JPS5820904B2 - Thank you for your understanding. - Google Patents

Thank you for your understanding.

Info

Publication number
JPS5820904B2
JPS5820904B2 JP4407475A JP4407475A JPS5820904B2 JP S5820904 B2 JPS5820904 B2 JP S5820904B2 JP 4407475 A JP4407475 A JP 4407475A JP 4407475 A JP4407475 A JP 4407475A JP S5820904 B2 JPS5820904 B2 JP S5820904B2
Authority
JP
Japan
Prior art keywords
chromium oxide
parts
specific gravity
curve
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4407475A
Other languages
Japanese (ja)
Other versions
JPS51119012A (en
Inventor
遠藤茂男
宮原健一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP4407475A priority Critical patent/JPS5820904B2/en
Publication of JPS51119012A publication Critical patent/JPS51119012A/en
Publication of JPS5820904B2 publication Critical patent/JPS5820904B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は緻密質酸化クロム焼結方法、特にガラス耐火物
として用いられる緻密質酸化クロム焼結体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sintering dense chromium oxide, particularly to a method for producing a dense chromium oxide sintered body used as a glass refractory.

従来、酸化クロム成形体を焼結する場合に水素気流中あ
るいは真空中など酸素分圧の低い雰囲気中での焼結によ
る緻密化、あるいはホットプレス法による緻密化は比較
的容易であることが知られている。
Conventionally, when sintering a chromium oxide molded body, it has been known that it is relatively easy to sinter it in an atmosphere with low oxygen partial pressure, such as in a hydrogen stream or vacuum, or to densify it by hot pressing. It is being

すなわち、アメリカセラミック協会誌におけるオウンビ
イ氏およびジャングクイスト氏(J 、 ofAm−C
er−8oc、Vol 、 55 、A9 p 、 4
33〜436 。
Namely, Mr. Ownby and Mr. Jungquist (J, ofAm-C) in the Journal of the Ceramic Society of America.
er-8oc, Vol, 55, A9 p, 4
33-436.

1972)によるとCo/CO2ガスによる低酸素分圧
雰囲気中で1600℃に焼成し、理論密度の99.4%
に達する緻密な焼結体を得ているが、空気中での焼成で
は理論密度の65%程度のものしか得られていない。
(1972), it was fired at 1600°C in a low oxygen partial pressure atmosphere with Co/CO2 gas, and the density was 99.4% of the theoretical density.
However, when fired in air, only about 65% of the theoretical density was obtained.

この状況はガラス耐火物として市販されている酸化クロ
ム煉瓦の物性測定値からもよく判り、次の第1表のよう
である。
This situation is clearly understood from the measured physical properties of chromium oxide bricks, which are commercially available as glass refractories, as shown in Table 1 below.

この第1表の市販の酸化クロム耐火物中には1〜4%の
T i02が添加されておりCr2O3の緻密化のため
にT io 2の添加が効果的であることは一般に知ら
れている。
The commercially available chromium oxide refractories shown in Table 1 contain 1 to 4% Ti02, and it is generally known that the addition of Ti02 is effective for densification of Cr2O3. .

そしてこのような緻密質酸化クロム焼結体はその通気性
の低いことからガラス溶解炉などの煉瓦として雰囲気調
整などに好適で良品の入手が要望されている。
Since such dense chromium oxide sintered bodies have low air permeability, they are suitable for use as bricks in glass melting furnaces and the like to adjust the atmosphere, and there is a demand for good quality products.

しかし、前述のように酸素分圧を低くして酸化クロム成
形体を焼結して作ることは酸素分圧を低くした雰囲気を
作ることが面倒であり、場合によっては充分に期待する
緻密質焼結体を安定して作ることは困難であった。
However, as mentioned above, when sintering a chromium oxide compact with a low oxygen partial pressure, it is troublesome to create an atmosphere with a low oxygen partial pressure, and in some cases, it is difficult to create an atmosphere with a low oxygen partial pressure. It was difficult to form a stable structure.

本発明は、これら従来の緻密質焼結体の製法の欠点に鑑
み、これら欠点の解消された方法につき研究し種々横側
の結果、本発明の緻密質酸化クロム焼結体の製造方法を
見出して提供するものである。
In view of these shortcomings in the conventional methods for producing dense sintered bodies, the present invention has researched methods to eliminate these shortcomings, and as a result of various studies, has discovered the method for producing dense chromium oxide sintered bodies of the present invention. This is what we provide.

本発明の目的は従来のように低酸素分圧雰囲気を使用す
ることなく空気中で焼結し各種形状の煉瓦など緻密質酸
化クロム焼結体を得る方法である。
The object of the present invention is to provide a method for obtaining dense chromium oxide sintered bodies such as bricks of various shapes by sintering in air without using a low oxygen partial pressure atmosphere as in the conventional method.

すなわち、本発明は原料の酸化クロム微粉末100重量
部に対しNb2O5または/およびTa 2 o。
That is, in the present invention, Nb2O5 or/and Ta2O is added to 100 parts by weight of fine chromium oxide powder as a raw material.

を0.5ないし3重量部および少量の結合剤を加え、さ
らに1重量部以下の酸化硼素を添加したのち混合し、水
分を加えて加圧成形し、乾燥ののち、焼成することによ
り、かさ比重4.1以上の緻密質酸化クロム焼結体の製
造方法である。
By adding 0.5 to 3 parts by weight and a small amount of a binder, and further adding up to 1 part by weight of boron oxide, the mixture is mixed, water is added, pressure molded, dried, and then baked. This is a method for producing a dense chromium oxide sintered body having a specific gravity of 4.1 or more.

(以下、部は重量部で示す)。(Hereinafter, parts are expressed as parts by weight).

本発明の方法によれば、既存市販のガラス耐火物用酸化
クロム焼結体と同等もしくはそれ以上のかさ比重を有す
る焼結体が得ることができ、または特殊なアイソスタテ
ィック法またはスリップキャスト法によらないで、通常
のプレス成形法によって空気中で容易に焼結し得るすぐ
れた方法である。
According to the method of the present invention, it is possible to obtain a sintered body having a bulk specific gravity equal to or higher than that of existing commercially available chromium oxide sintered bodies for glass refractories, or by using a special isostatic method or slip casting method. This is an excellent method that allows for easy sintering in air using a normal press molding method without bending.

もちろん本発明の原料組成をスリップキャスト法あるい
はアイソスタティック法により成形しても緻密な焼結体
を得ることができ、この方法も本発明の方法に包含され
る。
Of course, a dense sintered body can be obtained by molding the raw material composition of the present invention by a slip casting method or an isostatic method, and this method is also included in the method of the present invention.

本発明の一例を示すと通常の微粉酸化クロム原料に少量
の粘土などの結合剤を加えて混合し、水分を加えて成形
したのち十分に乾燥し1600℃で焼成する。
In one example of the present invention, a small amount of a binder such as clay is added to and mixed with a normal finely powdered chromium oxide raw material, water is added, and the product is shaped, dried thoroughly, and fired at 1600°C.

市販酸化クロム耐火物中には1.4%(重量%、以下同
様)のTiO2を添加しており、酸化クロム(Cr20
3)の緻密化にT t 02の添加が有効であることは
本発明者らの研究においても認められた。
Commercially available chromium oxide refractories contain 1.4% (wt%) TiO2, and chromium oxide (Cr20
It was also recognized in the research conducted by the present inventors that the addition of T t 02 is effective for densification in 3).

然しなから本発明者らは酸化クロム(Cr203)の1
00部に対しNb2O5または/およびT a205の
0.5ないし3部の添加がTiO2に比しさらに効果が
すぐれていることを見出したものである。
However, the present inventors discovered that 1 of chromium oxide (Cr203)
It has been found that the addition of 0.5 to 3 parts of Nb2O5 or/and Ta205 to 00 parts of TiO2 is more effective than that of TiO2.

本発明者はさらにCr2O3の100部に対しNb2O
5または/およびTa205を0.5ないし3部添加し
たものに、ざらにB2O3を1重量部以下を添加するこ
とにより緻密化は一層促進され最高かさ比重4.62の
焼結体を得ることができた。
The inventor further found that for 100 parts of Cr2O3, Nb2O
By roughly adding 1 part by weight or less of B2O3 to 0.5 to 3 parts of 5 or/and Ta205, densification is further promoted and a sintered body with a maximum bulk specific gravity of 4.62 can be obtained. did it.

このように本発明は従来は酸素分圧のないガスか酸素分
圧の極めて低い特殊の雰囲気下で酸化クロム成形体を焼
結していたのに対し通常の空気圧下で酸化クロム成形体
を焼結して理論微塵に近い4.62のかさ比重を有し、
極めてすぐれた緻密度の酸化クロム焼結体を製造する方
法に成功した。
In this way, the present invention sinters chromium oxide molded bodies under normal air pressure, whereas conventionally chromium oxide molded bodies were sintered in a special atmosphere with no oxygen partial pressure or a special atmosphere with extremely low oxygen partial pressure. As a result, it has a bulk specific gravity of 4.62, which is close to the theoretical fine dust.
We have succeeded in producing a chromium oxide sintered body with extremely high density.

従って安価確実で操作が極めて容易で緻密均一な酸化ク
ロム焼結体の製造が可能となり、これら耐火物工業に寄
与するところ極めて大きい。
Therefore, it becomes possible to manufacture a dense and uniform chromium oxide sintered body that is inexpensive, reliable, extremely easy to operate, and greatly contributes to the refractory industry.

次に実施例とともに本発明をさらに説明する。Next, the present invention will be further explained with reference to Examples.

実施例 1 原料に用いた酸化クロムおよびNb2O5とTa205
を含有するコロンバイト鉱、硼酸などその他第2表に示
した。
Example 1 Chromium oxide, Nb2O5 and Ta205 used as raw materials
Others such as columbite and boric acid containing

これらの原料を十分粉砕したのち第3表の如く配合し、
乾式混合後、少量の水を加えて150kg/cr?tの
圧力でプレス成形した。
After thoroughly grinding these raw materials, blend them as shown in Table 3.
After dry mixing, add a small amount of water to 150kg/cr? Press molding was carried out at a pressure of t.

成形体を乾燥後1600℃にて30分間焼成して得た焼
結体の物性測定値を第4表に示した。
Table 4 shows the measured physical properties of the sintered body obtained by drying the molded body and firing it at 1600° C. for 30 minutes.

第3表、第4表を整理して酸化クロムに対する( Nb
2O5+Ta205 )添加%とB2O3添加量%と焼
結体のかさ比重との関係を示したものが第1図第2図で
第1図はB2030〜0.3%の添加効果を示した。
Tables 3 and 4 are summarized to show the relationship between chromium oxide (Nb
Figures 1 and 2 show the relationship between the addition percentage of 2O5+Ta205), the addition amount of B2O3, and the bulk specific gravity of the sintered body, and Figure 1 shows the effect of addition of B2030 to 0.3%.

a−曲線−(Nb205+Ta205 )添加量1.3
7%b−曲線=(Nb20.+Ta203)添加量2.
05%C−曲線=(Nb205+Ta205 )添加量
0.60%d−線一かさ比重4.1限定線 を示し、またこれら両図で各曲線上の数字は第3表、第
4表の試料番号と対応するものである。
a-curve-(Nb205+Ta205) addition amount 1.3
7% b-curve = (Nb20.+Ta203) addition amount 2.
05% C-curve = (Nb205 + Ta205) Addition amount 0.60% d-line - Bulk specific gravity 4.1 Limiting line The numbers on each curve in both figures are the sample numbers in Tables 3 and 4. This corresponds to

第2図のe−曲線はa−曲線におけるB2O3添加量を
1.0%まで変化せしめたもので、この場合のB2O3
最適添加量を示す曲線である。
The e-curve in Figure 2 shows the amount of B2O3 added in the a-curve changed to 1.0%;
This is a curve showing the optimum addition amount.

これらの結果からNb2O5+Ta205の効果は酸化
クロム100部に対して1.37部を添加した場合に最
大のかさ比重を与え、これより多くてもすくなくてもそ
の効果は低下し、その下限はおよそ0.5部であり、そ
の上限はおよそ3部である。
From these results, the effect of Nb2O5 + Ta205 gives the maximum bulk specific gravity when 1.37 parts are added to 100 parts of chromium oxide, and the effect decreases if the amount is more or less than this, and the lower limit is approximately 0. .5 parts, with an upper limit of approximately 3 parts.

本発明者らの目的とする焼結体のかさ比重はおよそ4.
1以上のもので、すぐれた緻密性を示し、これをd−線
で示した。
The bulk specific gravity of the sintered compact targeted by the present inventors is approximately 4.
1 or higher, it showed excellent compactness, which was shown by the d-line.

これらの場合B2O3は極めて少量の添加でも第1図の
ようにその効果を示し、そのかさ比重の増大は0%を出
発点として急カーブを示している。
In these cases, B2O3 exhibits its effect as shown in FIG. 1 even when added in an extremely small amount, and the increase in bulk specific gravity shows a sharp curve starting from 0%.

この上限は第2図より明らかなように1.0%であり0
.4%付近で最大であるが0%でも比重4.27のもの
が得られる。
As is clear from Figure 2, this upper limit is 1.0%, which is 0.
.. The maximum is around 4%, but even at 0%, a specific gravity of 4.27 can be obtained.

実施例 2 上述の実姉例1に用いた原料を用い、A6の原料配合を
用いて同様にして成形圧200kg/iにて、皿型煉瓦
形状の成形体を作った。
Example 2 Using the raw materials used in the above-mentioned sister example 1, a dish-shaped brick-shaped molded body was produced in the same manner using a raw material composition of A6 at a molding pressure of 200 kg/i.

これを乾燥したのち1600℃まで10℃/分の割合で
昇温し、1600℃で1時間保持したのち炉冷して、得
られた焼結体の特注を第5表に示した。
After drying, the temperature was raised to 1600° C. at a rate of 10° C./min, maintained at 1600° C. for 1 hour, and then cooled in a furnace. Table 5 shows the custom-made sintered bodies obtained.

かさ比重4.58のすぐれた緻密焼結体であった。It was an excellent dense sintered body with a bulk specific gravity of 4.58.

これら実施例はいすえもNb2q、Ta205の原料と
してコロンバイト鉱を用いているが、純Nb205Ta
205を用いることは不純物を含まないため、さらに良
質の酸化クロム焼結体を得られることは勿論である。
These examples use columbite as a raw material for Nb2q and Ta205, but pure Nb205Ta
Since 205 does not contain any impurities, it goes without saying that a chromium oxide sintered body of higher quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は実姉例1の測定値を図示した線図であ
り、Cr205−Nb2O5+Ta205−B2O3の
3成分系の焼結体のかさ比重との関係を示すものである
。 各曲線は酸化クロム100部に対する%で示した。 a−曲線= (Nb20.、 +Ta203)添加量1
.37%b−曲線=(Nb205+Ta203)添加量
2.05%C−曲線=(Nb205+Ta203)添加
量0.60%d−線=かさ比重4.1限定線 e−曲線−a−曲線のB2030〜1.0%添加曲線。
FIGS. 1 and 2 are diagrams illustrating the measured values of Example 1, and show the relationship with the bulk specific gravity of the sintered body of the three-component system of Cr205-Nb2O5+Ta205-B2O3. Each curve is expressed as a percentage relative to 100 parts of chromium oxide. a-curve = (Nb20., +Ta203) addition amount 1
.. 37% b-curve = (Nb205 + Ta203) addition amount 2.05% C-curve = (Nb205 + Ta203) addition amount 0.60% d-line = bulk specific gravity 4.1 limiting line e-curve - B2030 to 1 of the a-curve .0% addition curve.

Claims (1)

【特許請求の範囲】[Claims] 1 原料の酸化クロム微粉末100重量部に対しNb2
O5または/およびT a 205を0.5ないし3重
量部および少量の結合剤を加え、さらに1重量部以下の
酸化硼素を添加したのち混合し、水分を加えて加圧成形
し、乾燥ののち、焼成することを特徴とするかさ比重4
.1以上の緻密質酸化クロム焼結体の製造方法。
1 Nb2 per 100 parts by weight of raw material chromium oxide fine powder
Add 0.5 to 3 parts by weight of O5 or/and T a 205 and a small amount of binder, and further add 1 part by weight or less of boron oxide, mix, add moisture, pressure mold, dry, and then , bulk specific gravity 4 characterized by firing
.. A method for producing one or more dense chromium oxide sintered bodies.
JP4407475A 1975-04-11 1975-04-11 Thank you for your understanding. Expired JPS5820904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4407475A JPS5820904B2 (en) 1975-04-11 1975-04-11 Thank you for your understanding.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4407475A JPS5820904B2 (en) 1975-04-11 1975-04-11 Thank you for your understanding.

Publications (2)

Publication Number Publication Date
JPS51119012A JPS51119012A (en) 1976-10-19
JPS5820904B2 true JPS5820904B2 (en) 1983-04-26

Family

ID=12681464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4407475A Expired JPS5820904B2 (en) 1975-04-11 1975-04-11 Thank you for your understanding.

Country Status (1)

Country Link
JP (1) JPS5820904B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660385B2 (en) * 1987-06-22 1994-08-10 日本化学工業株式会社 Method of manufacturing chromium oxide rod for thermal spraying
EP1982965A1 (en) * 2005-05-30 2008-10-22 Refractory Intellectual Property GmbH & Co. KG Refractory ceramic product

Also Published As

Publication number Publication date
JPS51119012A (en) 1976-10-19

Similar Documents

Publication Publication Date Title
US4374897A (en) Chromium oxide-based sintered bodies and process for production thereof
JPS5820904B2 (en) Thank you for your understanding.
JPS60186467A (en) Silicon carbide sintered body and manufacture
US20090291011A1 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS6119584B2 (en)
JPS638069B2 (en)
JP3661958B2 (en) Refractory for casting
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS6374978A (en) Ceramic composite body
JP2970131B2 (en) Method for producing silicon nitride sintered body
JPS6337069B2 (en)
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JPS5818346B2 (en) Heat-resistant silicon carbide refractories under nitrogen atmosphere
RU2196118C2 (en) Method of manufacturing chromo-alumino-zirconium refractory materials
JPH05279115A (en) Dense sintered compact of chromium oxide and its production
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPH06227859A (en) Heat-resistant sintered mullite
JP2520190B2 (en) Refractory manufacturing method for continuous casting equipment
EP0241514A1 (en) Dense ceramics containing a solid solution and method for making the same
JPS6235995B2 (en)
JPS61132511A (en) Production of tib2 powder
JPS6128628B2 (en)
JPH075386B2 (en) Silicon nitride sintering aid and method for producing silicon nitride sintered body using the same