〜35%含み、残部
が実質的にZrB2からなるZrB2質焼結体を要旨と
するものである。 本発明に用いるZrB2は例えば酸化ジルコニウ
ム、酸化硼素およびカーボンの混合物を高温で反
応させることにより得られ、本焼結体の製造には
可及的に純度の高いものを用いるのが好ましく、
また粒径も可及的に小さい粉末が好ましい。 具体的には純度99%以上、平均粒径10μm、特
に5μm以下のものがそれである。 また副生分として存在せしめるSiC及びBNに
ついては、焼結体としてはそのような化合物とし
て所定量が存在していればよいので、出発原料と
してはどのような形態のものとして配合してもよ
いが、SiC及びBN以外の原料を使用した場合に
は焼結段階で特別な配慮が必要となるため、通常
配合原料としてSiC及びBNとして調整しておく
のがよい。 このSiC及びBN原料についても可及的に純度
の高いものが好ましく通常99%以上のものがよ
い。 原料混合物は通常これら3種の微粉末を均一に
混合する事により調整するが、粉砕混合を目的と
して超微粉砕しても同様である。一般に混合原料
の粒度は10μm以下がよく、好ましくは平均粒径
1μm以下にまで十分調整しておくことである。 本発明焼結体はこれらの混合物を例えば黒鉛型
に充填し、真空中又はアルゴン,ヘリウム,一酸
化炭素などの中性或は還元性の雰囲気下で、常圧
焼成するか50〜2000Kg/cm2程度の加圧下で焼成す
るかいずれでも焼成可能である。 尚、焼成温度は1600〜2200℃、焼成時間は、30
分〜1時間程度が適当である。 本発明焼結体における副成分の割合は焼結体中
において重量%(以下同じ)で2〜50%であり、
残部は実質的にZrB2からなつているものである
が、このZrB2の一部をZrB2の特質を損なわない
程度の少量を他の成分例えばTiB2等で置換する
ことは差支えない。 副成分としてのBN及びSiCはそれぞれ少なく
とも1%以上必要であるが、これはBNが1%以
下では耐スポール性、耐酸化性、高耐蝕の特徴が
十分発揮されず、SiCが1%以下では耐酸化性が
十分でなく高密度化も難しくなるなどのためであ
る。 SiCの存在が何故に耐酸化性の向上を本焼結体
においてもたらされているかについては明らかで
ないが、使用下において高粘性のB2O3―SiO2
の皮膜が形成されるためであろうと考えられ、こ
のようなことは本焼結体が発熱体のような用途に
も十分耐用しうることを示している。 また発熱体のような用途では電気抵抗を可変的
にしうることが有利であるが、の点本発明焼結体
はSiCとともに絶縁成分として作用するBNを併
用しているため大変有利である。 一方、BN及
びSiCはそれぞれが焼結体中において半分量程度
まで存在せしめることが可能であるが、BNが50
%を越えると焼結が困難となつて高密度品が得ら
れないし、SiCが50%を越えると耐スポール性の
効果も発揮されなくなるので好ましくなく、いず
れにしてもZrB2質の特質を本質的に損なうこと
になるので、BNとSiCの合量としては5〜45%
にしておく必要がある。 これらの範囲においてさらに望ましい範囲は
SiCとBNの合量が10〜30%であつて、SiCとBN
の割合は両者の合量中前者を5〜50%、後者を95
〜50%とすることである。 さらに、高耐蝕性を必要とする用途、特に溶鋼
や溶融スラグに対しての耐蝕性はSiCが多くなる
と悪くなるので、SiCついては最大12%にとどめ
ることが望ましく、特には3〜10%とすることで
ある。 そして、このような総合的観点からすれば、
BNは1〜35%が望ましく、特には3〜25%であ
る。 尚、副成分としても本発明焼結体の目的効果を
本質的に損なわない範囲において他の成分が含ま
れていて勿論差支えないが不可避的不純物を含め
て可及的少量にとどめることが必要である。 (発明の効果) このようにして得られる本発明焼結体は、前述
してきたように高密度で耐酸化性、耐スポール
性、高強度、耐蝕性に優れた導電性のある緻密な
焼結体であるため、特に空気中で使用するような
溶鋼、溶融スラグ等の高温耐蝕部材、発熱体、ル
ツボ等に最適であり、その他機械部品材料、工具
等にも適用可能であつてZrB2質焼結体の特質を
発揮した種々の用途に使用できるものであつて、
その実用的価値が多大である。 (実施例) 実施例 1 ZrB2粉末(純度99以上)85部、六方晶系BN粉
末10部、SiC粉末5部を十分に混合粉砕すべく、
ポツトミルを使用したエタノール溶媒中でSiCボ
ールを用い3時間粉砕混合した、。得られた粉末
をエバポレーターでアルコール除去して十分乾燥
し、平均粒径0.15μの粉末を得た。この粉末を黒
鉛型に充填したアルゴンガス雰囲気下で350Kg/
cm2の圧力下2000℃で30分間加熱して焼結体を得
た。 得られた焼結体の特性は相対密度98%、曲げ強
度45Kg/mm2、耐酸化性(注1)変化なし、耐スポ
ール性(注2)は△T=700℃であつた。さらに
耐蝕性(注3)テストにおいても変化はなかつ
た。 実施例2〜5、9〜11及び比較例1〜4 実施例1と同様のZrB2、BN及びSiC粉末の所
定量を実施例1と同様の黒鉛型に入れ、特定の焼
結条件(雰囲気はアルゴン)で焼結して得られ
た。 実施例 6〜8 上記粉末をラバープレスを用い2000Kg/cm2で成
形し、アルゴン雰囲気で2100℃で1時間常圧焼成
して得た。 各焼結体の特性を第1表に示す。 (尚、各焼結体中における重量割合は、試料組
成の割合と比べると粉砕ボールよりのSiC混入に
よるSiCの増加があるため実施例の試料組成割合
内より2%程度増える。尚、比較例1はSiCボー
ルを使用せず、乾式粉砕混合をしたのでSiCの混
入はない。)
(Industrial Application Field) The present invention relates to a ZrB 2 (zirconium diboride) sintered body. In general, metal boride ceramics have the characteristics of high melting point, high hardness, high strength, and high corrosion resistance, and have traditionally been used as materials for cutting tools and machine parts, but although they have not been put into practical use yet. Most of them are titanium borides, and the reality is that zirconium borides are hardly ever put into practical use. The ZrB2 composite sintered body of the present invention has a high melting point, high strength,
It has excellent characteristics such as high corrosion resistance, high hardness, electrical conductivity, and oxidation resistance, so it is a material that can be widely used for high-temperature corrosion-resistant parts, mechanical parts, heating elements, electrodes, crucibles for induction furnaces, etc. (Prior Art) There are currently very few ZrB 2- quality composite sintered bodies that are in widespread practical use, but various ones have been proposed in patents and the like. That is, silicides such as MoSi 2 ,
Nitrides such as TaN and HfN, oxides such as ZrO 2 ,
Carbides such as SiC and B 4 C, and various metals are known. (Problems to be Solved by the Invention) For example, regarding silicides, zirconium silicide is disclosed in Japanese Patent Publication No. 38-6098, and MoSi 2 is disclosed in U.S. Pat. No. 3,705,112, but these Si-based compounds are Because it melts or decomposes during sintering in a high-temperature atmosphere, the structure is often porous and the grain growth of the crystals becomes large.As a result, the strength and corrosion resistance are often insufficient, and the oxidation resistance is also lower than that of SiO 2 . Although it is expected to be effective as a film, these subcomponents alone are not sufficient for use in air. Next, regarding nitrides, U.S. Patent No. 3305374
TaN disclosed in ZrB 2 as a high hardness material,
It is added to TiB 2 , etc. and applied to tool materials and decorative materials, and although it is excellent in terms of high hardness and high strength, it is used in high-temperature oxidizing atmospheres such as high-temperature corrosion-resistant parts, heating elements, electrodes, induction furnace crucibles, etc. When used, oxidation resistance,
It is not sufficient in terms of spall resistance, corrosion resistance, etc. Next, regarding carbides, refer to U.S. Patent No. 3775137.
SiC, B 4 C and SiC are disclosed in U.S. Patent No. 3325300, but U.S. Patent No. 3775137 discloses
The addition of SiC alone is insufficient in terms of oxidation resistance, and the addition of No. 3325300 MoSi 2 + B 4 C, MoSi 2 + SiC +
With the addition of B 4 C, MoSi 2 has a lower melting point than the sintering temperature, so it melts during sintering, decomposes, and promotes grain growth, making the structure porous, making it difficult to increase density, and reducing oxidation resistance. Not enough. Further, an example of using a nitride and a carbide in combination is disclosed in US Pat. No. 4,199,480. That is, in US Patent No. 4199480, TiB 2 is combined with SiC.
Refractories with added BN are shown, instead of TiB 2
It is also disclosed that ZrB 2 is used. This patent describes a conductive boat for vacuum deposition of metal, and the atmosphere in which this material is used is vacuum. However, when this material is heated in air, it is susceptible to oxidation, and TiB2 -based materials in particular undergo oxidation and turn white. Additionally, this material has more than 15% SiC, so
It does not have sufficient corrosion resistance against molten metals such as molten steel, molten slag, etc., and is not suitable for use in environments where these materials must be used in an atmosphere. Regarding oxides, a composite with ZrO 2 is disclosed in Japanese Patent Publication No. 47-38048, but this is a tetragonal crystal.
The aim is to achieve high strength and high toughness through transfer strengthening of ZrO 2 , and when used in conditions such as high temperature oxidizing atmospheres, high strength and high toughness can be achieved by using tetragonal crystals.
It was observed that ZrO 2 decreased due to the transfer to the monocline, and the oxidation resistance and spalling resistance were also insufficient. Furthermore, JP-A No. 47-31831, 1982-10084, 1983-
38365 etc. is a sintered body whose main component is TiB2 , but it is a sintered body whose main component is hexagonal BN or AlN, and vice versa.
Products with BN as the main component and TiB 2 or ZrB 2 added as subcomponents are known, and are mainly intended for use in non-oxide atmospheres such as molten metal containers or vacuum evaporation motors. There is. However, mixtures containing BN, which is difficult to sinter, as shown in these examples, have extremely low densification and oxidation resistance, and are only suitable for use in air. In view of these points, we have developed an approach to overcome the conventional problems with the ZrB 2 -quality sintered body, which has excellent properties but is not fully utilized and is actually used only in extremely limited applications. As a result of our research, we have developed a sintered body that has excellent properties such as high density, high strength, oxidation resistance, corrosion resistance, and spalling resistance, and has significantly improved some of its properties. It was successful. (Means for Solving the Problem) That is, the present invention is a ZrB bi-material sintered material containing 1 to 12% and 1 to 35% by weight of SiC and BN as subcomponents, respectively, and the remainder substantially consisting of ZrB2 . The body is the gist. The ZrB 2 used in the present invention can be obtained, for example, by reacting a mixture of zirconium oxide, boron oxide, and carbon at high temperatures, and it is preferable to use ZrB 2 with the highest possible purity for producing the present sintered body.
Further, a powder having a particle size as small as possible is preferable. Specifically, it has a purity of 99% or more and an average particle size of 10 μm, particularly 5 μm or less. Furthermore, regarding SiC and BN, which are present as by-products, it is sufficient that they are present in a predetermined amount as such compounds in the sintered body, so they may be blended in any form as starting materials. However, if raw materials other than SiC and BN are used, special consideration is required at the sintering stage, so it is better to prepare them as SiC and BN as the usual blended raw materials. The SiC and BN raw materials are preferably as pure as possible, usually 99% or higher. The raw material mixture is usually prepared by uniformly mixing these three types of fine powders, but the same effect can be obtained by ultrafinely pulverizing them for the purpose of pulverizing and mixing. In general, the particle size of the mixed raw material is preferably 10 μm or less, preferably the average particle size
It is necessary to sufficiently adjust the thickness to 1 μm or less. The sintered body of the present invention is produced by filling the mixture into a graphite mold, for example, and firing it in vacuum or in a neutral or reducing atmosphere such as argon, helium, carbon monoxide, etc. under normal pressure or at a rate of 50 to 2000 kg/cm. It is possible to fire under pressure of about 2 or under any pressure. The firing temperature is 1,600 to 2,200℃, and the firing time is 30
Approximately 1 minute to 1 hour is appropriate. The proportion of the subcomponents in the sintered body of the present invention is 2 to 50% by weight (the same applies hereinafter),
Although the remainder essentially consists of ZrB 2 , a small amount of this ZrB 2 may be replaced with other components, such as TiB 2 , to the extent that the characteristics of ZrB 2 are not impaired. At least 1% or more of each of BN and SiC as subcomponents is required, but this is because if BN is less than 1%, the characteristics of spalling resistance, oxidation resistance, and high corrosion resistance will not be fully exhibited, and if SiC is less than 1%, This is because the oxidation resistance is not sufficient and it is difficult to increase the density. It is not clear why the presence of SiC improves the oxidation resistance of this sintered body, but it may be due to the formation of a highly viscous B 2 O 3 -SiO 2 film during use. This fact indicates that the present sintered body can be used satisfactorily in applications such as heating elements. Furthermore, in applications such as heating elements, it is advantageous to be able to make the electric resistance variable, and the sintered body of the present invention is very advantageous because it uses SiC together with BN, which acts as an insulating component. On the other hand, it is possible for each of BN and SiC to exist up to about half the amount in the sintered body, but BN
If the SiC content exceeds 50%, sintering becomes difficult and a high-density product cannot be obtained, and if the SiC content exceeds 50%, the spalling resistance effect will not be exhibited, which is undesirable. Therefore, the total amount of BN and SiC should be 5 to 45%.
It is necessary to keep it. A more desirable range within these ranges is
The total amount of SiC and BN is 10 to 30%, and SiC and BN
The ratio of the former is 5-50% of the total amount of both, and the latter is 95%.
~50%. Furthermore, the corrosion resistance for applications that require high corrosion resistance, especially against molten steel and molten slag, deteriorates as SiC increases, so it is desirable to keep SiC at a maximum of 12%, especially 3 to 10%. That's true. And from this comprehensive perspective,
BN is desirably 1 to 35%, particularly 3 to 25%. It should be noted that other components may of course be included as subcomponents to the extent that they do not essentially impair the intended effects of the sintered body of the present invention, but it is necessary to keep them in as small a quantity as possible, including unavoidable impurities. be. (Effects of the Invention) As described above, the sintered body of the present invention obtained in this way is a dense sintered body with high density, oxidation resistance, spalling resistance, high strength, and excellent corrosion resistance. Because it is a ZrB material, it is especially suitable for high-temperature corrosion-resistant parts such as molten steel and molten slag that are used in the air, heating elements, crucibles, etc. It can also be applied to other mechanical parts materials, tools, etc. It can be used for various purposes that exhibit the characteristics of a sintered body,
Its practical value is great. (Example) Example 1 85 parts of ZrB 2 powder (purity 99 or higher), 10 parts of hexagonal BN powder, and 5 parts of SiC powder were thoroughly mixed and ground.
Grind and mix for 3 hours using SiC balls in ethanol solvent using a pot mill. The obtained powder was thoroughly dried by removing alcohol with an evaporator to obtain a powder with an average particle size of 0.15μ. This powder was packed in a graphite mold under an argon gas atmosphere to produce 350kg/
A sintered body was obtained by heating at 2000° C. for 30 minutes under a pressure of cm 2 . The characteristics of the obtained sintered body were that the relative density was 98%, the bending strength was 45 Kg/mm 2 , the oxidation resistance (Note 1) remained unchanged, and the spall resistance (Note 2) was ΔT=700°C. Furthermore, there was no change in the corrosion resistance (Note 3) test. Examples 2 to 5, 9 to 11 and Comparative Examples 1 to 4 Predetermined amounts of ZrB 2 , BN, and SiC powders similar to those in Example 1 were placed in the same graphite mold as in Example 1, and under specific sintering conditions (atmosphere). was obtained by sintering with argon). Examples 6 to 8 The above powders were molded at 2000 kg/cm 2 using a rubber press and baked at 2100° C. for 1 hour under normal pressure in an argon atmosphere. Table 1 shows the characteristics of each sintered body. (The weight ratio in each sintered body increases by about 2% from the sample composition ratio in the example because there is an increase in SiC due to SiC mixing from the grinding balls compared to the sample composition ratio.Comparative example 1 does not use SiC balls and is mixed by dry grinding, so there is no SiC contamination.)

【表】 比較例 5〜7 TiB2粉末(純度99%以上)、BN粉末(純度99
%以上)及びSiC粉末(純度99%以上)の所定量
を十分粉砕すべく、ポツトミルを使用しエタノー
溶媒中でSiCボールを用い3日間粉砕混合した。
得られら粉末をエバポレーターでアルコール除去
して十分乾燥し、平均粒径0.15μの粉末を得た。
この粉末は黒鉛型中に充填され、350Kg/cm2の圧
力2000℃でアルゴン雰囲気中で30分加熱された。 焼結体の特性を第2表に示す。
[Table] Comparative Examples 5 to 7 TiB 2 powder (purity 99% or more), BN powder (purity 99%)
% or more) and SiC powder (purity of 99% or more) were pulverized and mixed for three days using a pot mill and SiC balls in an ethanol solvent in order to sufficiently pulverize them.
The obtained powder was thoroughly dried by removing alcohol with an evaporator to obtain a powder with an average particle size of 0.15μ.
This powder was filled into a graphite mold and heated at a pressure of 350 Kg/cm 2 at 2000° C. in an argon atmosphere for 30 minutes. The properties of the sintered body are shown in Table 2.

【表】
色化
* 表記するもの以外は不可避不純物を除いて全てTi
Bであり、記載の量は100重量部からTiBを差
し引いた残部である。
【table】
Coloration * All other than those listed are Ti except for unavoidable impurities.
B 2 , and the stated amount is 100 parts by weight minus TiB 2 .
This is the remainder after subtraction.

Claims (1)

【特許請求の範囲】 1 副成分としてSiC及びBNを、重量%で、そ
れぞれ1〜12%及び1〜〜35%含み、残部が実質
的にZrB2からなるZrB2質複合焼結体。 2 SiCとBNの合量が5〜45%である特許請求
の範囲第1項記載の焼結体。 3 SiCが3〜10%である特許請求の範囲第1項
又は第2項いずれか記載の焼結体。 4 BNが3〜25%である特許請求の範囲第3項
記載の焼結体。 5 SiCとBNの合量が10〜30%である特許請求
の範囲第4項記載の焼結体。
[Claims] 1. A ZrB binary composite sintered body containing 1 to 12% and 1 to 35% by weight of SiC and BN as subcomponents, respectively, with the remainder essentially consisting of ZrB 2 . 2. The sintered body according to claim 1, wherein the total amount of SiC and BN is 5 to 45%. 3. The sintered body according to claim 1 or 2, wherein SiC is 3 to 10%. 4. The sintered body according to claim 3, wherein BN is 3 to 25%. 5. The sintered body according to claim 4, wherein the total amount of SiC and BN is 10 to 30%.
JP59141400A 1984-07-10 1984-07-10 Zrb2 sintered body Granted JPS6121979A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59141400A JPS6121979A (en) 1984-07-10 1984-07-10 Zrb2 sintered body
DE8585108000T DE3572468D1 (en) 1984-07-10 1985-06-27 Zrb2 composite sintered material
EP85108000A EP0170864B1 (en) 1984-07-10 1985-06-27 Zrb2 composite sintered material
US06/749,829 US4668643A (en) 1984-07-10 1985-06-28 ZrB2 composite sintered material
US06/916,225 US4678759A (en) 1984-07-10 1986-10-07 ZrB2 composite sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141400A JPS6121979A (en) 1984-07-10 1984-07-10 Zrb2 sintered body

Publications (2)

Publication Number Publication Date
JPS6121979A JPS6121979A (en) 1986-01-30
JPS6337069B2 true JPS6337069B2 (en) 1988-07-22

Family

ID=15291117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141400A Granted JPS6121979A (en) 1984-07-10 1984-07-10 Zrb2 sintered body

Country Status (1)

Country Link
JP (1) JPS6121979A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150267A (en) * 1989-11-06 1991-06-26 Eagle Ind Co Ltd Silicon carbide sliding material
US5405437A (en) * 1993-06-01 1995-04-11 National Starch And Chemical Investment Holding Corporation All natural, starch-based, water resistant corrugating adhesive
US5393336A (en) * 1993-06-01 1995-02-28 National Starch And Chemical Investment Holding Corporation Water resistant high amylose corrugating adhesive with improved runnability
JP2743328B2 (en) * 1994-02-10 1998-04-22 池田物産株式会社 Interior materials

Also Published As

Publication number Publication date
JPS6121979A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
US4678759A (en) ZrB2 composite sintered material
EP0170889B1 (en) Zrb2 composite sintered material
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPS6337069B2 (en)
JPS6337068B2 (en)
JPH06263544A (en) Sialon-based composite sintered compact and its production
JPS6339542B2 (en)
JPH0610106B2 (en) Variable conductivity ZrB2 composite sintered body
JPS6337070B2 (en)
JPH05279128A (en) Zirconium diboride multiple sintered compact
JPS62119168A (en) High anticorrosion high thermal shock resistance zrb2 base composite sintered body
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH05262567A (en) Composite sintered material of zirconium diboride
JPH0780708B2 (en) High strength aluminum oxide based sintered body and method for producing the same
JPS62288171A (en) Zrb2 base composite sintered body
JPS6339544B2 (en)
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JPS6337066B2 (en)
JPH0742168B2 (en) Composite ceramics sintered body
JPS6339543B2 (en)
JPH05279115A (en) Dense sintered compact of chromium oxide and its production
Kida et al. ZrB2 Composite Sintered Material
JPS597669B2 (en) Metal boride-zirconium oxide ceramic materials
JPS6126570A (en) Boride sintered body and manufacture
JPS63270359A (en) Sintered tin composite ceramics

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term