JPS6337068B2 - - Google Patents

Info

Publication number
JPS6337068B2
JPS6337068B2 JP59141401A JP14140184A JPS6337068B2 JP S6337068 B2 JPS6337068 B2 JP S6337068B2 JP 59141401 A JP59141401 A JP 59141401A JP 14140184 A JP14140184 A JP 14140184A JP S6337068 B2 JPS6337068 B2 JP S6337068B2
Authority
JP
Japan
Prior art keywords
sic
sintered body
zrb
weight
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59141401A
Other languages
Japanese (ja)
Other versions
JPS6121980A (en
Inventor
Otojiro Kida
Masaru Segawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59141401A priority Critical patent/JPS6121980A/en
Priority to US06/751,528 priority patent/US4636481A/en
Priority to DE8585108300T priority patent/DE3569365D1/en
Priority to EP85108300A priority patent/EP0170889B1/en
Publication of JPS6121980A publication Critical patent/JPS6121980A/en
Publication of JPS6337068B2 publication Critical patent/JPS6337068B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はZrB2(2硼化ジルコニウム)質複合焼
結体に関するものである。 一般的に金属硼化物セラミツクスは高融点で高
硬度、高強度、高耐蝕の特徴を有し、従来から切
削工具、熱機関部品材料などとして用いられてい
るが、実際に実用化されているものの多くはチタ
ンの硼化物であつて、ジルコニウムの硼化物は殆
んど実用化されていないのが実状である。 本発明のZrB2質複合焼結体は、高融点、高強
度、高耐蝕、高硬度、導電性、耐酸化性等の優れ
た特徴を有するので高温耐蝕性部材、機械部材、
発熱体電極、誘導炉用ルツボ等に広く使用できる
材料である。 (従来の技術) ZrB2質の複合焼結体として現在広く実用化さ
れているものは殆んどないが特許などには種々の
ものが提案されている。 即ち、焼結助剤又は複合材などのZrB2焼結体
における副成分としてはMoSi2などの珪化物、
TaN,HfNなどの窒化物、ZrO2などの酸化物、
SiC,B4Cなどの炭化物、種々の金属などが知ら
れている。 (発明が解決しようとする問題点) 例えば珪化物については特公昭38−6098に
ZrSi2が、また米国特許第3705112号にMoSi2など
が開示されているが、これらのSi系化合物は高温
雰囲気下での焼結で溶融又は分解するため組織が
多孔質で結晶粒の成長が大きくなることが多く、
そのため強度も、耐蝕性も十分でないことが多い
し、耐酸化性もSiO2の皮膜としての効果が予測
されるがこれらの副成分のみで空気中での使用に
は十分でない。 つぎに窒化物については、米国特許第3305374
にTaNが開示されなどしているが、高硬度、高
強度の点では優れているが、高温耐蝕部材、発熱
体、電極、誘導炉用ルツボ等の高温酸化雰囲気下
で使用する場合、耐酸化性、耐スポール性、耐蝕
性などの点で十分ではない。 つぎに炭化物については米国特許第3775137に
SiCが開示されなどしているが、SiCのみでは耐
酸化性の点で不十分であり、又米国特許第
3325300に開示されているMoSi2+B4C又は
MoSi2+SiC+B4Cの添加ではMoSi2が焼結温度
より低融点であり、焼結中に融けて分解したり、
粒成長を促進するなど組織を多孔質化するため高
密度化しにくくそのため耐酸化性も十分ではな
い。 また米国特許第3325300にはSiC及び又はB4Cも
開示されているが、この特許はZrB2―MoSi2
においてさらにこれらの添加成分を加えたもので
あり、本質的に前述したようにMoSi2などのSi系
化合物を含む焼結体は十分緻密になりにくく強度
も耐酸化性も、十分でない。 このような点に鑑み、優れた特質を備えていな
がらその特性を生かしきれず極めて限られた用途
にしか実際に使われていないZrB2質焼結体につ
いて、従来の問題点を克服すべく研究を進めた結
果、優れた高密度、高強度、耐酸化性、耐蝕性さ
らには耐スポール性などの諸性能を兼ね備えかつ
いくつかについてはその特質を著しく向上せしめ
た焼結体の開発に成功したのである。 (問題を解決するための手段) 即ち、本発明は副成分としてSiC及びB4Cを少
くともそれぞれ重量%で1%以上含み、これらの
合量が2〜50重量%であつて残部が実質的に10重
量%までのTiB2で置き換えうるZrB2からなる
ZrB2質焼結体を要旨とするものである。 本発明に用いるZrB2は例えば酸化ジルコニウ
ム、酸化硼素およびカーボンの混合物を高温で反
応させることにより得られ、本焼結体の製造には
可及的に純度の高いものを用いるのが好ましく、
また粒径も可及的に小さい粉末が好ましい。 具体的には純度99%以上、平均粒径10μm特に
は1μm以下のものがそれである。 また副成分として存在せしめるSiC及びB4Cに
ついては、焼結体としてそのような化合物として
所定量が存在していればよいので、出発原料とし
てはどのような形態のものとして配合してもよい
が、SiC及びB4C以外の原料を使用した場合には
焼結段階で特別な配慮が必要となるため、通常配
合原料としてSiC及びB4Cとして調整しておくの
がよい。 このSiC及びB4C原料についても可及的に純度
の高いものが好ましく通常99%以上のものがよ
い。 原料混合物は通常これら3種の微粉末を均一に
混合する事により調整するが、粉砕混合を目的と
して超微粉砕しても同様である。一般に混合原料
の粒度は10μm以下がよく好ましくは平均粒径
1μm以下にまで十分調整しておくことである。 本発明焼結体はこれらの混合物を例えば黒鉛型
に充填し、真空中又はアルゴン,ヘリウム,一酸
化炭素などの中性或は還元性の雰囲気下で、ホツ
トプレスするか、上記混合物をラバープレスで成
形したものを常圧焼成するか50〜2000Kg/cm2程度
の加圧下で焼成するかいずれでも焼結可能であ
る。 尚、焼成温度は1600〜2200℃、焼成時間は30分
〜1時間程度が適当である。 本発明焼結体における副成分の割合は焼結体中
において重量%(以下同じ)で2〜50%であり、
残部は実質的にZrB2からなつているものである
が、このZrB2の一部をZrB2の特質を損わない程
度の少量を他の成分例えばTiB2等で置換するこ
とは差支えない。具体的にいえばZrB2の10重量
まではTiB2で置き換えることが出来る。 尚、副成分としてはSiCとB4C以外は不可避的
不純物を除いて可及的に少量、特にSi系化合物の
存在は極めて好ましくないなどのため、に制限す
ることが必要である。 即ち、具体的にはZrB2(TiB2含む)とSiCと
B4Cの合量以外の成分は3重量%以下にとどめる
を必要とする。 副成分としてのB4C及びSiCはそれぞれ少くと
も1%以上必要であるが、これはB4Cが1%以下
では高密度化が困難であり、耐酸化性、高耐蝕の
特性が十分発揮されず、SiCが1%以下では耐酸
化性が十分でなく高密度化も難かしくなるためで
ある。 SiCの存在が何故に耐酸化性の向上を本焼結体
においてもたらされるのかについては明らかでな
いが、B4Cとの併用により使用下において高粘性
のB2O3―SiO2系の皮膜が形成されるためであろ
うと考えられ、このようなことは本焼結体が発熱
体のような用途にも十分耐用しうることを示して
いる。 一方B4C及びSiCはそれぞれが焼結体中におい
て半分量程度まで存在せしめることが可能である
が、B4Cが50%を越えると耐酸化性が低下し、
SiCが50%を越えると耐スポール性―高耐蝕性の
効果も発揮されなくなるので好ましくなく、いず
れにしても耐熱性を損うなども含めてZrB2質の
特質を本質的に損うことになるので、B4CとSiC
の合量として50%までにとどめる必要がある。 尚、これらの範囲においてさらに望ましい範囲
はSiCとB4Cはそれぞれがいずれも5%以上で合
量が10%以上望むらくは20%以上とすることであ
る。またSiCとB4Cの割合は前者が10〜60%、後
者が90〜40%とすることである。 このような本発明の焼結体は組織的にはZrB2
結晶を主成分とし、この間をB4C及びSiCが強度
に結合している緻密なものであつて、ZrB2結晶
は極めて微細な結晶で存在し、その特質を存分に
発揮せしむるに至つている。 具体的にいえば、本発明焼結体におけるZrB2
結晶はその大部分が粒径10μm以下として存在し
ているものである。 (発明の効果) このようにして得られる本発明焼結体は前述し
てきたように高密度で耐酸化性、耐スポール性、
高強度、耐蝕性に優れた導電性のある緻密な焼結
体であるため特に空気中で使用するような高温耐
蝕部材、発熱体、ルツボ等に最適であり、その他
機械部品材料、工具等にも適用可能であつて
ZrB2質焼結体の特質を発揮した種々の用途に使
用できるものであつてその実用的価値は多大であ
る。 (実施例) Γ 実施例1 ZrB2粉末(純度99%以上)85重量部、B4C粉
末純度99%10部、SiC粉末(純度99%)5部を十
分に混合粉砕すべく、ポツトミルを使用しエタノ
ール溶媒中でSiCボールを用い3日間粉砕混合し
た。得られた粉末をエバポレーターでアルコール
除去して十分乾燥し、平均粒径0.15μの粉末を得
た。この粉末を黒鉛型に充填しアルゴン雰囲気下
で350Kg/cm2の圧力下2000℃で30分間加熱して焼
結体を得た。 得られた焼結体の特性は相対密度98%曲げ強度
78Kg/mm2、耐酸化性(注1)変化なし、硬度HV
(注2)2100Kg/mm2であつた。またこの焼結体に
おけるZrB2結晶の大きさはその殆んどが5μ以下
であつて、分析値は試料組成の割合と殆んど変り
がなかつた。(粉砕ボールからのSiC混入2%程
度) Γ 実施例2〜6、11〜13及び比較例1〜3;実
施例1と同様な方法で焼結体を得た。 Γ 実施例7〜10は実施例1と同様のZrB2
B4C及びSiC粉末の所定量をラバープレスを用
いて2000Kg/cm2で成形し、これを特定の焼結条
件(雰囲気はアルゴン、時間は1時間)で焼結
して得た。 各焼結体の特性を示すと次の通りである。
(Industrial Application Field) The present invention relates to a ZrB 2 (zirconium diboride) composite sintered body. In general, metal boride ceramics have the characteristics of high melting point, high hardness, high strength, and high corrosion resistance, and have traditionally been used as cutting tools and heat engine parts materials, but although they have not been put into practical use yet. Most of them are titanium borides, and the reality is that zirconium borides are hardly ever put into practical use. The ZrB two- component sintered body of the present invention has excellent characteristics such as high melting point, high strength, high corrosion resistance, high hardness, electrical conductivity, and oxidation resistance, so it can be used as a high-temperature corrosion-resistant member, a mechanical member, etc.
It is a material that can be widely used for heating element electrodes, induction furnace crucibles, etc. (Prior Art) There are currently very few ZrB 2- quality composite sintered bodies that are in widespread practical use, but various ones have been proposed in patents and the like. That is, silicides such as MoSi 2 ,
Nitrides such as TaN and HfN, oxides such as ZrO 2 ,
Carbides such as SiC and B 4 C, and various metals are known. (Problems to be solved by the invention) For example, regarding silicides, the Japanese Patent Publication No. 38-6098
ZrSi 2 and MoSi 2 are disclosed in U.S. Patent No. 3705112, but these Si-based compounds melt or decompose during sintering in a high-temperature atmosphere, resulting in a porous structure that prevents the growth of crystal grains. Often larger,
Therefore, the strength and corrosion resistance are often insufficient, and although the oxidation resistance is expected to be effective as a SiO 2 film, these subcomponents alone are not sufficient for use in air. Next, regarding nitrides, U.S. Patent No. 3305374
Although TaN is excellent in terms of high hardness and high strength, it has poor oxidation resistance when used in high-temperature oxidizing atmospheres such as high-temperature corrosion-resistant parts, heating elements, electrodes, and induction furnace crucibles. It is not sufficient in terms of durability, spall resistance, corrosion resistance, etc. Next, regarding carbides, refer to U.S. Patent No. 3775137.
Although SiC has been disclosed, SiC alone is insufficient in terms of oxidation resistance, and US Patent No.
MoSi 2 +B 4 C disclosed in 3325300 or
When MoSi 2 + SiC + B 4 C is added, MoSi 2 has a lower melting point than the sintering temperature, so it may melt and decompose during sintering, or
Because it promotes grain growth and makes the structure porous, it is difficult to achieve high density, and therefore its oxidation resistance is not sufficient. US Patent No. 3,325,300 also discloses SiC and/or B 4 C, but this patent is a ZrB 2 - MoSi 2 system with these additional components added, essentially MoSi Sintered bodies containing Si-based compounds such as 2 are difficult to become sufficiently dense and do not have sufficient strength or oxidation resistance. In view of these points, we are conducting research to overcome the conventional problems with ZrB 2- material sintered bodies, which have excellent properties but are not fully utilized and are actually used for only extremely limited applications. As a result of our efforts, we succeeded in developing a sintered body that has various properties such as high density, high strength, oxidation resistance, corrosion resistance, and even spalling resistance, and has significantly improved some of its properties. It is. (Means for solving the problem) That is, the present invention contains at least 1% or more by weight of each of SiC and B 4 C as subcomponents, the total amount of these is 2 to 50% by weight, and the remainder is substantially consisting of ZrB2 , which can be replaced by up to 10% by weight of TiB2 .
The main feature is a ZrB 2- quality sintered body. The ZrB 2 used in the present invention can be obtained, for example, by reacting a mixture of zirconium oxide, boron oxide, and carbon at high temperatures, and it is preferable to use ZrB 2 with the highest possible purity for producing the present sintered body.
Further, a powder having a particle size as small as possible is preferable. Specifically, it has a purity of 99% or more and an average particle diameter of 10 μm, particularly 1 μm or less. Furthermore, as for SiC and B 4 C, which are present as subcomponents, it is sufficient that they are present in a predetermined amount as such compounds in the sintered body, so they may be blended in any form as starting materials. However, if raw materials other than SiC and B 4 C are used, special consideration is required at the sintering stage, so it is better to prepare them as SiC and B 4 C as the usual blended raw materials. The raw materials for SiC and B 4 C are preferably as pure as possible, preferably 99% or higher. The raw material mixture is usually prepared by uniformly mixing these three types of fine powders, but the same effect can be obtained by ultrafinely pulverizing them for the purpose of pulverizing and mixing. Generally, the particle size of the mixed raw material is preferably 10μm or less, preferably the average particle size.
It is necessary to sufficiently adjust the thickness to 1 μm or less. The sintered body of the present invention can be produced by filling a graphite mold with these mixtures and hot pressing in vacuum or in a neutral or reducing atmosphere such as argon, helium, carbon monoxide, etc., or by pressing the above mixture with a rubber press. It is possible to sinter the molded product either by normal pressure firing or by firing under pressure of about 50 to 2000 kg/cm 2 . Note that the firing temperature is suitably 1600 to 2200°C and the firing time is approximately 30 minutes to 1 hour. The proportion of the subcomponents in the sintered body of the present invention is 2 to 50% by weight (the same applies hereinafter),
Although the remainder is substantially composed of ZrB 2 , a small amount of this ZrB 2 may be replaced with other components such as TiB 2 to the extent that the characteristics of ZrB 2 are not impaired. Specifically, up to 10 weights of ZrB 2 can be replaced with TiB 2 . Note that it is necessary to limit the amount of subcomponents other than SiC and B 4 C to as small a quantity as possible, excluding inevitable impurities, especially since the presence of Si-based compounds is extremely undesirable. Specifically, ZrB 2 (including TiB 2 ) and SiC
Components other than the total amount of B 4 C must be kept at 3% by weight or less. At least 1% or more of each of B 4 C and SiC as subcomponents is required, but if B 4 C is less than 1%, it is difficult to achieve high density, and the properties of oxidation resistance and high corrosion resistance are fully exhibited. This is because if SiC is less than 1%, oxidation resistance is insufficient and it becomes difficult to achieve high density. It is not clear why the presence of SiC improves the oxidation resistance of this sintered body, but when used in combination with B 4 C, a highly viscous B 2 O 3 -SiO 2 film forms during use. This is thought to be due to the formation of the sintered body, and this fact indicates that the present sintered body can be used sufficiently for uses such as heating elements. On the other hand, B 4 C and SiC can each be present in a sintered body up to about half the amount, but if B 4 C exceeds 50%, oxidation resistance decreases.
If SiC exceeds 50%, the spalling resistance and high corrosion resistance effects will no longer be exhibited, which is undesirable, and in any case, the characteristics of the ZrB 2 quality will be essentially impaired, including loss of heat resistance. Therefore, B 4 C and SiC
It is necessary to limit the total amount to 50%. Further, within these ranges, a more desirable range is for each of SiC and B 4 C to be 5% or more, and the total amount to be 10% or more, preferably 20% or more. Moreover, the ratio of SiC and B 4 C is 10 to 60% for the former and 90 to 40% for the latter. The sintered body of the present invention is structurally ZrB 2
ZrB 2 is a dense substance whose main component is crystal, with B 4 C and SiC strongly bonded between them. It's on. Specifically, ZrB 2 in the sintered body of the present invention
Most of the crystals exist as particles with a particle size of 10 μm or less. (Effects of the Invention) As described above, the sintered body of the present invention thus obtained has high density, oxidation resistance, spalling resistance,
It is a dense sintered body with high strength, excellent corrosion resistance, and conductivity, making it ideal for high-temperature corrosion-resistant parts used in air, heating elements, crucibles, etc., as well as other mechanical parts materials, tools, etc. is also applicable
It can be used for various purposes that exhibit the characteristics of the ZrB 2 -quality sintered body, and its practical value is great. (Example) Γ Example 1 85 parts by weight of ZrB 2 powder (99% purity or higher), 10 parts of B 4 C powder (99% purity), and 5 parts of SiC powder (99% purity) were thoroughly mixed and ground using a pot mill. The mixture was ground and mixed for 3 days using SiC balls in an ethanol solvent. The obtained powder was thoroughly dried by removing alcohol with an evaporator to obtain a powder with an average particle size of 0.15μ. This powder was filled into a graphite mold and heated at 2000° C. for 30 minutes under a pressure of 350 kg/cm 2 in an argon atmosphere to obtain a sintered body. The properties of the obtained sintered body are relative density 98% bending strength
78Kg/mm 2 , No change in oxidation resistance (Note 1), Hardness HV
(Note 2) It was 2100Kg/ mm2 . In addition, the size of most of the ZrB 2 crystals in this sintered body was less than 5 μm, and the analytical value was almost the same as the sample composition ratio. (SiC contamination from the grinding balls was approximately 2%) Γ Examples 2 to 6, 11 to 13 and Comparative Examples 1 to 3: Sintered bodies were obtained in the same manner as in Example 1. Γ Examples 7 to 10 are ZrB 2 similar to Example 1,
A predetermined amount of B 4 C and SiC powder was molded at 2000 kg/cm 2 using a rubber press, and this was sintered under specific sintering conditions (argon atmosphere, 1 hour). The characteristics of each sintered body are as follows.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 副成分としてSiC及びB4Cを少くともそれぞ
れ重量%で1%以上含み、これらの合量が2〜50
重量%であつて残部が実質的に10重量%までの
TiB2で置き換えうるZrB2からなるZrB2質複合焼
結体。 2 SiCとB4Cの合量が10重量%以上である特許
請求の範囲第1項記載の焼結体。 3 SiCとB4Cの合量が20重量%以上である特許
請求の範囲第2項記載の焼結体。 4 10重量%までのTiB2で置き換えうるZrB2
SiCとB4Cの合量以外の成分が3重量%以下であ
る特許請求の範囲第1項乃至第3項いずれか記載
の焼結体。 5 SiC及びB4Cがそれぞれ5重量%以上である
特許請求の範囲第2項乃至第4項いずれか記載の
焼結体。 6 SiCとB4Cの割合が前者10〜60重量%、後者
が90〜40重量%である特許請求の範囲第1項又は
第5項記載の焼結体。 7 ZrB2結晶はその大部分が粒径10μ以下である
特許請求の範囲第1項記載の焼結体。
[Scope of Claims] 1 Contains at least 1% or more by weight of each of SiC and B 4 C as subcomponents, and the total amount of these is 2 to 50%.
% by weight, with the remainder substantially up to 10% by weight
ZrB binary composite sintered body consisting of ZrB 2 that can be replaced with TiB 2 . 2. The sintered body according to claim 1, wherein the total amount of SiC and B 4 C is 10% by weight or more. 3. The sintered body according to claim 2, wherein the total amount of SiC and B 4 C is 20% by weight or more. 4 ZrB 2 and ZrB 2 can be replaced by up to 10% by weight of TiB 2
The sintered body according to any one of claims 1 to 3, wherein the content of components other than the total amount of SiC and B 4 C is 3% by weight or less. 5. The sintered body according to any one of claims 2 to 4, wherein each of SiC and B 4 C is 5% by weight or more. 6. The sintered body according to claim 1 or 5, wherein the proportion of SiC and B4C is 10 to 60% by weight for the former and 90 to 40% by weight for the latter. 7. The sintered body according to claim 1, wherein most of the ZrB 2 crystals have a grain size of 10 μm or less.
JP59141401A 1984-07-10 1984-07-10 Zrb2 composite sintered body Granted JPS6121980A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59141401A JPS6121980A (en) 1984-07-10 1984-07-10 Zrb2 composite sintered body
US06/751,528 US4636481A (en) 1984-07-10 1985-07-03 ZrB2 composite sintered material
DE8585108300T DE3569365D1 (en) 1984-07-10 1985-07-04 Zrb2 composite sintered material
EP85108300A EP0170889B1 (en) 1984-07-10 1985-07-04 Zrb2 composite sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141401A JPS6121980A (en) 1984-07-10 1984-07-10 Zrb2 composite sintered body

Publications (2)

Publication Number Publication Date
JPS6121980A JPS6121980A (en) 1986-01-30
JPS6337068B2 true JPS6337068B2 (en) 1988-07-22

Family

ID=15291143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141401A Granted JPS6121980A (en) 1984-07-10 1984-07-10 Zrb2 composite sintered body

Country Status (1)

Country Link
JP (1) JPS6121980A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014487A (en) * 2011-07-06 2013-01-24 Miyagawa Kasei Ind Co Ltd Method for producing conductive ceramics
JP6549927B2 (en) * 2015-07-24 2019-07-24 株式会社ディスコ Cutting stone added with boron compound

Also Published As

Publication number Publication date
JPS6121980A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
JPS5924751B2 (en) Sintered shaped body
EP0170864B1 (en) Zrb2 composite sintered material
GB2065713A (en) High density sintered refractory composites
EP0170889B1 (en) Zrb2 composite sintered material
US4933308A (en) High strength high toughness TiB2 ceramics
JPS6337068B2 (en)
JPS6337069B2 (en)
JPH0610106B2 (en) Variable conductivity ZrB2 composite sintered body
JPS60215575A (en) Manufacture of silicon nitride sintered body
JPS6339542B2 (en)
JPS6144768A (en) High strength boride sintered body
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JPS6337066B2 (en)
JPS62119168A (en) High anticorrosion high thermal shock resistance zrb2 base composite sintered body
JPS6172687A (en) High strength zrb2 base sintered body
JPS62288171A (en) Zrb2 base composite sintered body
JPS597669B2 (en) Metal boride-zirconium oxide ceramic materials
JPS6337070B2 (en)
JPS6144769A (en) High strength zrb2 composite sintered body
JPH05279128A (en) Zirconium diboride multiple sintered compact
JPS6339544B2 (en)
Nishio et al. High strength high toughness TiB 2 ceramics
Kida et al. ZrB2 Composite Sintered Material
JPS6212672A (en) High strength zrb2 base composite sintered body