JPS597669B2 - Metal boride-zirconium oxide ceramic materials - Google Patents

Metal boride-zirconium oxide ceramic materials

Info

Publication number
JPS597669B2
JPS597669B2 JP57012965A JP1296582A JPS597669B2 JP S597669 B2 JPS597669 B2 JP S597669B2 JP 57012965 A JP57012965 A JP 57012965A JP 1296582 A JP1296582 A JP 1296582A JP S597669 B2 JPS597669 B2 JP S597669B2
Authority
JP
Japan
Prior art keywords
powder
metal
metal boride
zirconium oxide
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57012965A
Other languages
Japanese (ja)
Other versions
JPS58130169A (en
Inventor
忠彦 渡辺
昇 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57012965A priority Critical patent/JPS597669B2/en
Publication of JPS58130169A publication Critical patent/JPS58130169A/en
Publication of JPS597669B2 publication Critical patent/JPS597669B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は、新規な高強度、高硬度ホウ化金属一酸化ジル
コニウム系セラミックス材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel high-strength, high-hardness metal boride zirconium monoxide ceramic material.

一般に金属ホウ化物のセラミックスは、高融点で、高硬
度、優れた高温強度を有するので、従来から切削工具材
料や熱機関部品材料として用いられ、また最近は耐熱性
が要求されるロケット用材料として注目されている。
In general, metal boride ceramics have a high melting point, high hardness, and excellent high-temperature strength, so they have traditionally been used as materials for cutting tools and heat engine parts, and recently as materials for rockets that require heat resistance. Attention has been paid.

しかし、金属ホウ化物のみから形成されたセラミックス
は、抗折強度が低《、もろいという重大な欠点を有して
いる。
However, ceramics formed only from metal borides have the serious drawbacks of low flexural strength and brittleness.

本発明者らは、このような金属ホウ化物系セラミックス
がもつ欠点を克服するために鋭意研究を行い、先に金属
ホウ化物と酸化ジルコニウムの粉末混合物を焼結してな
る高強度、高硬度セラミックス材料を提案した(特願昭
56−151596号)。
The present inventors have conducted extensive research to overcome these drawbacks of metal boride ceramics, and have developed a high-strength, high-hardness ceramic made by first sintering a powder mixture of metal boride and zirconium oxide. The material was proposed (Japanese Patent Application No. 151596/1983).

しかしながら、近年各産業分野における技術進歩は目覚
し《、各種材料に対する特性向上への要求はいっそう高
まる傾向にあり、セラミックスについてもその例外では
ない。
However, in recent years, technological progress has been remarkable in various industrial fields, and the demand for improved properties of various materials is increasing, and ceramics are no exception.

そこで、本発明者らは、ホウ化金属一酸化ジルコニウム
系セラミックスの特性をさらに改善するためにさらに研
究を重ねた結果、これに少量の立方晶系金属炭化物を添
加することによりさらに強度及び硬度を高めうろことを
見出し、この知見に基づいて本発明をなすに至った。
Therefore, the present inventors conducted further research to further improve the properties of metal boride zirconium monoxide ceramics, and found that by adding a small amount of cubic metal carbide, the strength and hardness were further improved. We have discovered that the scales are high, and based on this knowledge, we have accomplished the present invention.

すなわち、本発明はニホウ化チタン粉末又は二ホウ化チ
タンと他の金属ホウ化物との粉末混合物と、全量当り1
0〜80重量%の酸化ジルコニウム粉末を基本成分とし
、これに立方晶系金属炭化物粉末0.001〜10重量
%を添加した混合物を焼結してなるホウ化金属一酸化ジ
ルコニウム系セラミックス材料を提供するものである。
That is, the present invention provides titanium diboride powder or a powder mixture of titanium diboride and other metal borides, and
Provided is a metal boride zirconium monoxide ceramic material obtained by sintering a mixture of 0 to 80% by weight of zirconium oxide powder as a basic component and 0.001 to 10% by weight of cubic metal carbide powder added thereto. It is something to do.

本発明においては、ニホウ化チタン粉末の代りにニホウ
化チタンと他の金属ホウ化物との粉末混合物を用いるこ
とができるが、この金属ホウ化物としては、TaB2、
NbB2、vB2、zrB2、CrB2、MoB2、M
nB2等のMB2 型金属ホウ化物類、W2B5、MO
2B5等の焼結高温時にMB2型になる金属ホウ化物類
及びTaB,NbB,VB、ZrB, CrB, Mo
B, MnB, WB等のMB型金属ホウ化物類であっ
て、これらは1種を用いてもよいし、2種以上を組み合
わせて用いることもできる。
In the present invention, a powder mixture of titanium diboride and other metal borides can be used instead of titanium diboride powder, but the metal borides include TaB2,
NbB2, vB2, zrB2, CrB2, MoB2, M
MB2 type metal borides such as nB2, W2B5, MO
Metal borides that become MB2 type when sintered at high temperatures such as 2B5, and TaB, NbB, VB, ZrB, CrB, Mo
MB type metal borides such as B, MnB, and WB, which may be used alone or in combination of two or more.

組合せ使用においては、同型のものを併用してもよく、
また異なる型のものを併用してもよい。
In combination use, the same type may be used together,
Also, different types may be used together.

これらの金属ホウ化物は、他成分との混合に際してあら
かじめ微粉砕することが好ましく、平均粒径5μ以下の
ものが有利に使用できる。
These metal borides are preferably pulverized in advance before being mixed with other components, and those having an average particle size of 5 μm or less can be advantageously used.

また、本発明の材料に用いられる酸化ジルコニウムは、
ZrO2、ZrO,ZrOO,35及びZ r 3 0
1−xのいずれでもよく、焼結後に酸化ジルコニウムに
変化しうる条件下では金属ジルコニウムを用いてもよい
Furthermore, the zirconium oxide used in the material of the present invention is
ZrO2, ZrO, ZrOO, 35 and Zr30
1-x may be used, and metallic zirconium may be used under conditions where it can change to zirconium oxide after sintering.

しかし好ましいのは二酸化ジルコニウムZrO2である
However, preference is given to zirconium dioxide, ZrO2.

Zr02には各種の結晶系、すなわち単斜晶系、正方品
系及び立方晶系のものがあるが、本発明においては、い
ずれの結晶系のものも使用できる。
Zr02 has various crystal systems, ie, monoclinic system, tetragonal system, and cubic system, and in the present invention, any crystal system can be used.

立方晶系のZrO2を用いる場合には、通常その熱安定
化剤として知られたY203、MgO あるいはCaO
なとの少量を併用することができる。
When cubic system ZrO2 is used, Y203, MgO or CaO, which is known as a thermal stabilizer, is usually used.
Can be used in small amounts with.

これらの酸化ジルコニウムは、単一成分で用いてもよい
し、2種以上を組み合わせて用いてもよい。
These zirconium oxides may be used as a single component or in combination of two or more types.

また異なる結晶系のものを併用することもできる。Moreover, those of different crystal systems can also be used together.

これらの酸化ジルコニウムは他成分との混合に際し、あ
らかじめ微粉砕され、平均粒径5μ以下、好ましくは1
μ以下に調製される。
When mixed with other components, these zirconium oxides are finely pulverized in advance and have an average particle size of 5 μm or less, preferably 1 μm.
Prepared to be less than μ.

本発明の材料の基本成分である前記金属ホウ化物と酸化
ジルコニウムは、最終的に得られる焼結体の諸物性を考
慮するとき、第3の成分として添加する後記炭化物の量
範囲においては、全組成物材料中に酸化ジルコニウムが
10〜80重量%の範囲量となるような割合で用いるこ
とが必要である。
The metal boride and zirconium oxide, which are the basic components of the material of the present invention, are not completely contained in the range of the amount of the carbide added as the third component when considering the physical properties of the sintered body finally obtained. It is necessary to use a proportion of zirconium oxide in the composition material such that the amount ranges from 10 to 80% by weight.

この量範囲を逸脱すると十分な機械的強度が得られない
ので好ましくない。
If the amount exceeds this range, sufficient mechanical strength cannot be obtained, which is not preferable.

本発明の材料の第3の成分として添加配合される立方晶
系炭化物は、TiC,ZrC,HfC,VC、NbC,
TaC等の立方晶系結晶構造を有する金属炭化物類であ
って、基本成分粉末との混合に際し、立方晶系のこれら
炭化物を添加してもよいし、また焼結中に炭化物を形成
させてもよい。
The cubic carbides added as the third component of the material of the present invention include TiC, ZrC, HfC, VC, NbC,
Metal carbides having a cubic crystal structure such as TaC, which may be added when mixed with the basic component powder, or may be formed during sintering. good.

その場合、例えば炭素と金属類の粉末を組み合わせて添
加することもできる。
In that case, for example, a combination of carbon and metal powders may be added.

基本成分に添加するに際し、上記炭化物又は炭素と金属
は、できるだけ微細に、例えば粒径5μ以下に粉砕して
おくことが望まし《、特に1μ以下が好ましい。
When added to the basic components, it is desirable that the carbide or carbon and metal be ground as finely as possible, for example, to a particle size of 5 μm or less, particularly preferably 1 μm or less.

この炭化物は、材料全重量に基づいて0.001〜10
重量%の範囲で添加することが必要である。
This carbide is 0.001 to 10% based on the total weight of the material.
It is necessary to add it within a range of % by weight.

Q.004重量%未満及び10重量%を超えると機械的
強度及び硬度の顕著な増大が得られない。
Q. If the amount is less than 0.04% by weight or more than 10% by weight, no significant increase in mechanical strength and hardness will be obtained.

本発明における原料混合物は、基本成分及び炭化物の微
粉末を均一に混合することにより調製しうるが、混合を
目的として、さらに粉砕機で粉砕してもよい。
The raw material mixture in the present invention can be prepared by uniformly mixing the basic components and the fine powder of carbide, but for the purpose of mixing, the raw material mixture may be further pulverized using a pulverizer.

本発明のセラミックス材料は、原料混合物を例えば黒鉛
型のような型に充てんし、真空中又はアルゴン、水素、
炭酸ガス、大気のような中性、還元性あるいは酸化性雰
囲気中において、例えば5 0 〜3 0 0 kg/
crrtの加圧下に1600〜2500゜Cの高温で1
0〜200分加熱焼結することにより得ることができる
The ceramic material of the present invention can be produced by filling a raw material mixture into a mold such as a graphite mold, and
In a neutral, reducing or oxidizing atmosphere such as carbon dioxide gas or air, for example, 50 to 300 kg/
1 at a high temperature of 1600-2500°C under crrt pressure.
It can be obtained by heating and sintering for 0 to 200 minutes.

また、通常知られた普通焼結法あるいはH,I.P法等
を使用して焼結することもできる。
In addition, commonly known ordinary sintering method or H, I. Sintering can also be performed using the P method or the like.

本発明の材料は特に高い強度、硬度及び良好な組織を有
し、また耐酸化性、耐熱性にも優れたち密な焼結体であ
るので、切削工具材、耐熱材料あるいは耐摩耗材料とし
て極めて好適であり、広い分野に利用することができる
The material of the present invention has particularly high strength, hardness, and good structure, and also has excellent oxidation resistance and heat resistance, and is a dense sintered body, so it is extremely useful as a cutting tool material, heat-resistant material, or wear-resistant material. It is suitable and can be used in a wide range of fields.

以下、実施例により本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 I TiB2粉末67.4重量%とNbB2粉末21重量%
と単斜晶系ZrO2粉末30重量%とTiC粉末0.5
重量%とを十分に混合し、この混合粉末を黒鉛型に充て
んし、真空中において2 0 0 kg/crAに加圧
しながら、2000℃で30分間加熱した。
Example I 67.4% by weight of TiB2 powder and 21% by weight of NbB2 powder
and 30% by weight of monoclinic ZrO2 powder and 0.5% of TiC powder.
% by weight, this mixed powder was filled into a graphite mold, and heated at 2000° C. for 30 minutes while pressurizing to 200 kg/crA in vacuum.

このようにして得られた焼結体ぱ抗折力140kg/v
aj,ビツカース硬度2500kg/一を有していた。
The sintered body thus obtained has a transverse rupture strength of 140 kg/v.
It had a Bitkers hardness of 2500 kg/1.

この焼結体の組織を走査型電子顕微鏡で観察すると、組
織内には空孔はなかった。
When the structure of this sintered body was observed with a scanning electron microscope, no pores were found within the structure.

またこの焼結体を空気中で加熱したが、1000゜Cま
では酸化されず、1200℃でわずかに酸化膜でおおわ
れた。
Although this sintered body was heated in air, it was not oxidized up to 1000°C, but was slightly covered with an oxide film at 1200°C.

実施例 2 第1表に示す各種割合の1種以上のホウ化金属と単斜晶
系酸化ジルコニウム及び炭化物微粉末を十分に混合し、
この混合粉末を30分間ホットプレスするか、あるいは
、この混合粉末を冷間成形した後、所定条件下で2時間
普通焼結することによりそれぞれの焼結体を製造した。
Example 2 One or more metal borides, monoclinic zirconium oxide, and carbide fine powder in various proportions shown in Table 1 were thoroughly mixed,
Each sintered body was manufactured by hot-pressing this mixed powder for 30 minutes or by cold-forming this mixed powder and then normal sintering for 2 hours under predetermined conditions.

このようにして得た試料の組成、焼結条件及び焼結後の
焼結体組成を第1表に示す。
Table 1 shows the composition of the sample thus obtained, the sintering conditions, and the composition of the sintered body after sintering.

−166−-166-

Claims (1)

【特許請求の範囲】 1 ニホウ化チタン粉末又はニホウ化チタンと他の金属
ホウ化物との粉末混合物と、全量当り10〜80重量%
の酸化ジルコニウム粉末を基本成分とし、これにTic
,ZrC,HfC,VC,NbC1TaCの立方晶系金
属炭化物粉末o.ooi〜1o重量%を添加した混合物
を焼結してなるホウ化金属一酸化ジルコニウム系セラミ
ックス材料。 2 他の金属ホウ化物が、タンタル、ニオブ、バナジウ
ム、シルコニウム、クロム、モリブデン、マンガン及び
タングステンの中から選ばれた金属のホウ化物の少なく
とも1種である特許請求の範囲第1項記載のセラミック
ス材料。
[Claims] 1. Titanium diboride powder or a powder mixture of titanium diboride and other metal borides, and 10 to 80% by weight based on the total amount.
The basic component is zirconium oxide powder, and Tic
, ZrC, HfC, VC, NbC1TaC cubic metal carbide powder o. A metal boride zirconium monoxide ceramic material obtained by sintering a mixture to which ooi to 1o wt% is added. 2. The ceramic material according to claim 1, wherein the other metal boride is at least one metal boride selected from tantalum, niobium, vanadium, silconium, chromium, molybdenum, manganese, and tungsten. .
JP57012965A 1982-01-29 1982-01-29 Metal boride-zirconium oxide ceramic materials Expired JPS597669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012965A JPS597669B2 (en) 1982-01-29 1982-01-29 Metal boride-zirconium oxide ceramic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012965A JPS597669B2 (en) 1982-01-29 1982-01-29 Metal boride-zirconium oxide ceramic materials

Publications (2)

Publication Number Publication Date
JPS58130169A JPS58130169A (en) 1983-08-03
JPS597669B2 true JPS597669B2 (en) 1984-02-20

Family

ID=11819957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012965A Expired JPS597669B2 (en) 1982-01-29 1982-01-29 Metal boride-zirconium oxide ceramic materials

Country Status (1)

Country Link
JP (1) JPS597669B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066361A (en) * 1984-04-12 1985-04-16 Hitachi Metals Ltd Magnetic head
JPH0627036B2 (en) * 1988-06-22 1994-04-13 日本鋼管株式会社 High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics

Also Published As

Publication number Publication date
JPS58130169A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
US4492764A (en) Sintered ceramic body containing titanium carbonitride
JP2829229B2 (en) Silicon nitride ceramic sintered body
EP0170889B1 (en) Zrb2 composite sintered material
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPS597669B2 (en) Metal boride-zirconium oxide ceramic materials
JPS6337069B2 (en)
JPS5855378A (en) High strength heat resistant boride metal- zirconium oxide composite ceramics
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPS6144768A (en) High strength boride sintered body
JPS6337068B2 (en)
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JPS6197163A (en) Manufacture of zirconium oxide base ceramics for blade tool
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JPH02307862A (en) Production of high-hardness al2o3-base composite
JPH0393668A (en) Zirconia-based cutting tool and production thereof
JPH05279122A (en) Production of complex sintered compact of silicon carbide
JPH01219062A (en) Production of silicon nitride sintered body
JP2720201B2 (en) Method for producing silicon nitride sintered body
JPH0535107B2 (en)
JPH0350160A (en) Highstrength carbon material having good electrical conductivity
JPH06122554A (en) High-toughness titanium carbonitride-zirconium oxide-based ceramics material
JPS62275071A (en) Tough sialon
JPS6236065A (en) Manufacture of heat-resistant antiabrasive ceramic material