JPS60166212A - Production of silicon carbide - Google Patents

Production of silicon carbide

Info

Publication number
JPS60166212A
JPS60166212A JP59022294A JP2229484A JPS60166212A JP S60166212 A JPS60166212 A JP S60166212A JP 59022294 A JP59022294 A JP 59022294A JP 2229484 A JP2229484 A JP 2229484A JP S60166212 A JPS60166212 A JP S60166212A
Authority
JP
Japan
Prior art keywords
silicon carbide
disilane compound
carbon powder
hydrolysis
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59022294A
Other languages
Japanese (ja)
Inventor
Mitsuo Umemura
梅村 光雄
Yoshihiro Kubota
芳宏 久保田
Isao Yanagisawa
柳沢 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59022294A priority Critical patent/JPS60166212A/en
Publication of JPS60166212A publication Critical patent/JPS60166212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain easily a powdery silicon carbide of high purity, hydrolyzing a disilane compound expressed by a specific general formula in the presence of carbon powder, and reducing the hydrolysis product at a given temperature in a monoxidizing atmosphere. CONSTITUTION:A disilane compound expressed by the formula (R is H or the same or different monofunctional hydrocarbon group; X is halogen atom; n is an integer 1-5) is hydrolyzed in the presence of carbon powder to give a fine powdery silica obtained by hydrolysis of the disilane compound as a mixture thereof with the carbon powder. The resultant mixture is then reduced at 1,600- 2,100 deg.C in a monoixidizing atmosphere to give easily powdery silicon arbide. The above-mentioned disilane compound as a starting material can be easily purified highly by distillation, etc. at a low cost, and the aimed silicon carbide can be obtained economically in high purity.

Description

【発明の詳細な説明】 本発明は炭化けい素の製造方法、特にはジシラン化合物
を始発材とする高純度の炭化けい素の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon carbide, and particularly to a method for producing high purity silicon carbide using a disilane compound as a starting material.

炭化けい素は古くからけい石と炭素粉とをアチソン式電
気炉で加熱反応させるという方法で大量に生産されてお
り、これは研磨材、耐熱構造材として汎用されているが
、この炭化けい素については近年、省資源、省エネルギ
ーという観点からそのすぐれた物性を生かしてエンジニ
ャリングセラミックス、エレクトロエックス関連部門へ
の用途開発が行なわれている。しかし、けい石を始発材
として製造された炭化けい素は−このけい石が天然鉱物
で種々の不純物を多く含むものであることから純度かわ
る(、また電気炉から得られる製品が塊状物とされるた
めに粉砕しなければならないという不利があった。
Silicon carbide has long been produced in large quantities by heating and reacting silica stone and carbon powder in an Acheson electric furnace, and is widely used as an abrasive and heat-resistant structural material. In recent years, from the viewpoint of resource and energy conservation, applications have been developed for engineering ceramics and electro-X related sectors by taking advantage of its excellent physical properties. However, the purity of silicon carbide produced using silica as a starting material varies because silica is a natural mineral and contains a large amount of various impurities (and because the product obtained from an electric furnace is made into lumps). The disadvantage was that it had to be crushed.

本発明はこのような不利を解決した炭化けい素の製造方
法に関するものであり、これは一般式RX Si2 、
に\にRは水素原子、同n 6−n 種または異種の1価炭化水素基から選ばれる原子または
基、又はハロゲン原子、nは1〜5の整数)で示される
ジシラン化合物を炭素粉末の存在下で加水分解させたの
ち、非酸化性雰囲気下において1.600〜2,100
℃で還元反応させることを特徴とするものである。
The present invention relates to a method for producing silicon carbide which solves these disadvantages, and which has the general formula RX Si2,
A disilane compound represented by R is a hydrogen atom, an atom or group selected from the same or different types of monovalent hydrocarbon groups, or a halogen atom, n is an integer from 1 to 5) is added to the carbon powder. 1.600 to 2,100 in a non-oxidizing atmosphere after hydrolysis in the presence of
It is characterized by carrying out a reduction reaction at ℃.

すなわち1本発明者らは炭化けい素を純度高く。Namely, the present inventors made silicon carbide with high purity.

しかも粉末状で容易に得る方法について種々検討した結
果、上記したような一般式 RX Si1l−nz で示されるジシラン化合物を炭素粉末の存在下で加水分
解すると一ジシラン化合物の加水分解で得られた微粉状
のシリカが炭素粉末との混合物として得られるので、こ
れを還元反応させれば容易にしかも粉末状で炭化けい素
が得られることを見出すと共に、これKよれば始発材と
してのジシラン化合物が安価であり、しかもこれは蒸留
などで容易に冒純度なものとすることができるので、目
的とする炭化けい累を経済的に有利に−しかも高純度で
得ることができることを確認して本発明を完成させた。
Moreover, as a result of various studies on how to easily obtain it in powder form, we found that when a disilane compound represented by the general formula RX Si1l-nz as described above is hydrolyzed in the presence of carbon powder, a fine powder obtained by hydrolysis of a disilane compound can be obtained. It was discovered that silica in the form of a mixture with carbon powder can be obtained as a mixture with carbon powder, and silicon carbide can be easily obtained in powder form by subjecting it to a reduction reaction. Moreover, since this can be easily made impure by distillation, etc., we have confirmed that the desired carbonized silicon can be obtained economically and with high purity, and have developed the present invention. Completed.

本発明の方法において始発材とされるジシラン化合物は
一般式 RXSi で示され、この6−n2 Rが水床原子、メチル基、エチル基、プpピル基。
The disilane compound used as a starting material in the method of the present invention is represented by the general formula RXSi, where 6-n2R is an aqueous atom, a methyl group, an ethyl group, or a propyl group.

ブチル基などのアルキル基、ビニル基、アリル基などの
アルケニル基、フェニル基、トリル基などのアリール基
−シクロヘキシル基などのシフ四アルキル基から選択さ
れる同種または異種の原子または基で、Xが塩素、臭素
、フッ素などのハロゲン原子、 n7b″−1〜5の整
数とされるものであるが。
X is the same or different atoms or groups selected from alkyl groups such as butyl groups, alkenyl groups such as vinyl groups and allyl groups, aryl groups such as phenyl groups and tolyl groups, and Schifftetraalkyl groups such as cyclohexyl groups; Halogen atoms such as chlorine, bromine, and fluorine, and n7b''-1 to 5 integers.

このものはシリコーン工業におけるオルガノクロロシラ
ン類の直接合成法において副生ずるが一現在有効利用の
方法がなく廃棄されているものが利用できるので、経済
的に枠めて有利とされる。またこれは蒸留によって容易
忙精製し得るものであることから、純度の高い炭化けい
素製造のための原料としても有利なものとされる。なお
、このジシラン化合物としては実用面から供給量の多い
トリクロロトリメチルジシラン、テトラクロロジメチル
ジシランまたはそれらの混合物が適当とされるが、これ
には必要に応じジク四ロジメチルシラン、トリクロロメ
チルシラン、メチルトリビニルシラン、トリフルロシラ
ン、四塩化けい素、トリクロロフェニルシラン、ジクロ
ロジフェニルシランなどのモノシラン化合物を混合して
もよい。
Although this product is produced as a by-product in the direct synthesis method of organochlorosilanes in the silicone industry, it is economically advantageous because it can be used as a by-product that is currently discarded because there is no way to utilize it effectively. Moreover, since it can be easily purified by distillation, it is considered to be advantageous as a raw material for producing highly pure silicon carbide. As the disilane compound, trichlorotrimethyldisilane, tetrachlorodimethyldisilane, or a mixture thereof, which is available in large quantities from a practical standpoint, is suitable, but dichlorodimethylsilane, trichloromethylsilane, methyl Monosilane compounds such as trivinylsilane, trifluorosilane, silicon tetrachloride, trichlorophenylsilane, and dichlorodiphenylsilane may be mixed.

本発明の方法は上記したジシラン化合物を炭素粉末の存
在下で加水分解するのであるが、これによれば加水分解
で生成した微細シリカが炭素粉末との均一な混合物とし
て取得されるので、これはそのま\で次工程における炭
化けい素製造のための還元反応用原料として使用するこ
とができる。
In the method of the present invention, the above-mentioned disilane compound is hydrolyzed in the presence of carbon powder, and according to this method, fine silica produced by hydrolysis is obtained as a homogeneous mixture with carbon powder. It can be used as is as a raw material for the reduction reaction in the next step to produce silicon carbide.

この炭素粉末はシリカ粉末と均一な混合物を作るという
ことからできるだけ粒度の細かいものとすることかよく
、これば例えばヰ均粒径が20〜50mμのものとする
ことがよいが、これはまたできるだけ純度の高いものと
することが好ましいので7アーネスブラツク、アセチレ
ンブラックなどのようなカーボンブラックとすることが
よい。
In order to create a homogeneous mixture with the silica powder, this carbon powder should be made as fine as possible, for example, with an average particle size of 20 to 50 mμ, but this is also as fine as possible. Since it is preferable to use a highly pure carbon black, carbon black such as 7 Arnes black or acetylene black is preferable.

また、この分散に当ってはアセトンなどの炭化水素系溶
媒や界面活性剤などのような各種分散剤を用いてジシラ
ン化合物の加水分解に先立って予かじめこれを水中に均
質に分散させておくことがよい。ジシラン化合物の加水
分解はこのように炭素粉末を分散させた水中にジシラン
化合物を添加することによって曲ちに進行するが、この
加水分解で生成したシリカは加水分解後の水洗、乾燥に
よって炭素粉末との均一な混合物として取得される。
In addition, for this dispersion, the disilane compound is homogeneously dispersed in water in advance using a hydrocarbon solvent such as acetone or various dispersants such as a surfactant, etc., prior to hydrolysis of the disilane compound. That's good. Hydrolysis of the disilane compound progresses in a curved manner by adding the disilane compound to water in which carbon powder is dispersed, but the silica produced by this hydrolysis is converted into carbon powder by washing with water and drying after hydrolysis. obtained as a homogeneous mixture of

このよう圧して得られたシリカ粉末と炭素粉末との混合
物は次工程における還元反応原料とされるが、このシリ
カと炭素との混合比0 / SiOはそれが0.6より
小さいとシリカの還元反応が十分進まず、生成する炭化
叶い紫の純度も低くなり。
The mixture of silica powder and carbon powder obtained by pressing in this way is used as a raw material for the reduction reaction in the next step, but if the mixing ratio of silica and carbon is less than 0.6, silica reduction will occur. The reaction does not proceed sufficiently, and the purity of the carbonized purple color that is produced is also low.

これを1.0以上の炭素過剰にすると生成する炭イ1け
い水中における炭素残留分が多くなるので、これは0.
6〜1.0の範囲になるようにすることがよ(1゜ このシリカ粉末と炭素粉末との混合物はついて非酸化性
雰囲気下に加熱処理することによって炭化けい素とされ
るのであるが、この加熱はi、6oQ℃以下では実質的
に所望の反応が進行せず、2,100℃以上とすると生
成する炭化けい素が粒径の大きいものになるし一経済的
にも不利となるので、これは1,600〜2,100℃
の範囲とすることがよい。また、この反応における雰囲
気は非酸化性雰囲気とする必要があり、これは窒素ガス
、アルゴンガス、ヘリウムガスあるいはこれらの混合ガ
ス雰囲気下とすればよいが、必要であれば水素ガスを混
入したものであってもよい。
If the carbon excess is increased to 1.0 or more, the amount of carbon remaining in the water increases per charcoal produced, so this becomes 0.
It is recommended that the temperature be within the range of 6 to 1.0 (1°) This mixture of silica powder and carbon powder is converted into silicon carbide by heat treatment in a non-oxidizing atmosphere. If this heating is below 6oQ°C, the desired reaction will not substantially proceed, and if it is above 2,100°C, the resulting silicon carbide will have a large particle size, which is also economically disadvantageous. , this is 1,600-2,100℃
It is recommended that the range be within the range of . In addition, the atmosphere for this reaction must be non-oxidizing, and this may be nitrogen gas, argon gas, helium gas, or a mixed gas atmosphere of these, but if necessary, hydrogen gas may be mixed in. It may be.

このようにして得られた炭化けい素は始発材としてのジ
シラン化合物が精製されたものであり炭素粉末も純度の
高いものとされることから従来法で得られたものにくら
べて極めて純度が高く。
The silicon carbide obtained in this way is a purified disilane compound as a starting material, and the carbon powder is also said to be highly pure, so it is extremely pure compared to that obtained by conventional methods. .

しかも粉末状のものとして取得されるので、そのま\各
種用達に使用することができるという有利性をもつもの
であるが、これは必要に応じ酸素雰囲気下で600〜7
00℃に加熱処理してこの中に残留している炭素を酸化
除去してもよく、これによればより高純度の炭化げい累
を得ることができる。
Furthermore, since it is obtained in powder form, it has the advantage of being able to be used as is for various purposes;
The carbon remaining therein may be oxidized and removed by heat treatment at 00° C., thereby making it possible to obtain a carbide with higher purity.

つぎに本発明方法の実施例をあげる。Next, examples of the method of the present invention will be given.

実施例 攪拌機を取りつけた3tのセパラブル72スコに平均粒
径が約30mμのカーボンブラック36gを仕込み、こ
れにアセトンを約10(1+l加えて湿らせたのち水2
tを加えて、カーボンブラックを水中に均一に分散させ
た。
Example: 36g of carbon black with an average particle size of about 30mμ was charged into a 3t separable 72 Scooter equipped with a stirrer, and about 10 (1+l) of acetone was added to it to moisten it.
t was added to uniformly disperse the carbon black in the water.

ついで、このフラスコドa /s 1o カo、 sと
なるように計量したトリクロロトリノチルジシラ711
0gを滴下ロートを用いてゆつ(り加えて充分に加水分
解させ、生成した加水分解物をr過水洗し、乾燥したと
ころ、シリカとカーポンプクックがa/sio =0.
6 となる比で均一に混合された組成物95gが得られ
たので−これを粉砕して平均粒径が0.5朋の微粉末と
した。
Next, trichlorotrinotyldisila 711 was weighed so that the flask was a/s 1o, s.
0g was added using a dropping funnel for sufficient hydrolysis, and the resulting hydrolyzate was washed with water and dried.
95 g of a uniformly mixed composition with a ratio of 0.6 was obtained, which was pulverized into a fine powder with an average particle size of 0.5.

つぎにこの組成物を炭化けい素製のトレイに仕込み、カ
ーボン炉中で窒素ガス雰囲気下において2.000℃で
1時間還元反応させ、冷却後とり取してからさらにマツ
フル炉中で700℃まで加熱して過剰な炭素を酸化除去
したところ、緑灰色の粉末35pが得られたので、これ
KついてX線回折、化学分析を行なったところ、これは
α型炭化けい素を少■含むβ型炭化けい素粉末であるこ
とが確認された。
Next, this composition was placed in a silicon carbide tray, subjected to a reduction reaction at 2,000°C for 1 hour in a nitrogen gas atmosphere in a carbon furnace, and then taken out after cooling, and further heated to 700°C in a Matsufuru furnace. When heated to remove excess carbon by oxidation, greenish-gray powder 35P was obtained, which was subjected to X-ray diffraction and chemical analysis, and was found to be β-type silicon carbide containing a small amount of α-type silicon carbide. It was confirmed to be silicon carbide powder.

なお、上記の方法においてこのトリクロロトリメチルジ
シランを他のジシラン化合物とし、この還元反応温度、
O/810 比を第1表に示したよ! 5に変化させたほかは上記と同じように処理して炭化け
い素を製造したところ、第1辰に併記したとおりの結果
が得られ、さらに比較のためにこの還元反応温度を1,
550℃−2,200℃とした場合また始発剤としてけ
い石を使用した場合九ついても同様にして炭化けい素の
製造を行なったところ、第1汲に併記したとおりの結果
が得られた。
In addition, in the above method, this trichlorotrimethyldisilane is used as another disilane compound, and the reduction reaction temperature,
The O/810 ratio is shown in Table 1! When silicon carbide was produced in the same manner as above except that the temperature was changed to 5, the same results as listed in the first paragraph were obtained.
Silicon carbide was produced in the same manner when the temperature was 550 DEG C. to 2,200 DEG C. and when silica stone was used as the starter, and the same results as described in Chapter 1 were obtained.

(註)≠1・・・n = 2と3のほり等量の混合物で
(Note) ≠ 1... n = a mixture of 2 and 3 in equal amounts.

他に少量のモノシラン、ジシラン類 を含んでいる ■2・・・Fe −Al 、 Oa などの不純物の総
量を示す ≠3・・・けい石粉(市販の325メツシュパス品)と
実施例1と同じカーボンブ ラックとの混合物 特許出願人 信越化学工業株式会社
Also contains a small amount of monosilane and disilane ■2... Indicates the total amount of impurities such as Fe - Al and Oa ≠3... Silica powder (commercially available 325 mesh pass product) and the same carbon as in Example 1 Mixture with black patent applicant Shin-Etsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、一般式 RX81に\にRは n s−H2 水素原子、同種または異種の1価炭化水素基から選ばれ
る原子または基、Xはハロゲン原子。 nは1〜5の整数)で示されるジシラン化合物を炭素粉
末の存在下で加水分解させたのち、非酸化性雰囲気下に
おいて1,600〜2,100℃で還元反応させること
を特徴とする炭化けい素の製造方法。 2 ジシラン化合物がトリクロロトリメチルジシランお
よび/またはナト2クロロジメチルジシランである特許
請求の範囲第1項記載の炭化けい素の製造方法。
[Claims] 1. In the general formula RX81, R is an n s-H2 hydrogen atom, an atom or group selected from the same or different monovalent hydrocarbon groups, and X is a halogen atom. Carbonization characterized by hydrolyzing a disilane compound (n is an integer of 1 to 5) in the presence of carbon powder and then subjecting it to a reduction reaction at 1,600 to 2,100°C in a non-oxidizing atmosphere. Method of manufacturing silicon. 2. The method for producing silicon carbide according to claim 1, wherein the disilane compound is trichlorotrimethyldisilane and/or nato-2chlorodimethyldisilane.
JP59022294A 1984-02-09 1984-02-09 Production of silicon carbide Pending JPS60166212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59022294A JPS60166212A (en) 1984-02-09 1984-02-09 Production of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59022294A JPS60166212A (en) 1984-02-09 1984-02-09 Production of silicon carbide

Publications (1)

Publication Number Publication Date
JPS60166212A true JPS60166212A (en) 1985-08-29

Family

ID=12078724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59022294A Pending JPS60166212A (en) 1984-02-09 1984-02-09 Production of silicon carbide

Country Status (1)

Country Link
JP (1) JPS60166212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113753U (en) * 1991-03-20 1992-10-06 スズキ株式会社 Auxiliary structure of V-type engine
KR101350831B1 (en) * 2011-09-19 2014-01-15 (주)석경에이티 Preparation method of organosilica capable of non oxide silica preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113753U (en) * 1991-03-20 1992-10-06 スズキ株式会社 Auxiliary structure of V-type engine
KR101350831B1 (en) * 2011-09-19 2014-01-15 (주)석경에이티 Preparation method of organosilica capable of non oxide silica preparation

Similar Documents

Publication Publication Date Title
KR840001536B1 (en) Method of producing for polysilane
KR840001596B1 (en) Method of preparing polysilane for silicon carbide ceramic material
EP0015422B1 (en) Method for producing powder of alpha-silicon nitride
JP2511074B2 (en) Pre-ceramic polymer, ceramic material and methods for producing the same
JPS60120725A (en) Organometallic copolymer and its production
JPH055763B2 (en)
CA1287432C (en) Preceramic polymers derived from cyclic silazanes and halogenated disilanes and a method for their preparation
JPH0465040B2 (en)
US2666775A (en) Preparation of organosilanes by reaction of silicon with organic halides
US2466412A (en) Method of preparation of hydrocarbon-substituted halosilanes
JPS60166212A (en) Production of silicon carbide
JPH0593073A (en) Preparation of polysilamethylenosilane polymer or copolymer
JPS62241812A (en) Manufacture of silicon nitride
JP4162268B2 (en) Silylalkylborane, oligo- or poly-borocarbosilazane and silicon carbonitride ceramics
US2551571A (en) Method of producing silanes
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JPH062568B2 (en) Method for producing high-purity silicon carbide powder
GB2258465A (en) Derivatized alkylpolysilane npreceramic polymers
JPH0629123B2 (en) Method for producing silicon ceramics
JPS6172614A (en) Production of silicon hydride
JPS60151278A (en) Manufacture of silicon nitride
JPH0559180A (en) Derivative alkylpolysilane preceramic polymer
JP3620909B2 (en) Process for producing silanes
JPH0313166B2 (en)