JPS6236065A - Manufacture of heat-resistant antiabrasive ceramic material - Google Patents

Manufacture of heat-resistant antiabrasive ceramic material

Info

Publication number
JPS6236065A
JPS6236065A JP60173519A JP17351985A JPS6236065A JP S6236065 A JPS6236065 A JP S6236065A JP 60173519 A JP60173519 A JP 60173519A JP 17351985 A JP17351985 A JP 17351985A JP S6236065 A JPS6236065 A JP S6236065A
Authority
JP
Japan
Prior art keywords
weight
ceramic material
component
tic
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60173519A
Other languages
Japanese (ja)
Other versions
JPH0248510B2 (en
Inventor
淳一郎 鈴木
実 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60173519A priority Critical patent/JPS6236065A/en
Publication of JPS6236065A publication Critical patent/JPS6236065A/en
Publication of JPH0248510B2 publication Critical patent/JPH0248510B2/ja
Priority to US07/639,774 priority patent/US5196385A/en
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性及び耐摩耗性に優れたセラミック材料
の製造法に関するものであり、特にダクタイル鋳鉄等の
切削工具として又、電気伝導性があるセラミックとして
の応用例えばセラミックヒータヤ耐摩耗・耐食性を必要
とする電極材料等の材料としても有用であるセラミック
材料の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic material with excellent heat resistance and wear resistance, and is particularly suitable for use as a cutting tool such as ductile cast iron or as an electrically conductive material. The present invention relates to a method for producing a ceramic material that is useful for certain ceramic applications, such as ceramic heaters and electrode materials that require wear and corrosion resistance.

[従来の技術] 従来よりTiCは、融点、硬度が高く、又熱膨張が小さ
く熱伝導性も高温で低下しないために優れた耐スポーリ
ング性を有する高温材料として知られている。しかし、
TiCは難焼結材料のためco、Ni等の金属の添加等
によりサーメットとしてのみ緻密な焼結体を得ていた。
[Prior Art] TiC has been known as a high-temperature material that has excellent spalling resistance because it has a high melting point and hardness, and also has low thermal expansion and does not reduce thermal conductivity at high temperatures. but,
Since TiC is a difficult-to-sinter material, a dense sintered body has been obtained only as a cermet by adding metals such as cobalt and Ni.

[発明が解決しようとする問題点] しかし上記サーメットは複合体であるために金属相の挙
動に支配されTi C自体の前記特性が特に高温特性が
十分に活かされていない。
[Problems to be Solved by the Invention] However, since the cermet is a composite, it is dominated by the behavior of the metal phase, and the properties of TiC itself, particularly the high temperature properties, are not fully utilized.

例えば、ダクタイル鋳鉄の切削において前述のサーメッ
トを用いたサーメットチップは仕上切削に用いられるが
、仕上切削といえども切削速度300m /minを超
えるような高速切削では摩耗が早く、クレータ摩耗も大
きく、更にチッピングも生じやすい。逆に切削速度が1
50〜200m/min以下では超硬系等のチップはど
ではないにしても、溶着が起り仕上面が粗くなる。
For example, when cutting ductile cast iron, a cermet tip using the above-mentioned cermet is used for finishing cutting, but even in finishing cutting, high-speed cutting exceeding 300 m/min results in rapid wear and large crater wear. Chipping is also likely to occur. On the other hand, when the cutting speed is 1
If the speed is less than 50 to 200 m/min, welding will occur even if the chips are made of carbide, etc., and the finished surface will become rough.

[問題点を解決するための手段] 本発明は上記問題を解決するためになされたものであり
、Ti Cの特性を活かし、かつ緻密なセラミック材料
の製造方法を提供することを目的とする。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a dense ceramic material that takes advantage of the characteristics of TiC.

第1の発明は、、Al2O3 1〜40重量%と、焼結
助剤 0.05〜8重量%と、 Zr 02及び/又はHfO23〜35重量%と、 下
記割合の(a)及び(b)成分からなるTi C成分 
17〜95.95重量%と、からなる配合物を下記(a
>成分の金属が金属相として存在しなくなるまで、非酸
化性雰囲気下で焼結して耐熱・耐摩耗性セラミック材料
を製造することを要旨とする。
The first invention includes 1 to 40% by weight of Al2O3, 0.05 to 8% by weight of a sintering aid, 3 to 35% by weight of ZrO2 and/or HfO, and the following proportions (a) and (b). Ti C component consisting of components
17 to 95.95% by weight.
>The gist is to produce a heat-resistant and wear-resistant ceramic material by sintering it in a non-oxidizing atmosphere until the component metal no longer exists as a metal phase.

(a)元素の周期率表で4a、5a及び6a族から選ば
れた1種又は2種以上からなる金属4〜30重量% (b)Ti 0 70〜96重量% 第2の発明は第1の発明に加えて配合物中のTiC成分
の5〜40重量%をZr 、 1−1f及び元素の周期
率表で5a、6a族から選ばれた1種又は2種以上の炭
化物からなる(c)成分としたことを要旨とする。
(a) 4 to 30% by weight of a metal consisting of one or more selected from groups 4a, 5a and 6a of the periodic table of elements (b) 70 to 96% by weight of Ti 0 The second invention is the first invention. In addition to the invention, 5 to 40% by weight of the TiC component in the formulation is composed of Zr, 1-1f, and one or more carbides selected from groups 5a and 6a of the periodic table of elements (c ) components.

第1発明及び第2発明の(a)成分、即ち元素の周期率
表で4a、5a及び6a族の金属とは、Ti 、Zr 
、Hf 、V、Nb 、Ta 、Cr 、Mo、Wのこ
とである。
Component (a) of the first and second inventions, that is, the metals of groups 4a, 5a, and 6a in the periodic table of elements, are Ti, Zr,
, Hf, V, Nb, Ta, Cr, Mo, and W.

第2発明の(c)成分、即ちZr 、@f及び元素の周
期率表で5a、5a族の炭化物とは、Zr。
The component (c) of the second invention, that is, Zr, @f, and the carbide of group 5a and 5a in the periodic table of elements is Zr.

Hf 、V、Nb 、Ta 、Cr 、Mo 、Wの炭
化物のことであり、例えばZr C5Hf C,VC,
N1)C,TaC,CrC2、MOzC,WC等をあげ
ることができる。
It refers to carbides of Hf, V, Nb, Ta, Cr, Mo, and W, such as Zr C5Hf C, VC,
N1) C, TaC, CrC2, MOzC, WC, etc. can be mentioned.

本発明において金属が金属相として存在しなくなるとは
、少なくともX線回折装置によって金属相が検出されな
いことを、好ましくは光学顕微鏡によって金属相が検出
されないことを意味する。
In the present invention, the absence of metal as a metallic phase means that no metallic phase is detected at least by an X-ray diffraction device, preferably no metallic phase is detected by an optical microscope.

非酸化性雰囲気としては、焼結時に配合物中のTi C
及び(a)成分の金属が酸化しない雰囲気であれば、特
に制限はなく、例えばN2 、Ar 。
The non-oxidizing atmosphere includes TiC in the formulation during sintering.
There is no particular restriction as long as the atmosphere does not oxidize the metal of component (a), such as N2 or Ar.

H2等の雰囲気をあげることができる。又、上記配合物
は常圧下のみならず、加圧焼結法や熱間静水圧加圧法で
焼結することができ、その焼結温度は通常用いられる範
囲でよいが、前述の如く、配合物中−の金属相が存在し
なくなるまで焼結する必要がある。
It is possible to create an atmosphere such as H2. Furthermore, the above-mentioned compound can be sintered not only under normal pressure but also by pressure sintering method or hot isostatic pressing method, and the sintering temperature may be within the range normally used. It is necessary to sinter the material until the metal phase in it is no longer present.

[作用] 第1の発明の作用について説明する。[Effect] The operation of the first invention will be explained.

AΩ203は耐酸化性に優れ生成自由エネルギ−が低い
化学的に安定な物質であり、これをTtC成分中に分散
させることによりセラミック材料全体としての耐酸化性
、化学安定性を向上さすことができる。このことにより
Ti Cの優れた性質に、ざらに耐酸化性及び化学的安
定性が付加される。
AΩ203 is a chemically stable substance with excellent oxidation resistance and low free energy of formation, and by dispersing it in the TtC component, the oxidation resistance and chemical stability of the ceramic material as a whole can be improved. . This adds oxidation resistance and chemical stability to the excellent properties of TiC.

本発明においてAg2O3は1〜40重量%用いられる
が、Ag2O3の量が1重量%未満では上記の効果は十
分にあられれず、40重1%より多くなるとTiC自体
の特性がうすれてしまう。
In the present invention, Ag2O3 is used in an amount of 1 to 40% by weight, but if the amount of Ag2O3 is less than 1% by weight, the above effect cannot be sufficiently achieved, and if it exceeds 40% by weight, the properties of TiC itself will deteriorate.

本発明において焼結助剤をAg2O3と併用するのは、
Ag2O3の上記有効作用に加えて、、Al2Ogと焼
結助剤とによるAQzO3化合物がセラミック材料の焼
結を助成し、焼結性が向上するためである。本発明にお
いて焼結助剤とは、MQO,Cab、Si 02、Ni
 Oや、Y203、DV20g、ErzO3、HO20
3等の希土類酸化物等の通常Ag2O3系、AQ 20
3−TiC系、、Al2O3−Zr 02系などのAQ
zOa主体セラミックの焼結に用いられるものを指す。
In the present invention, the sintering aid is used together with Ag2O3 because
This is because, in addition to the above-mentioned effective effects of Ag2O3, the AQzO3 compound made up of Al2Og and the sintering aid assists the sintering of the ceramic material and improves the sinterability. In the present invention, sintering aids include MQO, Cab, Si 02, Ni
Oya, Y203, DV20g, ErzO3, HO20
Normal Ag2O3-based rare earth oxides such as No. 3 rare earth oxides, AQ 20
AQ such as 3-TiC system, Al2O3-Zr 02 system, etc.
Refers to those used for sintering zOa-based ceramics.

焼結助剤は、本発明において、0.05重量%〜8重量
%用いられるが、0.05重量%未満では、上記の効果
は十分にあられれず、逆に8重量%より多いと多量の上
記、Al2O3化合物がセラミック材料の高温特性を低
下させる。
In the present invention, the sintering aid is used in an amount of 0.05% to 8% by weight, but if it is less than 0.05% by weight, the above effects cannot be sufficiently obtained, and if it is more than 8% by weight, a large amount As mentioned above, the Al2O3 compound deteriorates the high temperature properties of the ceramic material.

Zr 02及び/又はHf 02は、通常セラミック材
料中に正方晶の形で分散している。セラミック材料に大
きな外力が加わるとこれらは正方品から単斜晶への相転
移を起し、この相変化によって外力を吸収することによ
りセラミック材料を強化する。この作用は、無拡散格子
変態として知られているものと同一である。
Zr 02 and/or Hf 02 are usually dispersed in the ceramic material in tetragonal form. When a large external force is applied to a ceramic material, the ceramic material undergoes a phase transition from tetragonal to monoclinic, and this phase change strengthens the ceramic material by absorbing the external force. This effect is identical to what is known as diffusionless lattice transformation.

Zr 02及び/又はHf 02は、本発明において、
3〜35重量%用いられるが、3重量%未満であると上
記の効果が十分にあられれず、逆に35重量%を超える
と焼結体の耐摩耗性が低下する。
In the present invention, Zr 02 and/or Hf 02 are
It is used in an amount of 3 to 35% by weight, but if it is less than 3% by weight, the above effects cannot be sufficiently achieved, and if it exceeds 35% by weight, the wear resistance of the sintered body will decrease.

次にTi C中に前述の(a>成分の金属が含まれるが
、この(a)成分を焼結過程でTi C中に固溶させ、
金属相としてセラミック材料に存在させないことが必要
である。このためにTi Cは非化学量論組成となり、
結晶構造を不完全、不安定とさせることができる。その
ために固相反応等の焼結反応が容易となり、その結果と
して本発明によるセラミック材料の焼結性を向上させる
ことができたと考えられる。又、この現象は、、Al2
O3粒とTi 0粒あるいはTi C粒同士の界面が強
化される事をも意味する。さらに、まだ十分解明してい
ないが、TiC自体の高温強度に関しても結合形態が本
来の共有結合に金属結合の性質を帯びることにより、強
度靭性面が向上すると思われる。
Next, the above-mentioned metal (a>component) is contained in TiC, and this component (a) is dissolved as a solid solution in TiC during the sintering process,
It is necessary that it not be present in the ceramic material as a metallic phase. For this reason, TiC has a non-stoichiometric composition,
It can make the crystal structure incomplete and unstable. It is considered that this facilitates the sintering reaction such as solid phase reaction, and as a result, the sinterability of the ceramic material according to the present invention was improved. Also, this phenomenon is caused by Al2
This also means that the interface between O3 grains and Ti0 grains or TiC grains is strengthened. Furthermore, although it has not been fully elucidated yet, regarding the high temperature strength of TiC itself, it is thought that the strength and toughness are improved by the bond form taking on the characteristics of a metallic bond to the original covalent bond.

本発明において上記の特性を付与するため(a)成分は
Ti C成分の4〜30重量%用いられるが、(a)成
分の量がTi C成分の4重量%未満の場合は上記の効
果は不十分であり、(a>成分の吊がTi C成分の3
0重量%を超えると(a)成分が金属相として残留する
可能性があり、切削性能についてみると耐摩耗性が低下
する。
In the present invention, component (a) is used in an amount of 4 to 30% by weight of the TiC component in order to impart the above properties, but if the amount of component (a) is less than 4% by weight of the TiC component, the above effects will not be achieved. It is insufficient, and (a> component is 3 for Ti C component)
If it exceeds 0% by weight, component (a) may remain as a metal phase, and wear resistance will decrease in terms of cutting performance.

第2発明の作用について説明する。The operation of the second invention will be explained.

第2発明は、第1発明の構成に加えTi C成分中に前
述の(c)成分の炭化物を含む。この(c)成分はTi
 C中に固溶するが、TiCと(c)成分は含まれる原
子の大きざが異なるためにTi Cの結晶格子が歪みを
有する。このような格子歪みを持った結晶の格子面は同
じ大きざの原子が並んでいる平担な格子面よりも転位が
動くのにより多くのエネルギーを必要とする。即ちセラ
ミック材料を破壊するのにより多くのエネルギーが必要
となるのであり、上記作用によってセラミック材料の強
度がより向上する。
The second invention includes, in addition to the structure of the first invention, a carbide of the above-mentioned component (c) in the TiC component. This (c) component is Ti
Although TiC forms a solid solution in C, the crystal lattice of TiC is distorted because the atoms contained in TiC and component (c) have different sizes. A crystal lattice plane with such lattice distortion requires more energy for dislocations to move than a flat lattice plane in which atoms of the same size are lined up. That is, more energy is required to destroy the ceramic material, and the strength of the ceramic material is further improved by the above action.

第2の発明において上記特性を付与するため゛(c)成
分はTi Cの5〜40重山%使用するが、5重量%未
満であると上記特性は表われず、第1の発明と同一とな
ってしまう。逆に40重量%を超えると、Ti C自体
の優れた特性が劣化してしまう。
In the second invention, in order to impart the above characteristics, the component (c) is used in an amount of 5 to 40% by weight of TiC, but if it is less than 5% by weight, the above characteristics will not be exhibited, and the same as in the first invention. turn into. On the other hand, if it exceeds 40% by weight, the excellent properties of TiC itself will deteriorate.

[発明の効果] 本発明のセラミック材料の製造方法を用いることによっ
て、Ti Cの特性をより活がしかつ緻密な耐摩耗性、
耐熱性を有するセラミック材料を製造することができる
[Effects of the Invention] By using the method for producing a ceramic material of the present invention, the characteristics of TiC can be further utilized and precise wear resistance,
Ceramic materials with heat resistance can be produced.

第1発明のセラミック材料の製造方法により製造された
セラミック材料は、前述のダクタイル鋳鉄等の鋳鉄、鋼
、高ニッケル、アルミニウム、チタン等や、非金属の切
削工具や、耐摩耗性、耐食性、耐熱性を必要とする機械
部品に有用である。
The ceramic material manufactured by the method for manufacturing a ceramic material of the first invention can be used for cutting tools such as cast iron such as the above-mentioned ductile cast iron, steel, high nickel, aluminum, titanium, etc., nonmetallic cutting tools, wear resistance, corrosion resistance, and heat resistance. Useful for mechanical parts that require high performance.

又、電気伝導性があるので、電気伝導性があるセラミッ
クとしての応用例えばセラミックヒータや、耐摩耗、耐
食性を必要とする電極材料等の材料としても有用である
Furthermore, since it is electrically conductive, it is useful for applications such as electrically conductive ceramics, such as ceramic heaters, and electrode materials that require wear resistance and corrosion resistance.

第2発明のセラミツ、り材料の製、進方法により製造さ
れたセラミック材料は、第1発明によりw4i造された
セラミック材料の効果に加えて、Zr、Hf、、5a、
5a族炭化物を添加する事により、靭性、硬度、耐熱性
、耐摩耗性等に優れた性質を付加することができる。し
かし、これら全ての性質が第1発明によるセラミック材
料に比べて向上するのではなく、Zr C,Hf Cあ
るいはVCを添加すると硬度、耐摩耗性が、Ta Cあ
るいはNbCを添加すると耐熱性が、WC,MozC,
Cr Czを添加すると靭性が各々第1発明のセラミッ
ク材料より向上する。従って用途等に応じてZr、)−
1f 、5a、6a族炭化物を選択して添加すると第1
発明によるセラミック材料の優れた性質により優れた性
質を加えることができ、各種材料としてより有用なセラ
ミック材料を得ることができる。
The ceramic material manufactured by the ceramic material manufacturing method of the second invention has, in addition to the effects of the ceramic material manufactured by w4i according to the first invention, Zr, Hf, 5a,
By adding Group 5a carbides, excellent properties such as toughness, hardness, heat resistance, and wear resistance can be added. However, all of these properties are not improved compared to the ceramic material according to the first invention; addition of Zr C, Hf C or VC improves hardness and wear resistance, while addition of Ta C or NbC improves heat resistance. WC, MozC,
The addition of Cr Cz improves the toughness over the respective ceramic materials of the first invention. Therefore, depending on the use etc., Zr,)-
When 1f, 5a, and 6a group carbides are selected and added, the first
It is possible to add superior properties to the excellent properties of the ceramic material according to the invention, and it is possible to obtain ceramic materials that are more useful as various materials.

(実施例] 本発明の実施例について説明する。(Example] Examples of the present invention will be described.

配合物を第1発明の実施例として第1表の試料No、1
−a〜1−kに示す割合に、又第2発明の実施例として
試料No、2−a〜2−kに示す割合に調合し、ステン
レスボールミル中でアセトンと共に30時時間式粉砕し
た。その後アセトンを乾燥機で揮散させ乳鉢で60メツ
シユを全量通過するまで微粉砕して素地粉末を調製した
。第1表中のTi C成分中の(a)、(b)、あるい
は(c)成分の量は、TiC成分を100とした場合の
重量%である。尚、α−AΩ203としては粒径1μm
以下が70%のものを、焼結助剤として99.5%以上
の純度のものを、Zr 02は平均粒径0.6μmのも
のを、Hf 02は平均粒径1.5μmのものを、前述
の(a)成分は325メツシュ通過のものを、(b)成
分であるTi Cとしては平均粒径1.1μ−全炭素量
19.4%のTi Cを、第2発明の実施例で使用する
前述の(c)成分は325メツシュ通過のものを各々使
用した。
Sample No. 1 in Table 1 as an example of the first invention
-a to 1-k, and sample No. 2-a to 2-k as an example of the second invention, and pulverized with acetone in a stainless steel ball mill for 30 hours. Thereafter, acetone was volatilized in a dryer, and the powder was pulverized in a mortar until the entire amount passed through 60 meshes, to prepare a base powder. The amounts of component (a), (b), or (c) in the TiC component in Table 1 are weight % when the TiC component is taken as 100. In addition, the particle size of α-AΩ203 is 1 μm.
The following is 70%, the purity is 99.5% or more as a sintering aid, Zr 02 has an average particle size of 0.6 μm, Hf 02 has an average particle size of 1.5 μm, The above-mentioned component (a) was one that passed through a 325 mesh, and the component (b) was TiC with an average particle size of 1.1μ and a total carbon content of 19.4%. The above-mentioned component (c) used was one that passed through 325 mesh.

この素地粉末を第1表中に示す焼結温度、焼結方法によ
り焼結した。この実施例で用いた焼結方法は、 1 圧力200ko/d、加圧焼成時間15分で加圧焼
結法により黒鉛型内において焼結6 (表中ではH−P
と記した。) 2 減圧アルゴン雰囲気下で1時間の焼結。
This base powder was sintered according to the sintering temperature and sintering method shown in Table 1. The sintering method used in this example was as follows: 1 Sintering in a graphite mold using a pressure sintering method at a pressure of 200 ko/d and a pressure sintering time of 15 minutes.
It was written. ) 2 Sintering for 1 hour under reduced pressure argon atmosphere.

(表中では普通焼結と記した。) 3 減圧アルゴン雰囲気下で1時間の1次焼結を行ない
、その後1500℃、1500気圧保持時間の条件で熱
間静水圧加圧法で焼結。(表中ではHIPと記した。) であった。
(In the table, it is described as normal sintering.) 3. Primary sintering was performed for 1 hour in a reduced pressure argon atmosphere, and then sintering was performed by hot isostatic pressing under conditions of 1500° C. and 1500 atmospheric pressure holding time. (It was written as HIP in the table.)

このようにして得られた焼結体をダイヤモンド砥石によ
つ、て5NGN432TN、表面38以下(JISによ
る)に研摩し、対理論密度、硬度を測定し、第2表の切
削試験条件により切削試験を行った。尚、被削材は第1
図に示すごとく、長さ400m+a、直径150mmの
棒状であり、長手方向に幅5mmの溝が6本等間隔に設
けられている。ざらにこのように得られた焼結体はX線
回折装置及び光学顕微鏡によって(a>成分の状態を調
べられた。
The sintered body thus obtained was ground to 5NGN432TN with a diamond grindstone to a surface of 38 or less (according to JIS), the theoretical density and hardness were measured, and a cutting test was performed according to the cutting test conditions shown in Table 2. I did it. In addition, the work material is the first
As shown in the figure, it has a rod shape with a length of 400 m+a and a diameter of 150 mm, and six grooves each having a width of 5 mm are provided at equal intervals in the longitudinal direction. The sintered body thus obtained was roughly examined for the state of (a>component) using an X-ray diffractometer and an optical microscope.

ざらに、配合物を第1発明の比較例として第1表の試料
No、1”、−a〜1′−1に示す割合に、又、第2発
明9比較例として第1表の試料No。
Roughly, the compositions were adjusted to the proportions shown in Sample No. 1'', -a to 1'-1 in Table 1 as a comparative example of the first invention, and sample No. 1 in Table 1 as a comparative example of the second invention 9. .

2”−a〜2−−fに示す割合に各々配合し、実施例、
と同様に、焼結、成形して対理論密度、硬度を測定し切
01[試験を行なった。又実施例と同様にX線回折装置
等により(a)成分の状態を調べた。
2''-a to 2--f, respectively, and blended in the proportions shown in Examples,
The sample was sintered and molded in the same manner as above, and the theoretical density and hardness were measured. In addition, the state of component (a) was examined using an X-ray diffraction device or the like in the same manner as in the examples.

ただしTiCサーメットは通常市販されるものを使用し
た。
However, a commercially available TiC cermet was used.

第2表 第1表の試料No、1−a 〜1−にと試料No。Table 2 Sample No. 1-a to 1- in Table 1.

’l −−a 〜]−−iとの比較及び試料NO,2−
a〜2−にと試料N0.2−−a 〜2−−fとの比較
によりTi Cの特性を活かし、かつ緻密なセラミック
材料を製造するには、AΩ203と、焼結助剤と、Zr
 02及び/又はHf 02と、TiC成分中の(a)
、(b)成分、第2発明の場合は(a>、(b)、(c
)成分量を所定量にすることが必要であり、かつ上記(
a)成分が金属相として存在しなくなるように焼結する
ことが必要であることが判った。
Comparison with 'l −-a ~]--i and sample NO, 2-
A~2- and Samples No.2--a~2-f revealed that in order to take advantage of the properties of TiC and to produce a dense ceramic material, AΩ203, a sintering aid, and Zr
02 and/or Hf 02 and (a) in the TiC component
, (b) component, in the case of the second invention (a>, (b), (c
) It is necessary to keep the amount of ingredients to a specified amount, and the above (
It has been found necessary to sinter so that component a) is no longer present as a metallic phase.

又、本発明のセラミック材料の製造法により製造された
セラミック材料の電導度を測定した所、組成により異な
るが、約50〜100X10−6Ω・cmであった。こ
れは従来の実用セラミック材料の中でも電導性に優れる
ものの一つといってよい。
Further, when the electrical conductivity of the ceramic material manufactured by the method of manufacturing a ceramic material of the present invention was measured, it was about 50 to 100×10 −6 Ω·cm, although it varied depending on the composition. This can be said to be one of the ones with excellent electrical conductivity among conventional practical ceramic materials.

ざらに、第2発明の効果について測定した所、試料No
、1−hと試料No、 2−jの如く、第1発明に(c
)成分としてWC,MO2Cあるいは、Cr C2を添
加して製造したセラミック材料は第1発明によるセラミ
ック材料に比べて靭性に優れるため切削試験の衝撃回数
が増加することが確認された。又、第1発明に(c)成
分としてZr C,Hf CあるいはVCを添加すると
第1発明によるセラミック材料に比べて硬度が高くなる
ことが確認された。ざらに、第1発明に(c)成分とし
てTa C,Nb Cを添加すると第1発明によるセラ
ミック材料に比べて耐熱性、即ち高温における強度の低
下が少ないことが確認された。
Roughly, when the effect of the second invention was measured, sample No.
, 1-h and sample No. 2-j, in the first invention (c
) It was confirmed that the ceramic material manufactured by adding WC, MO2C, or CrC2 as a component has superior toughness compared to the ceramic material according to the first invention, and therefore the number of impacts in the cutting test increases. Furthermore, it has been confirmed that when Zr C, Hf C, or VC is added as component (c) to the first invention, the hardness becomes higher than that of the ceramic material according to the first invention. In general, it was confirmed that when Ta 2 C and Nb 2 C were added as component (c) to the first invention, there was less decrease in heat resistance, that is, strength at high temperatures, compared to the ceramic material according to the first invention.

尚、第1表に記載しなかった本発明の組成の配合物につ
いても同様に焼結体を作成し、試験した所、同様に欠損
までの衝撃回数が従来のものに比べて大幅に増加してい
ることが確認された。
Incidentally, when sintered bodies were similarly prepared and tested for compounds having the compositions of the present invention not listed in Table 1, the number of impacts until breakage was similarly significantly increased compared to the conventional ones. It was confirmed that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に用いられる被削材の斜視図
である。
FIG. 1 is a perspective view of a workpiece used in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、Al_2O_31〜40重量%と、 焼結助剤0.05〜8重量%と、 ZrO_2及び/又はHfO_23〜35重量%と、 下記割合の(a)及び(b)成分からなるTiC成分1
7〜95.95重量%と、 からなる配合物を下記(a)成分の金属が金属相として
存在しなくなるまで、非酸化性雰囲気下で焼結すること
を特徴とする耐熱・耐摩耗性セラミック材料の製造法。 (a)元素の周期率表で4a、5a及び6a族から選ば
れた1種又は2種以上からなる金属4〜30重量% (b)TiC70〜96重量% 2、焼結助剤が、MgO、CaO、SiO_2、NiO
及び希土類酸化物から選ばれた1種又は2種以上である
特許請求の範囲第1項記載の耐熱・耐摩耗性セラミック
材料の製造法。 3、Al_2O_31〜40重量%と、 焼結助剤0.05〜8重量%と、 ZrO_2及び/又はHfO_23〜35重量%と、 下記割合の(a)、(b)及び(c)成分からなるTi
C成分17〜95.95重量%と、からなる配合物を下
記(a)成分の金属が金属相として存在しなくなるまで
、非酸化性雰囲気下で焼結することを特徴とする耐熱・
耐摩耗性セラミック材料の製造法。 (a)元素の周期率表で4a、5a及び6a族から選ば
れた1種又は2種以上からなる金属4〜30重量% (b)TiC30〜91重量% (c)Zr、Hf及び元素の周期率表で5a、6a族か
ら選ばれた1種又は2種以上の炭化物5〜40重量%。 4、焼結助剤が、MgO、CaO、SiO_2、NiO
及び希土類酸化物から選ばれた1種又は2種以上である
特許請求の範囲第3項記載の耐熱・耐摩耗性セラミック
材料の製造法。
[Claims] 1. 31 to 40% by weight of Al_2O_, 0.05 to 8% by weight of sintering aid, 23 to 35% by weight of ZrO_2 and/or HfO, and components (a) and (b) in the following proportions. TiC component 1 consisting of
A heat-resistant and wear-resistant ceramic characterized by sintering a mixture consisting of 7 to 95.95% by weight in a non-oxidizing atmosphere until the metal of component (a) below no longer exists as a metal phase. Method of manufacturing materials. (a) 4 to 30% by weight of a metal consisting of one or more selected from groups 4a, 5a and 6a of the periodic table of elements (b) 70 to 96% by weight of TiC 2. The sintering aid is MgO , CaO, SiO_2, NiO
The method for producing a heat-resistant and wear-resistant ceramic material according to claim 1, wherein the ceramic material is one or more selected from rare earth oxides and rare earth oxides. 3. Consists of 31 to 40% by weight of Al_2O_, 0.05 to 8% by weight of sintering aid, 23 to 35% by weight of ZrO_2 and/or HfO, and components (a), (b), and (c) in the following proportions. Ti
17 to 95.95% by weight of component C is sintered in a non-oxidizing atmosphere until the metal of component (a) no longer exists as a metal phase.
Method of manufacturing wear-resistant ceramic materials. (a) 4 to 30% by weight of a metal consisting of one or more selected from groups 4a, 5a and 6a in the periodic table of elements (b) 30 to 91% by weight of TiC (c) Zr, Hf and elements 5 to 40% by weight of one or more carbides selected from Groups 5a and 6a of the periodic table. 4. Sintering aids include MgO, CaO, SiO_2, NiO
The method for producing a heat-resistant and wear-resistant ceramic material according to claim 3, wherein the ceramic material is one or more selected from rare earth oxides and rare earth oxides.
JP60173519A 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material Granted JPS6236065A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60173519A JPS6236065A (en) 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material
US07/639,774 US5196385A (en) 1985-08-06 1991-01-14 Process for the preparation of a heat-resistant and wear resistant ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173519A JPS6236065A (en) 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material

Publications (2)

Publication Number Publication Date
JPS6236065A true JPS6236065A (en) 1987-02-17
JPH0248510B2 JPH0248510B2 (en) 1990-10-25

Family

ID=15962028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60173519A Granted JPS6236065A (en) 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material

Country Status (1)

Country Link
JP (1) JPS6236065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483570A (en) * 1987-09-24 1989-03-29 Onoda Cement Co Ltd Titanium carbide sintered form
US6248681B1 (en) 1997-12-25 2001-06-19 Ngk Spark Plug Co., Ltd. Ceramic cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483570A (en) * 1987-09-24 1989-03-29 Onoda Cement Co Ltd Titanium carbide sintered form
US6248681B1 (en) 1997-12-25 2001-06-19 Ngk Spark Plug Co., Ltd. Ceramic cutting tool

Also Published As

Publication number Publication date
JPH0248510B2 (en) 1990-10-25

Similar Documents

Publication Publication Date Title
US4828584A (en) Dense, fine-grained tungsten carbide ceramics and a method for making the same
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
US5023214A (en) Silicon nitride ceramics containing a metal silicide phase
EP0170889B1 (en) Zrb2 composite sintered material
JPS6126564A (en) Manufacture of heat resistant abrasion resistant ceramic material
JPS63225579A (en) Ceramic tool material
JPS6236065A (en) Manufacture of heat-resistant antiabrasive ceramic material
US5196385A (en) Process for the preparation of a heat-resistant and wear resistant ceramic material
JP3266200B2 (en) Silicon nitride based sintered body
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JPS5833187B2 (en) Manufacturing method of ceramic materials for tools
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JP2001048653A (en) Titanium boride sintered body obtained by adding silicon nitride as sintering aid and its production
JPS63282158A (en) Sintered ceramics having excellent oxidation resistance
JPH0585830A (en) Sintered zirconium boride and its production
WO1988000578A1 (en) Method of forming a ceramic product
JPS63210064A (en) Composite sintered body
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH0393668A (en) Zirconia-based cutting tool and production thereof
JPS6153155A (en) Manufacture of high tenacity ceramic
JPH02307862A (en) Production of high-hardness al2o3-base composite
JPH11139877A (en) Heat insulating silicon nitride-base sintered compact and its production
JPS6050745B2 (en) Method for producing aluminum oxide-based ceramic with high toughness and hardness
JPH02243559A (en) Al2o3-b4c-based high-density calcined compact and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees