JPH02203197A - Heat transportation method - Google Patents

Heat transportation method

Info

Publication number
JPH02203197A
JPH02203197A JP1019588A JP1958889A JPH02203197A JP H02203197 A JPH02203197 A JP H02203197A JP 1019588 A JP1019588 A JP 1019588A JP 1958889 A JP1958889 A JP 1958889A JP H02203197 A JPH02203197 A JP H02203197A
Authority
JP
Japan
Prior art keywords
heat
specific gravity
phase change
transfer medium
heat carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1019588A
Other languages
Japanese (ja)
Other versions
JPH0689993B2 (en
Inventor
Kanji Sakai
酒井 寛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP1019588A priority Critical patent/JPH0689993B2/en
Publication of JPH02203197A publication Critical patent/JPH02203197A/en
Publication of JPH0689993B2 publication Critical patent/JPH0689993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To prevent a heat carrier to come in contact with a pipe to reduce power required for transporting heat, and avoid the deterioration of the heat carrier and the pipe due to friction by a method wherein the heat carrier is mixed into a transfer medium after the specific gravity of the heat carrier is adjusted, and transferred along the pipe. CONSTITUTION:A heat carrier to be used is composed of a phase change substance 1 and a specific gravity adjusting agent which is a vapor 2a sealed in micro-capsules 4. The seal ratio of the vapor 2a is determined so that the specific gravity of the heat carrier almost accords with that of a transfer medium in consideration of the amount of the phase change substance in use and the specific gravity of the phase change substance 1 and the transfer medium. The heat carrier is mixed into the transfer medium and transferred along pipe 100. The phase change substance 1 releases the latent heat at a radiator 11 (in cold heat or heat use system), and changes from solid to liquid phase, for example. Next, the phase change substance 1 receives cold heat or heat at a heat receiver 12, changes from liquid to solid phase, and is stored in a heat storage 13. The heat carrier is easily carried by the transfer medium and smoothly transferred without an increase in the friction against the wall of the pipe 100 as the heat carrier 1 has nearly the same specific gravity as the transfer medium.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、相変化物質の潜熱を利用して熱を輸送方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for transporting heat using latent heat of a phase change material.

(従来の技術) 従来、熱を輸送するには、水その他の液体に温度差を与
え、顕熱変化分を輸送するが一般的であった。
(Prior Art) Conventionally, in order to transport heat, it has been common to give a temperature difference to water or other liquid and transport the sensible heat change.

例えば、冷熱を輸送するには、冷熱蓄熱槽内の5℃付近
の冷水を取出して冷熱利用系へ送り、ここで冷熱を放出
し、10数℃程度まで昇温した水を上記の冷熱蓄熱槽内
へ戻し、再度5℃付近の冷水として上記の利用系へ送る
ことにより行なわれていた。
For example, in order to transport cold energy, cold water at around 5℃ in the cold heat storage tank is taken out and sent to the cold energy utilization system, where the cold energy is released and the water heated to about 10 degrees Celsius is transferred to the cold heat storage tank. This was done by returning the water to the interior and sending it again as cold water at around 5°C to the above-mentioned usage system.

しかし、この水等の顕熱変化分(5℃から10数℃に変
化する分)を利用する熱の輸送技術では、水等の熱輸送
媒体(以下、熱媒体)の単位体積当たりの熱容量が小さ
いため、次のような問題があった。
However, in heat transport technology that utilizes the change in sensible heat of water (from 5°C to over 10°C), the heat capacity per unit volume of the heat transport medium (hereinafter referred to as heat medium) such as water is Due to its small size, there were the following problems.

すなわち、大量の熱を輸送するには、大量の熱媒体を移
送しなければならない。このため、熱媒体を移送する配
管として、径の大きいものを使用する必要があり、設備
費が膨大となっていた。また、移送動力も大きくする必
要があり、輸送費も膨大とな9ていた。
That is, in order to transport a large amount of heat, a large amount of heat medium must be transferred. For this reason, it is necessary to use pipes with a large diameter for transferring the heat medium, resulting in enormous equipment costs. In addition, it was necessary to increase the transportation power, and the transportation cost was also enormous9.

上記問題を解消するため、最近潜熱を利用する技術が開
発されている。
In order to solve the above-mentioned problem, a technique using latent heat has recently been developed.

例えば、冷熱を輸送するには、熱媒体として微細氷粒を
シャーベット状に含むものや氷粒と水の混合物を用い、
氷の潜熱を利用する技術が開発されている。
For example, to transport cold heat, a sherbet-like material containing fine ice particles or a mixture of ice particles and water is used as a heat medium.
A technology has been developed that utilizes the latent heat of ice.

また温熱を輸送するには、受熱して液体となり、放熱し
て固体となる相変化物質をマイクロカプセルに封入し、
これを移送用媒体(例えば、使用温度域では常に液体で
ある水等)に混入したものを熱媒体とする技術が開発さ
れている(特公昭63−56476号公報参照)。
In addition, to transport heat, a phase-change material that receives heat and becomes a liquid and radiates heat and becomes a solid is encapsulated in microcapsules.
A technique has been developed in which this is mixed into a transfer medium (for example, water, which is always liquid in the operating temperature range) as a heat medium (see Japanese Patent Publication No. 56476/1983).

この技術の原理は第4図に示すように、上記の相変化物
質を封入したマイクロカプセルMと水Wとの混合物が熱
媒体として配管100内を移送され、放熱器(温熱利用
系)11で、この相変化物質中の潜熱が放熱される。こ
れにより、相変化物質が固体となる。次に加熱器12に
移送されると、相変化物質が受熱して、固体から液体に
変化する。
As shown in FIG. 4, the principle of this technology is that a mixture of microcapsules M containing the above-mentioned phase change substance and water W is transferred as a heat medium through a pipe 100, and a radiator (thermal heat utilization system) 11 , the latent heat in this phase change material is dissipated. This turns the phase change material into a solid. Next, when transferred to the heater 12, the phase change material receives heat and changes from solid to liquid.

この状態で蓄熱槽12に熱媒体として蓄積される。In this state, it is stored in the heat storage tank 12 as a heat medium.

そして、上記の放熱器11での温熱利用に際し、蓄熱槽
13から上記のマイクロカプセルMと水Wとの混合物が
配管100内に取出され、放熱器11へ移送されるので
ある。
When the heat is utilized in the radiator 11, the mixture of the microcapsules M and water W is taken out from the heat storage tank 13 into the pipe 100 and transferred to the radiator 11.

(発明が解決しようとする課題) しかし、上記の氷の潜熱を利用する技術及び相変化物質
を封入したマイクロカプセルMの潜熱を利用する技術で
は、次のような問題がある。
(Problems to be Solved by the Invention) However, the above techniques that utilize the latent heat of ice and techniques that utilize the latent heat of the microcapsules M encapsulating a phase change substance have the following problems.

すなわち相変化物質を封入したマイクロカプセルMと移
送用媒体との比重が著しく異なる場合、移送途中で、配
管の壁にマイクロカプセルMが接触する機会が増加する
That is, if the specific gravity of the microcapsules M encapsulating the phase change substance and the transfer medium is significantly different, the chances of the microcapsules M coming into contact with the wall of the piping during transfer increase.

このため、摩擦力に伴なう損失が増加し、移送動力が大
きくなるばかりでなく、マイクロカプセルMの摩、耗に
よる劣化が激増し、また配管の摩耗劣化も増大する。
For this reason, not only does the loss due to frictional force increase and the transfer power becomes large, but also the deterioration due to wear and abrasion of the microcapsules M sharply increases, and the wear and deterioration of the piping also increases.

しかも、摩擦が激しければ、大量の摩擦熱が発生し、冷
熱を輸送する場合には、輸送途中で大量の冷熱ロスを招
く。
Moreover, if the friction is intense, a large amount of frictional heat is generated, and when cold energy is transported, a large amount of cold energy is lost during transportation.

本発明は、以上の諸点に鑑みてなされたもので、その目
的とするところは、熱媒体の潜熱を利用する熱の輸送技
術において、熱媒体と配管との接触をなくし、熱媒体の
移送動力を低減させるとともに、熱媒体及び配管の摩擦
劣化等を解消することのできる上記の熱の輸送方法を提
案するにある。
The present invention has been made in view of the above points, and its purpose is to eliminate contact between the heat medium and piping in a heat transport technology that utilizes the latent heat of the heat medium, and to improve the transfer power of the heat medium. An object of the present invention is to propose the above-mentioned method of transporting heat, which can reduce the amount of heat transfer and eliminate frictional deterioration of the heat medium and piping.

(課題を解決するための手段) 上記目的を達成するため、本発明では、相変化物質と、
比重調整剤との混合物を封入したマイクロカプセルを熱
媒体とし、その混合比を調整することにより前記熱媒体
の比重を使用温度域における移送用媒体の比重に略一致
させ、該比重調整後の熱媒体を前記移送用媒体中に混入
して配管内を移送させるようにした。
(Means for Solving the Problems) In order to achieve the above object, the present invention uses a phase change material,
Microcapsules encapsulating a mixture with a specific gravity adjuster are used as a heat medium, and by adjusting the mixing ratio, the specific gravity of the heat medium is made to approximately match the specific gravity of the transfer medium in the operating temperature range, and the heat after the specific gravity adjustment is A medium was mixed into the transfer medium to be transferred within the piping.

また、上記熱媒体が、相変化物質と比重調整剤との混合
物からなる粒状物としても良い。
Further, the heat transfer medium may be a granular material made of a mixture of a phase change substance and a specific gravity regulator.

(作 用) 本発明では、比重調整剤の量を調節して、熱媒体の比重
を移送用媒体の比重と略一致させる。
(Function) In the present invention, the amount of the specific gravity adjusting agent is adjusted to make the specific gravity of the heat medium approximately equal to the specific gravity of the transfer medium.

この移送用媒体の比重と略同−の比重に調整された上記
の熱媒体の所要量を、この移送用媒体中に混入し、配管
内を移送させて、熱(冷熱または温熱)利用系、受熱(
冷熱または温熱)系、蓄熱(冷熱または温熱)系を循環
させ、熱の輸送を行う。
The required amount of the heat medium adjusted to approximately the same specific gravity as the transfer medium is mixed into the transfer medium and transferred through the piping to create a heat (cold or hot) utilization system. Heat reception (
Heat is transported by circulating the cold or hot) system and the heat storage (cold or hot) system.

このとき、熱媒体と移送用媒体の比重が略一致されてい
るため、熱媒体は移送用媒体中に均一に混入された状態
で循環することになる。
At this time, since the specific gravity of the heat medium and the transfer medium are substantially the same, the heat medium circulates in a state where it is uniformly mixed into the transfer medium.

(実 施 例) 第1図は本発明に係る輸送方法に使用される熱媒体の一
例を示し、本例では、相変化物質1と比重調整剤として
の気体2aをマイクロカプセル4内に封入している。
(Example) FIG. 1 shows an example of a heat medium used in the transportation method according to the present invention. In this example, a phase change substance 1 and a gas 2a as a specific gravity adjusting agent are enclosed in microcapsules 4. ing.

ここで気体2aの封入割合は、相変化物質1の使用量と
、この相変化物質1の比重及び移送用媒体の比重とを勘
案し、熱媒体と移送用媒体の比重が略一致するように決
定される。
Here, the filling ratio of the gas 2a is determined by taking into account the amount of phase change material 1 used, the specific gravity of this phase change material 1, and the specific gravity of the transfer medium, so that the specific gravity of the heat medium and the transfer medium are approximately equal. It is determined.

また、相変化物質1としては、輸送する熱の種類(冷熱
か温熱か)、使用温度域等により異なるが、水、脂肪、
パラフィン、水和塩等が好ましく使用される。
In addition, the phase change substance 1 may vary depending on the type of heat to be transported (cold or hot), the operating temperature range, etc., but water, fat,
Paraffin, hydrated salts, etc. are preferably used.

さ・らに気体2aとしては、空気、窒素、CO2、Ar
等の不活性ガスが好ましく使用される。
In addition, the gas 2a includes air, nitrogen, CO2, Ar
Inert gases such as are preferably used.

なお、気体2に代えて低分子量のアルコール、エーテル
、エステル等相変化物質1により比重の小さい液体を使
用することができる。この軽量液体は、使用温度域によ
り液体#気体と相変化することがあり、この場合には比
重調整剤の潜熱をも熱輸送に利用できる利点がある。
Note that instead of the gas 2, a liquid having a lower specific gravity than the phase change substance 1, such as a low molecular weight alcohol, ether, or ester, can be used. This lightweight liquid may undergo a phase change from liquid to gas depending on the operating temperature range, and in this case, there is an advantage that the latent heat of the specific gravity adjuster can also be used for heat transport.

第2図は本発明に係る輸送方法に使用される熱媒体の他
の例を示し、本例では、相変化物質1と比重調整剤とし
ての砂等の重量物2bをマイクロカプセル4内に封入し
ている。
FIG. 2 shows another example of the heat medium used in the transportation method according to the present invention. In this example, a phase change substance 1 and a heavy substance 2b such as sand as a specific gravity adjusting agent are enclosed in microcapsules 4. are doing.

第2図の例でも第1図の例と同様、重量物2bの封入割
合は、相変化物質1の使用量及び比重、移送用媒体の比
重を勘案して決定される。
In the example of FIG. 2 as well as the example of FIG. 1, the inclusion ratio of the heavy object 2b is determined by taking into account the usage amount and specific gravity of the phase change material 1 and the specific gravity of the transfer medium.

また、相変化物質1としても、第1図の例と同様のもの
が使用される。
Further, as the phase change material 1, the same material as in the example shown in FIG. 1 is used.

さらに、重量物2bとしては、上記の砂の他にガラス屑
、各種のセラミック粉、天然または合成樹脂粉並びに金
属粒子等の相変化物質1より比重の大きい固体、あるい
はアスファルト、その他天然または合成樹脂液等の相変
化物質1より比重の大きい液体を使用することができ、
この重量液体は、上記の軽量液体の場合と同様、使用温
度域により液体ヰ固体と相変化することがあり、この場
合は比II!調整剤の潜熱をも熱輸送に利用できる利点
がある。
Furthermore, in addition to the above-mentioned sand, the heavy object 2b may include glass scraps, various ceramic powders, natural or synthetic resin powders, solids having a specific gravity higher than the phase change material 1 such as metal particles, or asphalt, or other natural or synthetic resins. A liquid having a higher specific gravity than the phase change substance 1 such as liquid can be used,
Similar to the case of the above-mentioned lightweight liquid, this heavy liquid may undergo a phase change from liquid to solid depending on the operating temperature range, and in this case, the ratio II! There is an advantage that the latent heat of the conditioning agent can also be used for heat transport.

以上の第1図、第2図に示す熱媒体は、第4図に示した
従来の熱輸送技術と同様、移送用媒体に混入されて配管
100内を移送され、放熱器(冷熱または温熱利用系)
11で相変化物質1の潜熱が放熱され、相変化物質1が
例えば固体−液体に相変化する。次に受熱器12で相変
化物質1が冷熱または温熱を受熱し、液体→固体に相変
化し、蓄熱槽13に蓄積される。
Similar to the conventional heat transport technology shown in FIG. 4, the heat medium shown in FIGS. system)
At step 11, the latent heat of the phase change material 1 is dissipated, and the phase change material 1 undergoes a phase change, for example, from solid to liquid. Next, the phase change material 1 receives cold or hot heat in the heat receiver 12, undergoes a phase change from liquid to solid, and is stored in the heat storage tank 13.

このとき、第1図、第2図に示す熱媒体は、移送用媒体
と路間−の比重を有しているため、移送用媒体に同伴さ
れやすく、配管100内を管壁との摩擦を増加するとと
なく、スムーズに移送されるのである。
At this time, since the heat medium shown in FIGS. 1 and 2 has a specific gravity equal to that of the transfer medium, it is easily entrained by the transfer medium and moves inside the pipe 100 to reduce friction with the pipe wall. As the number increases, it is transferred smoothly.

第3図(A)はさらに他の実施例を示している。FIG. 3(A) shows yet another embodiment.

この例では、上記した実施例と相違して、マイクロカプ
セルを用いない例について示しているため、以下のよう
な特徴を有している。
This example differs from the above embodiments in that it does not use microcapsules, and therefore has the following characteristics.

まず、相変化物質1が固体#液体間で相変化する際に、
相変化物質1と比重調整剤2との混合割合が常時同一で
なければならない。すなわち、例えば固体→液体に相変
化した相変化物質1が移送用媒体3と混合してしまうと
、再度液体→固体に相変化した場合には液状の相変化物
質1の周囲に存在する比重調整剤2の存在率が異なるた
め再度固化した際における粒状物の比重は、元の(固体
)粒状物調整時のそれと相違してしまう。
First, when the phase change material 1 undergoes a phase change between solid and liquid,
The mixing ratio of phase change material 1 and specific gravity adjuster 2 must always be the same. That is, for example, when the phase change substance 1 whose phase has changed from solid to liquid is mixed with the transport medium 3, when the phase changes from liquid to solid again, the specific gravity adjustment that exists around the liquid phase change substance 1 Since the abundance ratio of agent 2 is different, the specific gravity of the granules when solidified again is different from that when the original (solid) granules were prepared.

従って、本例では係る現象の発生を防止するため、比1
m調整剤2を相変化物質1とは相溶性や馴染み性が良く
、移送用媒体3とは相溶性や馴染み性のないものを選択
して使用している。
Therefore, in this example, in order to prevent the occurrence of such a phenomenon,
The m-adjusting agent 2 is selected to be one that has good compatibility and compatibility with the phase change substance 1, but has no compatibility or compatibility with the transport medium 3.

このような比重調整剤2を用いることにより、相変化物
質1が固体→液体に相変化した際に、同図に示すように
元の1個の粒状物を構成していた(液体)相変化物質1
aの近傍にのみ浮遊し、他の粒状物を構成していた(液
体)相変化物質2aの近傍への移動は、移送用媒体3で
遮られ、阻止される。
By using such a specific gravity adjusting agent 2, when the phase change substance 1 undergoes a phase change from solid to liquid, the (liquid) phase change that originally constituted one granule is removed, as shown in the figure. substance 1
The movement of the (liquid) phase change substance 2a, which was floating only in the vicinity of the particle a and constituted other particles, to the vicinity is blocked and prevented by the transport medium 3.

従って、相変化物質1a、lbが固体に変化する際には
、各々の相変化物質1a、lbの近傍にのみ浮遊する比
重調整剤2を取込み、元の粒状物と路間−の構成及び比
重となる。
Therefore, when the phase change materials 1a, lb change into solids, the specific gravity adjusting agent 2 floating only in the vicinity of each phase change material 1a, lb is taken in, and the composition and specific gravity of the original granules and the gap are changed. becomes.

なお、そのほかの構成並びに作用については上記した実
施例と同様であるため、その説明書を省略する。
Note that the other configurations and operations are the same as those of the above-described embodiments, and therefore the description thereof will be omitted.

第3図(B)はさらに他の実施例を示しており、この例
でもマイクロカプセルを使用しない態様のものである。
FIG. 3(B) shows yet another embodiment, which also does not use microcapsules.

具体的には、相変化物質(例えば高密度ポリエチレン粒
)と比重調整剤を所定の比率で混合して一つの粒状物5
を形成し、その粒状物5の表面層5aの融点を内部5b
のそれより高くしている。このようにすることにより、
放熱あるいは受熱により相変化するのは内部5bのみと
なり、固体→液体に相変化した際に移送用媒体中に溶け
だすことはない。
Specifically, a phase change material (for example, high-density polyethylene particles) and a specific gravity adjuster are mixed in a predetermined ratio to form one granular material 5.
The melting point of the surface layer 5a of the granules 5 is set to the inner layer 5b.
It is higher than that of . By doing this,
Only the inside 5b undergoes a phase change due to heat radiation or heat reception, and does not melt into the transfer medium when the phase changes from solid to liquid.

そして上記構成の粒状物5を製造するには、まず所定の
混合比で粒状に形成したものにγ線を照射することによ
り表面層5aのみの融点を上昇させる。これにより、同
一材料で形成されているにもかかわらず、高温時に内部
5bのみが融解するようになる。
In order to manufacture the granules 5 having the above structure, first, the melting point of only the surface layer 5a is increased by irradiating γ-rays on the granules formed at a predetermined mixing ratio. As a result, only the inside 5b melts at high temperatures, even though they are made of the same material.

(発明の効果) 以上詳述した本発明に係る熱の輸送方法によれば、熱媒
体の比重が移送用媒体の比重と路間−であるため、熱媒
体が移送用媒体に同伴されやすくなる。
(Effects of the Invention) According to the heat transport method according to the present invention detailed above, the specific gravity of the heat medium is equal to the specific gravity of the transfer medium and between the paths, so that the heat medium is easily entrained by the transfer medium. .

この結果、配管内移送中に、熱媒体が管壁と接触する機
会が減少するばかりか、たとえ接触したとしてもスムー
ズに移送用媒体の流れに入り込むことができ、管壁と熱
媒体との摩擦が大幅に低減する。
As a result, the chances of the heat medium coming into contact with the pipe wall during transfer within the pipe are reduced, and even if contact occurs, it can smoothly enter the flow of the transfer medium, reducing the friction between the pipe wall and the heat medium. is significantly reduced.

このため、熱媒体移送動力を激減することができ、また
、配管や熱媒体の摩耗劣化を減少することができる。し
かも、冷熱を輸送する際には、摩擦熱が発生しないため
、輸送途中での冷熱のロスも生じないる。
Therefore, the power for transferring the heat medium can be drastically reduced, and wear and deterioration of the piping and the heat medium can be reduced. Moreover, since no frictional heat is generated when cold energy is transported, there is no loss of cold energy during transportation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る熱輸送方法に使用する
熱媒体の一例を示す説明図、第3図は本発明に係る熱輸
送方法に使用する熱媒体が粒状物の場合の相変化時の状
況を模式的に示す図、第4図は本発明及び従来の熱輸送
態様の一例を示す説明図である。 1・・・相変化物質    2・・・比重調整剤3・・
・移送用媒体    4・・・マイクロカプセル100
・・・配管
FIGS. 1 and 2 are explanatory diagrams showing an example of a heat medium used in the heat transport method according to the present invention, and FIG. FIG. 4 is an explanatory diagram showing an example of the heat transport mode of the present invention and the conventional heat transport mode. 1... Phase change substance 2... Specific gravity adjuster 3...
・Transportation medium 4...Microcapsules 100
···Piping

Claims (3)

【特許請求の範囲】[Claims] (1)相変化物質と、比重調整剤との混合物を封入した
マイクロカプセルを熱媒体とし、その混合比を調整する
ことにより前記熱媒体の比重を使用温度域における移送
用媒体の比重に略一致させ、該比重調整後の熱媒体を前
記移送用媒体中に混入して配管内を移送させることを特
徴とする熱の輸送方法。
(1) Microcapsules encapsulating a mixture of a phase change substance and a specific gravity adjusting agent are used as a heating medium, and by adjusting the mixing ratio, the specific gravity of the heating medium approximately matches the specific gravity of the transfer medium in the operating temperature range. A method for transporting heat, characterized in that the heat medium after specific gravity adjustment is mixed into the transfer medium and transferred within the pipe.
(2)請求項1に記載の熱媒体が、相変化物質と比重調
整剤との混合物からなる粒状物であることを特徴とする
熱の輸送方法。
(2) A method for transporting heat, wherein the heat medium according to claim 1 is a granular material made of a mixture of a phase change substance and a specific gravity regulator.
(3)前記混合物からなる粒状物が、その表面層を高融
点、内部を低融点となるように形成され、かつ、昇温時
に該内部のみが液化するようにしてなることを特徴とす
る請求項2記載の熱の輸送方法。
(3) A claim characterized in that the granules made of the mixture are formed so that the surface layer has a high melting point and the inside has a low melting point, and only the inside liquefies when the temperature is increased. The method for transporting heat according to item 2.
JP1019588A 1989-01-31 1989-01-31 Method of transporting heat Expired - Lifetime JPH0689993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1019588A JPH0689993B2 (en) 1989-01-31 1989-01-31 Method of transporting heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019588A JPH0689993B2 (en) 1989-01-31 1989-01-31 Method of transporting heat

Publications (2)

Publication Number Publication Date
JPH02203197A true JPH02203197A (en) 1990-08-13
JPH0689993B2 JPH0689993B2 (en) 1994-11-14

Family

ID=12003416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019588A Expired - Lifetime JPH0689993B2 (en) 1989-01-31 1989-01-31 Method of transporting heat

Country Status (1)

Country Link
JP (1) JPH0689993B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945915A (en) * 1982-09-09 1984-03-15 Toshiba Corp Preparation of beta-type silicon carbide powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945915A (en) * 1982-09-09 1984-03-15 Toshiba Corp Preparation of beta-type silicon carbide powder

Also Published As

Publication number Publication date
JPH0689993B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
Chow et al. Thermal conductivity enhancement for phase change storage media
Wen et al. Heat transfer in solids-gas transport lines
JPS5818598B2 (en) Method of receiving or dissipating heat from a heat storage device
JPH02203197A (en) Heat transportation method
KR100263361B1 (en) Microcapsuled phase change material, manufacturing method thereof and heat storage and transfer with them
Tayeb Organic-inorganic mixtures for solar energy storage systems
Tao et al. Application of phase change material (PCM) in concrete for thermal energy storage
JPS58127047A (en) Heat regenerative type hot water supply system
JPH08259932A (en) Heat-storing material microcapsule
Sathiyaraj et al. Enhancement of heat transfer in phase change material using graphite-paraffin composites
JPH04356582A (en) Heat medium for heat transport system
JPH05215369A (en) Cooling or heating method utilizing latent heat
JPS63225814A (en) Temperature keeping device
JPS6136696A (en) Steady heat generating heat exchanger
Charunyakorn Forced convection heat transfer in microen-capsulated phase-change material slurries
JPS5740583A (en) Regenerating material
JPS60147095A (en) Heat energy recovering method
JPH05156242A (en) Thermal medium
JPH0151517B2 (en)
RU2000310C1 (en) Heat storage unit
JP3059558B2 (en) Microcapsule dispersion for heat storage material
JPS59232165A (en) Thermal energy storage element
JPS59107189A (en) Regenerative heat pipe
JPH0288404A (en) Heat exchanger using metallic hydrogen compound
JPS61171788A (en) Production of latent heat type thermal energy storage agent