JPH0248510B2 - - Google Patents

Info

Publication number
JPH0248510B2
JPH0248510B2 JP60173519A JP17351985A JPH0248510B2 JP H0248510 B2 JPH0248510 B2 JP H0248510B2 JP 60173519 A JP60173519 A JP 60173519A JP 17351985 A JP17351985 A JP 17351985A JP H0248510 B2 JPH0248510 B2 JP H0248510B2
Authority
JP
Japan
Prior art keywords
weight
component
tic
ceramic material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60173519A
Other languages
Japanese (ja)
Other versions
JPS6236065A (en
Inventor
Junichiro Suzuki
Minoru Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60173519A priority Critical patent/JPS6236065A/en
Publication of JPS6236065A publication Critical patent/JPS6236065A/en
Publication of JPH0248510B2 publication Critical patent/JPH0248510B2/ja
Priority to US07/639,774 priority patent/US5196385A/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐熱性及び耐摩耗性に優れたセラミ
ツク材料の製造法に関するものであり、特にダク
タイル鋳鉄等の切削工具として又、電気伝導性が
あるセラミツクとしての応用例えばセラミツクヒ
ータや耐摩耗・耐食性を必要とする電極材料等の
材料としても有用であるセラミツク材料の製造法
に関するものである。 〔従来の技術〕 従来よりTiCは、融点、硬度が高く、又熱膨張
が小さく熱伝導性も高温で低下しないために優れ
た耐スポーリング性を有する高温材料として知ら
れている。しかし、TiCは難焼結材料のためCo、
Ni等の金属の添加等によりサーメツトとしての
み緻密な焼結体を得ていた。 〔発明が解決しようとする問題点〕 しかし上記サーメツトは複合体であるために金
属相の挙動に支配されTiC自体の前記特性が特に
高温特性が十分に活かされていない。 例えば、ダクタイル鋳鉄の切削において前述の
サーメツトを用いたサーメツトチツプは仕上切削
に用いられるが、仕上切削といえども切削速度
300m/minを超えるような高速切削では摩耗が
早く、クレータ摩耗も大きく、更にチツピングも
生じやすい。逆に切削速度が150〜200m/min以
下では超硬系等のチツプほどではないにしても、
溶着が起り仕上面が粗くなる。 〔問題点を解決するための手段〕 本発明は上記問題を解決するためになされたも
のであり、TiCの特性を活かし、かつ緻密なセラ
ミツク材料の製造方法を提供することを目的とす
る。 第1の発明は、Al2O31〜40重量%と、 焼結助剤0.05〜8重量%と、 ZrO2及び/又はHfO23〜35重量%と、下記割
合の(a)及び(b)成分からなるTiC成分17〜95.95重
量%と、 からなる配合物を下記(a)成分の金属が金属相とし
て存在しなくなるまで、非酸化性雰囲気下で焼結
して耐熱・耐摩耗性セラミツク材料を製造するこ
とを要旨とする。 (a) 元素の周期率表で4a、5a及び6a族から選ば
れた1種又は2種以上からなる金属4〜30重量
% (b) TiC70〜96重量% 第2の発明は第1の発明に加えて配合物中の
TiC成分の5〜40重量%をZr、Hf及び元素の周
期率表で5a、6a族から選ばれた1種又は2種以
上の炭化物からなる(c)成分としたことを要旨とす
る。 第1発明及び第2発明の(a)成分、即ち元素の周
期率表で4a、5a及び6a族の金属とは、Ti、Zr、
Hf、V、Nb、Ta、Cr、Mo、Wのことである。 第2発明の(c)成分、即ちZr、Hf及び元素の周
期率表で5a、6a族の炭化物とは、Zr、Hf、V、
Nb、Ta、Cr、Mo、Wの炭化物のことであり、
例えばZrC、HfC、VC、NbC、TaC、CrC2
Mo2C、WC等をあげることができる。 本発明において金属が金属相として存在しなく
なるとは、少なくともX線回折装置によつて金属
相が検出されないことを、好ましくは光学顕微鏡
によつて金属相が検出されないことを意味する。 非酸化性雰囲気としては、焼結時に配合物中の
TiC及び(a)成分の金属が酸化しない雰囲気であれ
ば、特に制限はなく、例えばN2、Ar、H2等の雰
囲気をあげることができる。又、上記配合物は常
圧下のみならず、加圧焼結法や熱間静水圧加圧法
で焼結することができ、その焼結温度は通常用い
られる範囲でよいが、前述の如く、配合物中の金
属相が存在しなくなるまで焼結する必要がある。 〔作用〕 第1の発明の作用について説明する。 Al2O3は耐酸化性に優れ生成自由エネルギーが
低い化学的に安定な物質であり、これをTiC成分
中に分散させることによりセラミツク材料全体と
しての耐酸化性、化学安定性を向上さすことがで
きる。このことによりTiCの優れた性質に、さら
に耐酸化性及び化学的安定性が付加される。 本発明においてAl2O3は1〜40重量%用いられ
るが、Al2O3の量が1重量%未満では上記の効果
は十分にあらわれず、40重量%より多くなると
TiC自体の特性がうすれてしまう。 本発明において焼結助剤をAl2O3と併用するの
は、Al2O3の上記有効作用に加えて、Al2O3と焼
結助剤とによるAl2O3化合物がセラミツク材料の
焼結を助成し、焼結性が向上するためである。本
発明において焼結助剤とは、MgO、CaO、SiO2
NiOや、Y2O3、Dy2O3、Er2O3、Ho2O3等の希土
類酸化物等の通常Al2O3系、Al2O3−TiC系、
Al2O3−ZrO2系などのAl2O3主体セラミツクの焼
結に用いられるものを指す。 焼結助剤は、本発明において、0.05重量%〜8
重量%用いられるが、0.05重量%未満では、上記
の効果は十分にあらわれず、逆に8重量%より多
いと多量の上記Al2O3化合物がセラミツク材料の
高温特性を低下させる。 ZrO2及び/又はHfO2は、通常セラミツク材料
中に正方晶の形で分散している。セラミツク材料
に大きな外力が加わるとこれらは正方晶から単斜
晶への相転移を起し、この相変化によつて外力を
吸収することによりセラミツク材料を強化する。
この作用は、無拡散格子変態として知られている
ものと同一である。 ZrO2及び/又はHfO2は、本発明において、3
〜35重量%用いられるが、3重量%未満であると
上記の効果が十分にあらわれず、逆に35重量%を
超えると焼結体の耐摩耗性が低下する。 次にTiC中に前述の(a)成分の金属が含まれる
が、この(a)成分を焼結過程でTiC中に固溶させ、
金属相としてセラミツク材料に存在させないこと
が必要である。このためにTiCは非化学量論組成
となり、結晶構造を不完全、不安定とさせること
ができる。そのために固相反応等の焼結反応が容
易となり、その結果として本発明によるセラミツ
ク材料の焼結性を向上させることができたと考え
られる。又、この現象は、Al2O3粒とTiC粒ある
いはTiC粒同士の界面が強化される事をも意味す
る。さらに、まだ十分解明していないが、TiC自
体の高温強度に関しても結合形態が本来の共有結
合に金属結合の性質を帯びることにより、強度靭
性面が向上すると思われる。 本発明において上記の特性を付与するため(a)成
分はTiC成分の4〜30重量%用いられるが、(a)成
分の量がTiC成分の4重量%未満の場合は上記の
効果は不十分であり、(a)成分の量がTiC成分の30
重量%を超えると(a)成分が金属相として残留する
可能性があり、切削性能についてみると耐摩耗性
が低下する。 第2発明の作用について説明する。 第2発明は、第1発明の構成に加えTiC成分中
に前述の(c)成分の炭化物を含む。この(c)成分は
TiC中に固溶するが、TiCと(c)成分は含まれる原
子の大きさが異なるためにTiCの結晶格子が歪み
を有する。このような格子歪みを持つた結晶の格
子面は同じ大きさの原子が並んでいる平担な格子
面よりも転位が動くのにより多くのエネルギーを
必要とする。即ちセラミツク材料を破壊するのに
より多くのエネルギーが必要となるのであり、上
記作用によつてセラミツク材料の強度がより向上
する。 第2の発明において上記特性を付与するため(c)
成分はTiCの5〜40重量%使用するが、5重量%
未満であると上記特性は表われず、第1の発明と
同一となつてしまう。逆に40重量%を超えると、
TiC自体の優れた特性が劣化してしまう。 〔発明の効果〕 本発明のセラミツク材料の製造方法を用いるこ
とによつて、TiCの特性をより活かしかつ緻密な
耐摩耗性、耐熱性を有するセラミツク材料を製造
することができる。 第1発明のセラミツク材料の製造方法により製
造されたセラミツク材料は、前述のダクタイル鋳
鉄等の鋳鉄、鋼、高ニツケル、アルミニウム、チ
タン等や、非金属の切削工具や、耐摩耗性、耐食
性、耐熱性を必要とする機械部品に有用である。
又、電気伝導性があるので、電気伝導性があるセ
ラミツクとしての応用例えばセラミツクヒータ
や、耐摩耗、耐食性を必要とする電極材料等の材
料としても有用である。 第2発明のセラミツク材料の製造方法により製
造されたセラミツク材料は、第1発明により製造
されたセラミツク材料の効果に加えて、Zr、Hf、
5a、6a族炭化物を添加する事により、靭性、硬
度、耐熱性、耐摩耗性等に優れた性質を付加する
ことができる。しかし、これら全ての性質が第1
発明によるセラミツク材料に比べて向上するので
はなく、ZrC、HfCあるいはVCを添加すると硬
度、耐摩耗性が、TaCあるいはNbCを添加する
と耐熱性が、WC、Mo2C、CrC2を添加すると靭
性が各々第1発明のセラミツク材料より向上す
る。従つて用途等に応じてZr、Hf、5a,6a
族炭化物を選択して添加すると第1発明によるセ
ラミツク材料の優れた性質により優れた性質を加
えることができ、各種材料としてより有用なセラ
ミツク材料を得ることができる。 〔実施例〕 本発明の実施例について説明する。 配合物を第1発明の実施例として第1表の試料
No.1−a〜1−kに示す割合に、又第2発明の実
施例として試料No.2−a〜2−kに示す割合に調
合し、ステンレスボールミル中でアセトンと共に
30時間湿式粉砕した。その後アセトンを乾燥機で
揮散させ乳鉢で60メツシユを全量通過するまで微
粉砕して素地粉末を調製した。第1表中のTiC成
分中の(a),(b)あるいは(c)成分の量は、TiC成分を
100とした場合の重量%である。尚、α−Al2O3
としては粒径1μm以下が70%のものを、焼結助剤
として99.5%以上の純度のものを、ZrO2は平均粒
径0.6μmのものを、HfO2は平均粒径1.5μmのもの
を、前述の(a)成分は325メツシユ通過のものを、
(b)成分であるTiCとしては平均粒径1.1μm全炭素
量19.4%のTiCを、第2発明の実施例で使用する
前述の(c)成分は325メツシユ通過のものを各々使
用した。 この素地粉末を第1表中に示す焼結温度、焼結
方法により焼結した。この実施例で用いた焼結方
法は、 1 圧力200Kg/ml、加圧焼成時間15分で加圧焼結
法により黒鉛型内において焼結。(表中では
H・Pと記した。) 2 減圧アルゴン雰囲気下で1時間の焼結。(表
中では普通焼結と記した。) 3 減圧アルゴン雰囲気下で1時間の1次焼結を
行ない、その後1500℃、1500気圧保持時間の条
件で熱間静水圧加圧法で焼結。(表中ではHIP
と記した。) であつた。 このようにして得られた焼結体をダイヤモンド
砥石によつてSNGN432TN、表面3S以下(JISに
よる)に研摩し、対理論密度、硬度を測定し、第
2表の切削試験条件により切削試験を行つた。
尚、被削材は第1図に示すごとく、長さ400mm、
直径150mmの棒状であり、長手方向に幅5mmの溝
が6本等間隔に設けられている。さらにこのよう
に得られた焼結体はX線回折装置及び光学顕微鏡
によつて(a)成分の状態を調べられた。 さらに、配合物を第1発明の比較例として第1
表の試料No.1′−a〜1′−iに示す割合に、又、第
2発明の比較例として第1表の試料No.2′−a〜
2′−fに示す割合に各々配合し、実施例と同様
に、焼結、成形して対理論密度、硬度を測定し切
削試験を行なつた。又実施例と同様にX線回折装
置等により(a)成分の状態を調べた。ただしTiCサ
ーメツトは通常市販されるものを使用した。
[Industrial Field of Application] The present invention relates to a method for producing ceramic materials with excellent heat resistance and wear resistance, and is particularly applicable to cutting tools such as ductile cast iron, and as electrically conductive ceramics, for example. The present invention relates to a method for producing ceramic materials which are also useful as materials for ceramic heaters and electrode materials that require wear and corrosion resistance. [Prior Art] TiC has been known as a high-temperature material that has excellent spalling resistance because it has a high melting point and hardness, and also has low thermal expansion and does not reduce thermal conductivity at high temperatures. However, since TiC is a difficult-to-sinter material, Co,
By adding metals such as Ni, a dense sintered body was obtained only as a cermet. [Problems to be Solved by the Invention] However, since the above-mentioned cermet is a composite, it is dominated by the behavior of the metal phase, and the properties of TiC itself, particularly the high-temperature properties, are not fully utilized. For example, when cutting ductile cast iron, the cermet tip using the aforementioned cermet is used for finishing cutting, but even for finishing cutting, the cutting speed is low.
High-speed cutting exceeding 300 m/min causes rapid wear, large crater wear, and also tends to cause chipping. On the other hand, if the cutting speed is below 150 to 200 m/min, the cutting speed will be lower than that of carbide chips.
Welding occurs and the finished surface becomes rough. [Means for Solving the Problems] The present invention was made to solve the above problems, and aims to provide a method for producing a dense ceramic material that takes advantage of the characteristics of TiC. The first invention comprises 1 to 40% by weight of Al 2 O 3 , 0.05 to 8% by weight of a sintering aid, 3 to 35% by weight of ZrO 2 and/or HfO 2 , and the following proportions of (a) and ( A mixture consisting of 17 to 95.95% by weight of the TiC component consisting of component (b) and the following component (a) is sintered in a non-oxidizing atmosphere until the metal of component (a) no longer exists as a metal phase to achieve heat and wear resistance. Its purpose is to manufacture ceramic materials. (a) 4 to 30% by weight of a metal consisting of one or more selected from groups 4a, 5a and 6a of the periodic table of elements (b) 70 to 96% by weight of TiC The second invention is the first invention in addition to
The gist is that 5 to 40% by weight of the TiC component is made up of component (c) consisting of Zr, Hf, and one or more carbides selected from groups 5a and 6a of the periodic table of elements. Component (a) of the first and second inventions, that is, metals of groups 4a, 5a, and 6a in the periodic table of elements, are Ti, Zr,
These are Hf, V, Nb, Ta, Cr, Mo, and W. Component (c) of the second invention, that is, Zr, Hf, and carbides of groups 5a and 6a in the periodic table of elements are Zr, Hf, V,
It is a carbide of Nb, Ta, Cr, Mo, and W.
For example, ZrC, HfC, VC, NbC, TaC, CrC 2 ,
Examples include Mo 2 C, WC, etc. In the present invention, the absence of metal as a metal phase means that no metal phase is detected at least by an X-ray diffraction device, preferably by an optical microscope. A non-oxidizing atmosphere is the one in the compound during sintering.
There is no particular restriction as long as the atmosphere does not oxidize TiC and the metal of component (a), and examples thereof include N 2 , Ar, H 2 and the like. Furthermore, the above-mentioned compound can be sintered not only under normal pressure but also by pressure sintering method or hot isostatic pressing method, and the sintering temperature may be within the range normally used. It is necessary to sinter until the metal phase in the material is no longer present. [Operation] The operation of the first invention will be explained. Al 2 O 3 is a chemically stable substance with excellent oxidation resistance and low free energy of formation, and by dispersing it in the TiC component, the oxidation resistance and chemical stability of the ceramic material as a whole can be improved. Can be done. This adds further oxidation resistance and chemical stability to the excellent properties of TiC. In the present invention, Al 2 O 3 is used in an amount of 1 to 40% by weight, but if the amount of Al 2 O 3 is less than 1% by weight, the above effects will not be sufficiently exhibited, and if the amount is more than 40% by weight,
The characteristics of TiC itself will fade. The reason why the sintering aid is used together with Al 2 O 3 in the present invention is that in addition to the above-mentioned effective effects of Al 2 O 3 , the Al 2 O 3 compound formed by Al 2 O 3 and the sintering aid improves the quality of the ceramic material. This is because it assists sintering and improves sinterability. In the present invention, sintering aids include MgO, CaO, SiO 2 ,
NiO, rare earth oxides such as Y 2 O 3 , Dy 2 O 3 , Er 2 O 3 , Ho 2 O 3 etc., usually Al 2 O 3 series, Al 2 O 3 -TiC series,
Refers to those used for sintering Al 2 O 3 -based ceramics such as Al 2 O 3 -ZrO 2 series. In the present invention, the sintering aid is 0.05% by weight to 8% by weight.
However, if it is less than 0.05% by weight, the above effect will not be sufficiently exhibited, and if it is more than 8% by weight, a large amount of the Al 2 O 3 compound will deteriorate the high-temperature properties of the ceramic material. ZrO 2 and/or HfO 2 are usually dispersed in the ceramic material in tetragonal form. When a large external force is applied to a ceramic material, it undergoes a phase transition from tetragonal to monoclinic, and this phase change strengthens the ceramic material by absorbing the external force.
This effect is identical to what is known as diffusionless lattice transformation. In the present invention, ZrO 2 and/or HfO 2
It is used in an amount of up to 35% by weight, but if it is less than 3% by weight, the above effects will not be sufficiently exhibited, and if it exceeds 35% by weight, the wear resistance of the sintered body will decrease. Next, the metal component (a) mentioned above is contained in TiC, and this component (a) is dissolved in TiC during the sintering process.
It is necessary that it not be present in the ceramic material as a metallic phase. For this reason, TiC has a non-stoichiometric composition, making the crystal structure incomplete and unstable. It is believed that this facilitates sintering reactions such as solid phase reactions, and as a result, the sinterability of the ceramic material of the present invention was improved. This phenomenon also means that the interface between the Al 2 O 3 grains and the TiC grains or between the TiC grains is strengthened. Furthermore, although it is not fully understood yet, it is thought that the high-temperature strength of TiC itself is improved in terms of strength and toughness by changing the bond form from the original covalent bond to a metallic bond. In the present invention, component (a) is used in an amount of 4 to 30% by weight of the TiC component in order to impart the above properties, but if the amount of component (a) is less than 4% by weight of the TiC component, the above effects are insufficient. , and the amount of component (a) is 30% of the TiC component.
If the amount exceeds % by weight, component (a) may remain as a metal phase, and wear resistance decreases in terms of cutting performance. The operation of the second invention will be explained. The second invention includes, in addition to the structure of the first invention, a carbide of the above-mentioned component (c) in the TiC component. This (c) component is
Although it forms a solid solution in TiC, the crystal lattice of TiC is distorted because the atoms contained in TiC and component (c) have different sizes. A crystal lattice plane with such lattice distortion requires more energy for dislocations to move than a flat lattice plane where atoms of the same size are lined up. That is, more energy is required to break the ceramic material, and the strength of the ceramic material is further improved by the above action. To provide the above characteristics in the second invention (c)
The ingredients used are 5 to 40% by weight of TiC, but 5% by weight
If it is less than that, the above characteristics will not be exhibited and the result will be the same as the first invention. On the other hand, if it exceeds 40% by weight,
The excellent properties of TiC itself will deteriorate. [Effects of the Invention] By using the method for producing a ceramic material of the present invention, it is possible to produce a ceramic material that makes full use of the characteristics of TiC and has precise wear resistance and heat resistance. Ceramic materials manufactured by the method for manufacturing ceramic materials of the first invention can be used for cutting tools such as cast iron such as the aforementioned ductile cast iron, steel, high nickel, aluminum, titanium, etc., nonmetallic cutting tools, wear resistance, corrosion resistance, and heat resistance. Useful for mechanical parts that require high performance.
Furthermore, since it is electrically conductive, it is useful as an electrically conductive ceramic, such as in ceramic heaters, and as an electrode material that requires wear resistance and corrosion resistance. In addition to the effects of the ceramic material manufactured according to the first invention, the ceramic material manufactured by the method for manufacturing ceramic material of the second invention has Zr, Hf,
By adding Group 5a and 6a carbides, excellent properties such as toughness, hardness, heat resistance, and wear resistance can be added. However, all these properties are the first
The addition of ZrC, HfC or VC improves hardness and wear resistance, the addition of TaC or NbC improves heat resistance, and the addition of WC, Mo 2 C, CrC 2 improves toughness. are improved over the ceramic material of the first invention. Therefore, Zr, Hf, 5a, 6a depending on the use etc.
By selectively adding group carbides, it is possible to add superior properties to the excellent properties of the ceramic material according to the first invention, and it is possible to obtain ceramic materials that are more useful as various materials. [Example] An example of the present invention will be described. Samples in Table 1 as Examples of the First Invention
The mixture was prepared in the proportions shown in Nos. 1-a to 1-k, and in the proportions shown in Samples Nos. 2-a to 2-k as an example of the second invention, and mixed with acetone in a stainless steel ball mill.
Wet milling was carried out for 30 hours. Thereafter, acetone was volatilized in a dryer, and the material was pulverized in a mortar until the entire amount passed through 60 meshes to prepare a base powder. The amount of component (a), (b) or (c) in the TiC component in Table 1 is the TiC component.
It is weight % when it is set as 100. In addition, α−Al 2 O 3
As a sintering aid, use one with a purity of 99.5% or more; for ZrO 2 use one with an average particle size of 0.6 μm; for HfO 2 use one with an average particle size of 1.5 μm. , the component (a) mentioned above passes through 325 meshes,
The TiC component (b) had an average particle size of 1.1 μm and a total carbon content of 19.4%, and the component (c) used in the embodiment of the second invention had passed 325 meshes. This base powder was sintered according to the sintering temperature and sintering method shown in Table 1. The sintering method used in this example was as follows: 1. Sintered in a graphite mold using a pressure sintering method at a pressure of 200 Kg/ml and a pressure firing time of 15 minutes. (Indicated as H・P in the table.) 2 Sintering for 1 hour in a reduced pressure argon atmosphere. (In the table, it is described as normal sintering.) 3. Primary sintering was performed for 1 hour in a reduced pressure argon atmosphere, and then sintered by hot isostatic pressing under conditions of 1500°C and 1500 atmospheric pressure holding time. (In the table, HIP
It was written. ) It was. The sintered body thus obtained was polished to SNGN432TN with a diamond grindstone to a surface of 3S or less (according to JIS), the theoretical density and hardness were measured, and a cutting test was conducted according to the cutting test conditions shown in Table 2. Ivy.
The work material is 400mm long, as shown in Figure 1.
It has a rod shape with a diameter of 150 mm, and six grooves each having a width of 5 mm are provided at equal intervals in the longitudinal direction. Furthermore, the state of component (a) in the sintered body thus obtained was examined using an X-ray diffraction device and an optical microscope. Furthermore, the formulation was used as a comparative example of the first invention.
In the proportions shown in Sample Nos. 1'-a to 1'-i in the table, and as comparative examples of the second invention, Samples No. 2'-a to 1 in Table 1.
Each material was blended in the proportion shown in 2'-f, sintered and molded in the same manner as in the example, and the theoretical density and hardness were measured and a cutting test was conducted. In addition, the state of component (a) was examined using an X-ray diffraction device or the like in the same manner as in the Examples. However, a commercially available TiC cermet was used.

【表】【table】

【表】【table】

【表】 第1表の試料No.1−a〜1−kと試料No.1′−a
〜1′−iとの比較及び試料No.2−a〜2−kと試
料No.2′−a〜2′−fとの比較によりTiCの特性を
活かし、かつ緻密なセラミツク材料を製造するに
は、Al2O3と、焼結助剤と、ZrO2及び/又は
HfO2と、TiC成分中の(a),(b)成分、第2発明の
場合は(a),(b),(c)成分量を所定量にすることが必
要であり、かつ上記(a)成分が金属相として存在し
なくなるように焼結することが必要であることが
判つた。 又、本発明のセラミツク材料の製造法により製
造されたセラミツク材料の電導度を測定した所、
組成により異なるが、約50〜100×10-6Ω・cmで
あつた。これは従来の実用セラミツク材料の中で
も電導性に優れるものの一つといつてよい。 さらに、第2発明の効果について測定した所、
試料No.1−hと試料No.2−jの如く、第1発明に
(c)成分としてWC、MO2CあるいはCrC2を添加し
て製造したセラミツク材料は第1発明によるセラ
ミツク材料に比べて靭性に優れるため切削試験の
衝撃回数が増加することが確認された。又、第1
発明に(c)成分としてZrC、HfCあるいはVCを添
加すると第1発明によるセラミツク材料に比べて
硬度が高くなることが確認された。さらに、第1
発明に(c)成分としてTaC、NbCを添加すると第
1発明によるセラミツク材料に比べて耐熱性、即
ち高温における強度の低下が少ないことが確認さ
れた。 尚、第1表に記載しなかつた本発明の組成の配
合物についても同様に焼結体を作成し、試験した
所、同様に欠損までの衝撃回数が従来のものに比
べて大幅に増加していることが確認された。
[Table] Sample No. 1-a to 1-k and sample No. 1'-a in Table 1
By comparing with ~1'-i and comparing Samples No. 2-a to 2-k and Samples No. 2'-a to 2'-f, we made use of the properties of TiC and produced a dense ceramic material. contains Al 2 O 3 , sintering aid, ZrO 2 and/or
It is necessary to keep the amounts of HfO 2 and the components (a) and (b) in the TiC component, and in the case of the second invention, the components (a), (b), and (c), to predetermined amounts, and the above ( It has been found that it is necessary to sinter so that component a) no longer exists as a metallic phase. In addition, when measuring the electrical conductivity of the ceramic material manufactured by the method of manufacturing the ceramic material of the present invention,
Although it varied depending on the composition, it was approximately 50 to 100×10 −6 Ω·cm. This can be said to have one of the best electrical conductivity among conventional ceramic materials for practical use. Furthermore, when the effect of the second invention was measured,
In the first invention, as in sample No. 1-h and sample No. 2-j,
It was confirmed that the ceramic material produced by adding WC, MO 2 C or CrC 2 as the component (c) has superior toughness compared to the ceramic material according to the first invention, so that the number of impacts in the cutting test increases. Also, the first
It has been confirmed that when ZrC, HfC or VC is added as component (c) to the invention, the hardness becomes higher than that of the ceramic material according to the first invention. Furthermore, the first
It has been confirmed that when TaC and NbC are added as component (c) to the invention, there is less decrease in heat resistance, that is, strength at high temperatures, compared to the ceramic material according to the first invention. Incidentally, when sintered bodies were similarly prepared and tested for compounds having the compositions of the present invention that are not listed in Table 1, the number of impacts until breakage was similarly significantly increased compared to the conventional one. It was confirmed that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に用いられる被削材
の斜視図である。
FIG. 1 is a perspective view of a workpiece used in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 Al2O31〜40重量%と、 焼結助剤0.05〜8重量%と、 ZrO2及び/又はHfO23〜35重量%と、 下記割合の(a)及び(b)成分からなるTiC成分17〜
95.95重量%と、 からなる配合物を下記(a)成分の金属が金属相とし
て存在しなくなるまで、非酸化性雰囲気下で焼結
することを特徴とする耐熱・耐摩耗性セラミツク
材料の製造法。 (a) 元素の周期率表で4a、5a及び6a族から選ば
れた1種又は2種以上からなる金属4〜30重量
% (b) TiC70〜96重量% 2 焼結助剤が、MgO、CaO、SiO2、NiO及び
希土類酸化物から選ばれた1種又は2種以上であ
る特許請求の範囲第1項記載の耐熱・耐摩耗性セ
ラミツク材料の製造法。 3 Al2O31〜40重量%と、 焼結助剤0.05〜8重量%と、 ZrO2及び/又はHfO23〜35重量%と、 下記割合の(a)、(b)及び(c)成分からなるTiC成分
17〜95.95重量%と、 からなる配合物を下記(a)成分の金属が金属相とし
て存在しなくなるまで、非酸化性雰囲気下で焼結
することを特徴とする耐熱・耐摩耗性セラミツク
材料の製造法。 (a) 元素の周期率表で4a、5a及び6a族から選ば
れた1種又は2種以上からなる金属4〜30重量
% (b) TiC30〜91重量% (c) Zr、Hf及び元素の周期率表で5a、6a族から
選ばれた1種又は2種以上の炭化物5〜40重量
%。 4 焼結助剤が、MgO、CaO、SiO2、NiO及び
希土類酸化物から選ばれた1種又は2種以上であ
る特許請求の範囲第3項記載の耐熱・耐摩耗性セ
ラミツク材料の製造法。
[Scope of Claims] 1 1 to 40% by weight of Al 2 O 3 , 0.05 to 8% by weight of a sintering aid, 3 to 35% by weight of ZrO 2 and/or HfO 2 , and (a) in the following proportions: (b) TiC component 17 consisting of component
95.95% by weight, and sintering in a non-oxidizing atmosphere until the metal of component (a) no longer exists as a metal phase. . (a) 4 to 30% by weight of a metal consisting of one or more selected from groups 4a, 5a and 6a of the periodic table of elements (b) 70 to 96% by weight of TiC 2 The sintering aid is MgO, The method for producing a heat-resistant and wear-resistant ceramic material according to claim 1, which is one or more selected from CaO, SiO 2 , NiO, and rare earth oxides. 3 1 to 40% by weight of Al 2 O 3 , 0.05 to 8% by weight of sintering aid, 3 to 35% by weight of ZrO 2 and/or HfO 2 , and the following proportions of (a), (b) and (c) ) component consisting of TiC component
A heat-resistant and wear-resistant ceramic material characterized by sintering a mixture consisting of 17 to 95.95% by weight in a non-oxidizing atmosphere until the metal of component (a) below no longer exists as a metal phase. Manufacturing method. (a) 4-30% by weight of one or more metals selected from groups 4a, 5a and 6a of the periodic table of elements (b) 30-91% by weight of TiC (c) Zr, Hf and elements 5 to 40% by weight of one or more carbides selected from Groups 5a and 6a of the periodic table. 4. The method for producing a heat-resistant and wear-resistant ceramic material according to claim 3, wherein the sintering aid is one or more selected from MgO, CaO, SiO 2 , NiO, and rare earth oxides. .
JP60173519A 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material Granted JPS6236065A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60173519A JPS6236065A (en) 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material
US07/639,774 US5196385A (en) 1985-08-06 1991-01-14 Process for the preparation of a heat-resistant and wear resistant ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173519A JPS6236065A (en) 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material

Publications (2)

Publication Number Publication Date
JPS6236065A JPS6236065A (en) 1987-02-17
JPH0248510B2 true JPH0248510B2 (en) 1990-10-25

Family

ID=15962028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60173519A Granted JPS6236065A (en) 1985-08-06 1985-08-06 Manufacture of heat-resistant antiabrasive ceramic material

Country Status (1)

Country Link
JP (1) JPS6236065A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08729B2 (en) * 1987-09-24 1996-01-10 秩父小野田株式会社 Titanium carbide sintered body
JPH11189473A (en) 1997-12-25 1999-07-13 Ngk Spark Plug Co Ltd Ceramic tool

Also Published As

Publication number Publication date
JPS6236065A (en) 1987-02-17

Similar Documents

Publication Publication Date Title
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
EP0170889B1 (en) Zrb2 composite sintered material
JPH0225866B2 (en)
JPS63225579A (en) Ceramic tool material
JPH0248510B2 (en)
US3110589A (en) Molybdenum-titanium-silicon-nitrogen products and process for making same
US5196385A (en) Process for the preparation of a heat-resistant and wear resistant ceramic material
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JPH0978174A (en) Titanium-based carbonitride cermet having high strength
JPS6041020B2 (en) Alumina ceramic with high strength and hardness
JPS5833187B2 (en) Manufacturing method of ceramic materials for tools
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
EP0095129B1 (en) Composite ceramic cutting tool and process for making same
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
KR20010020687A (en) Cutting Tool and Method of Manufacturing the Same
JP7143844B2 (en) Cutting tools
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPH0585830A (en) Sintered zirconium boride and its production
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2794122B2 (en) Fiber reinforced ceramics
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPS6153155A (en) Manufacture of high tenacity ceramic
WO1988000578A1 (en) Method of forming a ceramic product
JP2735702B2 (en) Fiber reinforced ceramic tools
JPS6050745B2 (en) Method for producing aluminum oxide-based ceramic with high toughness and hardness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees