JPH0416564A - Production of beta-sialon powder - Google Patents
Production of beta-sialon powderInfo
- Publication number
- JPH0416564A JPH0416564A JP2120453A JP12045390A JPH0416564A JP H0416564 A JPH0416564 A JP H0416564A JP 2120453 A JP2120453 A JP 2120453A JP 12045390 A JP12045390 A JP 12045390A JP H0416564 A JPH0416564 A JP H0416564A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sialon
- weight
- aluminosilicate
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 23
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052863 mullite Inorganic materials 0.000 claims abstract description 21
- 229910000323 aluminium silicate Inorganic materials 0.000 claims abstract description 14
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000012298 atmosphere Substances 0.000 claims abstract description 5
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 3
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 230000002829 reductive effect Effects 0.000 claims description 12
- 238000005121 nitriding Methods 0.000 claims description 11
- 239000011812 mixed powder Substances 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 238000006722 reduction reaction Methods 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 12
- 239000012535 impurity Substances 0.000 description 8
- 229910003564 SiAlON Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- -1 aluminosilicate compound Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000005335 volcanic glass Substances 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野1
本発明は、β−サイアロン粉末の製造方法に間し、サイ
アロン系セラミックスの製造用原料であるβ−サイアロ
ン粉末を、アルミノシリケート粉末及びカーボン粉末の
混合粉末をM素含有雰囲気中で加熱し、X1元窒化反応
により、製造する方法に関するものである。Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for producing β-sialon powder, in which β-sialon powder, which is a raw material for producing sialon ceramics, is mixed with aluminosilicate powder and carbon powder. The present invention relates to a method of manufacturing by heating a mixed powder in an atmosphere containing M elements and performing an X1 element nitriding reaction.
サイアロン系セラミックスは、耐熱性が高く、熱衝撃抵
抗や機械的強度も高く、かつ、化学的にも安定で耐酸化
性及び溶融金属に対する耐食性が高い、これらの優れた
性質により、サイアロン系セラミックスはガスタービン
等の耐熱エンジニングセラミックス材料として有望視さ
れている。Sialon ceramics have high heat resistance, high thermal shock resistance and mechanical strength, and are also chemically stable and have high oxidation resistance and corrosion resistance against molten metal.These excellent properties make sialon ceramics It is seen as a promising material as a heat-resistant engineering ceramic material for gas turbines, etc.
〔従来の技術]
上記サイアロンセラミックスの製造に用いるβ−サイア
ロン粉末の製法にはいろいろな公知の方法があるが、そ
の一つにアルミノシリケート系化合物とカーボンの混合
物から製造する方法がある。[Prior Art] There are various known methods for producing β-sialon powder used in producing the above-mentioned sialon ceramics, and one of them is a method for producing β-sialon powder from a mixture of an aluminosilicate compound and carbon.
例えば、特開昭53−104616号公報には、火山ガ
ラスとカーボンの混合物を窒素気流中1300〜140
0℃で還元窒化反応させてβ−サイアロン粉末を製造す
る方法が、また、特開昭59−121105号公報には
、カオリナイト、パイロフィライト、ムライト等のアル
ミノシリケート、アルミナ及びカーボンの混合物の圧粉
体を1400〜1530℃、窒素気流中で還元窒化反応
させてB−サイアロン粉末を製造する方法が開示されて
いる。For example, in Japanese Patent Application Laid-Open No. 53-104616, a mixture of volcanic glass and carbon was heated at 1300 to 140
JP-A-59-121105 discloses a method for producing β-SiAlON powder by carrying out a reductive nitriding reaction at 0°C. A method for producing B-sialon powder by subjecting a green compact to a reduction-nitridation reaction at 1400 to 1530° C. in a nitrogen stream is disclosed.
〔発明が解決しようとする課題]
しかしながら、上記の特開昭53−104616号の方
法は、原料として天然の火山ガラス粉末を用いているた
め、β−サイアロンに必要な5iOa、 AjaOsの
他に約lO%にも及ぶ不純物(例えばFears−アル
カリ酸化物等)を含有し、また、その粒径も44μmに
及ぶ粗さを有し、製造されたβ−サイアロン粉末にはS
iC,5iaONa、β−5iJ4等多量の副生成物が
含まれている。[Problems to be Solved by the Invention] However, since the method of JP-A-53-104616 uses natural volcanic glass powder as a raw material, in addition to 5iOa and AjaOs necessary for β-sialon, about The β-SiAlON powder contains S.
It contains a large amount of by-products such as iC, 5iaONa, and β-5iJ4.
また、原料としてアルミノシリケートを用いる特開昭5
9−121105号の方法では、固相反応をさせるにも
拘らず、その原料粉末の粒度が考慮されていないため、
その収率は96%程度にとどまり、また得られたβ−サ
イアロン粉末(2値2〜3)の窒素含有量が理論値より
4〜5%も低く、不純物としてAji03を含んでいる
。In addition, JP-A-5, which uses aluminosilicate as a raw material,
In the method of No. 9-121105, although the solid phase reaction is carried out, the particle size of the raw material powder is not taken into consideration.
The yield is only about 96%, and the nitrogen content of the obtained β-sialon powder (binary value 2 to 3) is 4 to 5% lower than the theoretical value, and it contains Aji03 as an impurity.
このように、従来法で製造されたβ−サイアロン粉末は
不純物を含んでいるため、その粉末を用いて製造された
B−サイアロン焼結体は、β−サイアロン固有の特性で
ある耐熱性、熱衝撃抵抗、機械的強度、耐酸化性、耐食
性等を低下させていた。As described above, β-SiAlON powder produced by the conventional method contains impurities, so the B-SiAlON sintered body produced using this powder has the unique properties of β-SiAlON, such as heat resistance and Impact resistance, mechanical strength, oxidation resistance, corrosion resistance, etc. were reduced.
[課題を解決するための手段)
本発明者らは、上記従来法の欠点を踏まえ、β−サイア
ロン製造に用いる原料の反応性を中心に多年研究してき
たところ、高純度で、かつ、特定の細かさを有するムラ
イト質粉末から製造されたβ−サイアロン粉末が焼結体
原料として最適であることを見出し1本発明を完成に導
いた。[Means for Solving the Problems] In view of the drawbacks of the conventional methods described above, the present inventors have conducted research for many years focusing on the reactivity of raw materials used in the production of β-sialon, and have found that high purity and specific It was discovered that β-sialon powder produced from fine mullite powder is optimal as a raw material for a sintered body, and this led to the completion of the present invention.
すなわち1本発明は、アルミノシリケート粉末及びカー
ボン粉末の混合粉末を窒素含有雰囲気中で加熱し、還元
窒化反応によりβ−サイアロン粉末を製造する方法にお
いて、該アルミノシリケート粉末として平均粒径が5a
m以下で、かつ、 SiO□とAjaOiの含有量が9
9.5%以上のムライト質粉末を用いることを特徴とす
るβ−サイアロン粉末の製造方法である。That is, 1 the present invention provides a method for producing β-sialon powder by heating a mixed powder of aluminosilicate powder and carbon powder in a nitrogen-containing atmosphere and performing a reductive nitriding reaction, wherein the aluminosilicate powder has an average particle size of 5a.
m or less, and the content of SiO□ and AjaOi is 9
This is a method for producing β-sialon powder, characterized in that 9.5% or more of mullite powder is used.
ここでムライト質粉末とは、ムライト(3Affi、0
3・2SiO□)が0重量%〈ムライト≦92.5重置
%で、SiO□が100重量%>Sin□≧7.5重量
%からなる混合物又は化合物をいう。Here, the mullite powder refers to mullite (3Affi, 0
3.2SiO□) is 0% by weight (mullite≦92.5% by weight), and SiO□ is 100% by weight>Sin□≧7.5% by weight.
また、β−サイアロンとは一般式・
5is−xAI−OJa−i (ココ”C’ O< Z
≦4.2 )で表されるシリコンアルミニウムオキシ
ナイトライド(Si−AI−0−N系化合物)である。In addition, β-Sialon has the general formula: 5is-xAI-OJa-i (here "C'O< Z
≦4.2) is a silicon aluminum oxynitride (Si-AI-0-N-based compound).
〔作用J
本発明のβ−サイアロン粉末の製造方法においては、平
、均粒径が511■以下、好ましくは2Htm以下でS
iO□と八1□03の含有量が99.5%以上のムライ
ト質粉末とカーボンとを原料として還元窒化反応させる
ので、その反応系に共存する5μ麿以下のムライトが反
応促進剤となって上記の還元窒化反応を促進させるもの
と思われる。その結果1反応の進行に伴い残余のムライ
ト質粉末の窒化反応も容易に生起し、微細で高純度のサ
イアロン系粉末が得られる。[Function J] In the method for producing β-sialon powder of the present invention, the average particle size is 511 cm or less, preferably 2 Htm or less, and S
Since the mullite powder containing 99.5% or more of iO□ and 81□03 and carbon are used as raw materials for a reduction-nitriding reaction, the mullite of 5 μm or less coexisting in the reaction system acts as a reaction accelerator. It is thought that this promotes the above-mentioned reductive nitriding reaction. As a result, as the first reaction progresses, the nitriding reaction of the remaining mullite powder easily occurs, resulting in a fine and highly pure sialon powder.
本発明の還元窒化反応は、窒素雰囲気中で行われ、温度
は!350〜1600℃1反応時間は0.5〜6時間で
十分である。The reductive nitriding reaction of the present invention is carried out in a nitrogen atmosphere at a temperature of ! A reaction time of 0.5 to 6 hours at 350 to 1600°C is sufficient.
出発原料アルミノシリケート粉末中のSi/Aj比及び
カーボン粉末の置は、目的とするβ−サイアロン系粉宋
の種類によって選択される。The Si/Aj ratio in the starting material aluminosilicate powder and the position of the carbon powder are selected depending on the type of the desired β-sialon powder.
本発明の原料のアルミノシリケート粉末及びカーボン粉
末の混合粉末には、β−サイアロン又はY、 Ce、
La及びHfから選ばれた希土類の酸化物のうち少なく
とも1種をアルミノシリケート粉末1重量部に対して0
.003〜0.3重量部配合することができる。The mixed powder of aluminosilicate powder and carbon powder, which is the raw material of the present invention, contains β-sialon or Y, Ce,
At least one rare earth oxide selected from La and Hf is added to 1 part by weight of the aluminosilicate powder.
.. 0.003 to 0.3 parts by weight can be blended.
このような調整粉末を窒素含有雰囲気中で加熱し、還元
窒化反応させて主としてβ−サイアロンよりなる粉末を
製造すると、配合されたβ−サイアロン又は希土類酸化
物により還元窒化反応が一層促進され、微細なβ−サイ
アロン粉末が得られる。When such a prepared powder is heated in a nitrogen-containing atmosphere and subjected to a reductive nitriding reaction to produce a powder mainly composed of β-sialon, the reductive nitriding reaction is further promoted by the blended β-sialon or rare earth oxide, and fine particles are formed. β-Sialon powder is obtained.
このようにして得られたサイアロン系粉末は、微細で高
純度であるため、焼結性が良く、かつ、不純物が少ない
ので、β−サイアロンセラミックス固有の特性である耐
熱性、熱衝撃抵抗、機械的強度、耐酸化性、対食性等を
十分発揮させることができる。The Sialon-based powder obtained in this way is fine and highly pure, so it has good sinterability and has few impurities, so it has excellent heat resistance, thermal shock resistance, mechanical It can fully exhibit physical strength, oxidation resistance, corrosion resistance, etc.
〔実施例1
実施例1
平均粒径が2.01111で、SiO□とA1□03の
含有量が99.8重量%のムライト質粉末fAl/Si
= 3/2) 10口gと平均粒径0.03mmのカー
ボン粉末50gをボールミル混合して原料を調製した。[Example 1 Example 1 Mullite powder fAl/Si with an average particle size of 2.01111 and a content of SiO□ and A1□03 of 99.8% by weight
= 3/2) A raw material was prepared by mixing 10 g of carbon powder and 50 g of carbon powder with an average particle size of 0.03 mm in a ball mill.
この原料粉末を、窒素雰囲気中1430℃で2時間還元
窒化させた後、大気中700℃で5時間加熱処理して残
留カーボンを除去した。This raw material powder was reduced and nitrided at 1430° C. for 2 hours in a nitrogen atmosphere, and then heat-treated at 700° C. for 5 hours in the air to remove residual carbon.
得られた生成物は平均粒径1.0μIの灰色粉末で、そ
の収率は約97重量%であった。The product obtained was a gray powder with an average particle size of 1.0 μI, and the yield was about 97% by weight.
この粉末をX線回折したところ、S1□4A13s03
.8N4.4で示されるサイアロン化合物であった。When this powder was subjected to X-ray diffraction, S1□4A13s03
.. It was a sialon compound represented by 8N4.4.
この粉末の純度は約99.5Nt量%、金属不純物は0
05重量%、残留炭素は0.4重量%であった。The purity of this powder is approximately 99.5Nt%, with 0 metal impurities.
05% by weight, and residual carbon was 0.4% by weight.
実施例2
平均粒径が0.51mで、SiO□とAj□03の含有
量が99.8重量%以上のムライト質粉末fAl/Si
= 3/21100gを用いて、実施例1と同一条件で
原料の調製、還元窒化及び加熱処理を行った。Example 2 Mullite powder fAl/Si with an average particle size of 0.51 m and a content of SiO□ and Aj□03 of 99.8% by weight or more
= 3/21 Using 100 g, raw material preparation, reduction nitridation, and heat treatment were performed under the same conditions as in Example 1.
得られた生成物は平均粒径0.7amの灰色粉末で、そ
の収率は約98重量%であった。The product obtained was a gray powder with an average particle size of 0.7 am, and the yield was about 98% by weight.
この粉末をX線回折したところ、5li4A13. s
ol 8N4.4で示されるサイアロン化合物であった
。When this powder was subjected to X-ray diffraction, it was found that 5li4A13. s
It was a sialon compound represented by ol 8N4.4.
この粉末の純度は約99.5重量%、金属不純物は0.
05重量%、残留炭素は0.3重量%であった6比較例
1
平均粒径が10μmで、Sin、とAj、0.の含有量
が99.8重量%以上のムライト質粉末fA1/Si=
3/21100gを用いて、実施例1と同一条件で原
料の調製、還元窒化及び加熱処理を行った。The purity of this powder is approximately 99.5% by weight, with 0.0% metal impurities.
05% by weight, residual carbon was 0.3% by weight 6 Comparative Example 1 The average particle size was 10 μm, Sin, Aj, 0. Mullite powder with a content of 99.8% by weight or more fA1/Si=
Using 100 g of 3/21, raw material preparation, reduction nitridation, and heat treatment were performed under the same conditions as in Example 1.
その結果、収率約98重量%で、平均粒径3.0μmの
灰色粉末が得られ、この粉末をx#i回折したところ、
Si2. aAls、 1103. sea、 4で示
されるβ−サイアロン粉末、3Affi203・2Si
O□で示されるムライト及びSiO□で示されるシリカ
の混合物であった。As a result, a gray powder with an average particle size of 3.0 μm was obtained with a yield of about 98% by weight, and when this powder was subjected to x#i diffraction,
Si2. aAls, 1103. sea, β-sialon powder indicated by 4, 3Affi203・2Si
It was a mixture of mullite, denoted by O□, and silica, denoted by SiO□.
比較例2
平均粒径が2.Oumで、5iOzとAj、0.の含有
量が95重量%のムライト質粉末(Al/Si= 3/
21100gを用いて、実施例1と同一条件で原料の調
製、還元窒化及び加熱処理を行った。Comparative Example 2 Average particle size is 2. Oum, 5iOz and Aj, 0. Mullite powder with a content of 95% by weight (Al/Si=3/
Using 21,100 g, raw material preparation, reduction nitriding, and heat treatment were performed under the same conditions as in Example 1.
その結果、収率約98重量%で、平均粒径1.hmの灰
色粉末が得られ、この粉末をX線回折したところ、 S
124AQz、sOx 8N4.4で示されるβ−サイ
アロン粉末であった。この粉末の純度は約96重量%で
金属不純物は3.0重量%、残留炭素は0.6重量%で
あった。As a result, the yield was about 98% by weight, and the average particle size was 1. A gray powder of hm was obtained, and when this powder was subjected to X-ray diffraction, S
The β-sialon powder was 124AQz, sOx 8N4.4. The purity of this powder was approximately 96% by weight, metal impurities were 3.0% by weight, and residual carbon was 0.6% by weight.
実施例3
Aj/Si= 1/11に調整した平均粒径が0.5μ
田で。Example 3 Average particle size adjusted to Aj/Si=1/11 is 0.5μ
In the fields.
5102とA1□0.の含有量が99.8重量%以上の
ムライト質粉末100gと平均粒径0.03Hのカーボ
ン粉末80gとをボールミル混合して原料を調製した。5102 and A1□0. A raw material was prepared by mixing 100 g of mullite powder having a content of 99.8% by weight or more with 80 g of carbon powder having an average particle size of 0.03H in a ball mill.
この原料を窒素雰囲気中1460℃で4時間還元窒化さ
せ、次いで大気中700℃で5時間加熱処理して残留カ
ーボンを除去した。This raw material was reduced and nitrided at 1460° C. for 4 hours in a nitrogen atmosphere, and then heat-treated at 700° C. for 5 hours in the air to remove residual carbon.
得られた生成物は平均粒径0.hmの灰色粉末で、その
収率は約96重量%であった。この粉末をX線回折した
ところ、Sts、5Ajo soo、sNy sで不さ
れるサイアロン粉末であった。この粉末の純度は約99
.5重量%で、金属不純物は0.05重I%、残留炭素
は0.4重量%であった。The obtained product has an average particle size of 0. The yield was about 96% by weight as a gray powder of hm. When this powder was subjected to X-ray diffraction, it was found to be Sialon powder containing Sts, 5Ajo soo, and sNys. The purity of this powder is approximately 99
.. 5% by weight, metal impurities were 0.05% by weight, and residual carbon was 0.4% by weight.
実施例4
Aj/Si= 1/11に調整した、平均粒径が0.5
uwで5102とAffi、03の含有量が99.8重
量%のムライト質粉末100g、平均粒径0.03ut
aのカーボン粉末80g及び平均粒径0.8Bのβ−サ
イアロン粉末(Sis、 5Ajo 5O0sNt、
s)3gをボールミル混合して原料を調製した。Example 4 Average particle size adjusted to Aj/Si=1/11, 0.5
100g of mullite powder containing 99.8% by weight of 5102 and Affi, 03 in uw, average particle size 0.03ut
80 g of carbon powder of a and β-sialon powder with an average particle size of 0.8B (Sis, 5Ajo 5O0sNt,
s) 3 g was mixed in a ball mill to prepare a raw material.
この原料を窒素雰囲気中、1460℃で3時間還元窒化
させ1次いで、大気中700℃で5時間加熱処理して残
留カーボンを除去した。This raw material was reduced and nitrided in a nitrogen atmosphere at 1460° C. for 3 hours, and then heat-treated in the air at 700° C. for 5 hours to remove residual carbon.
得られた生成物の収率、純度は実施例3と同様で、平均
粒径0.6μ■の灰色粉末が得られた。この粉末をXJ
1回折回折ところ、Sts、Jjo、sOo 5Nt
sで示されるサイアロン粉末であった。The yield and purity of the product obtained were the same as in Example 3, and a gray powder with an average particle size of 0.6 μm was obtained. XJ this powder
1st diffraction diffraction, Sts, Jjo, sOo 5Nt
It was a sialon powder indicated by s.
実施例5
AI/Si= 1/11に調整した。平均粒径0.5μ
IでSiOxとNapsの含有量が99.8重量%以上
のムライト質粉末100g、平均粒径0.03g−のカ
ーボン粉末80g及び平均粒径I11腸の酸化イツトリ
ウム(Y2O,13gをボールミル混合して原料を調製
した。Example 5 AI/Si was adjusted to 1/11. Average particle size 0.5μ
100 g of mullite powder with a content of SiOx and Naps of 99.8% by weight or more in I, 80 g of carbon powder with an average particle size of 0.03 g, and 13 g of yttrium oxide (Y2O, with an average particle size of I11) were mixed in a ball mill. Raw materials were prepared.
この原料粉末を窒素雰囲気中、 1460℃で3時間還
元窒化させ、大気中700℃で5時間加熱処理して残留
カーボンを除去した。This raw material powder was reduced and nitrided in a nitrogen atmosphere at 1460°C for 3 hours, and then heat-treated in the air at 700°C for 5 hours to remove residual carbon.
得られた生成物の収率、純度は実施例3と同様で、平均
粒径0.6g■の灰色粉末が得られた。この粉末をX線
回折したところ、4重量%Y20.〜96重量%Szs
、 sAl+606 sat sで示されるサイアロン
粉末であった。The yield and purity of the product obtained were the same as in Example 3, and a gray powder with an average particle size of 0.6 g was obtained. When this powder was subjected to X-ray diffraction, it was found that 4% by weight Y20. ~96% by weight Szs
, sAl+606 sat s.
【発明の効果]
本発明のβ−サイアロン粉末の製造方法は、平均粒径が
5++s*以下で、SiO□とAjzOsの含有量が9
9.5%以上のムライト質粉末とカーボンとを原料とし
て還元窒化反応させるので、その反応系に共存するSI
I■以下のムライトが反応促進剤となって還元窒化反応
が促進され、微細で高純度のサイアロン系粉末が得られ
る。[Effect of the invention] The method for producing β-sialon powder of the present invention has an average particle size of 5++s* or less and a content of SiO□ and AjzOs of 9
Since the reduction-nitridation reaction is performed using 9.5% or more of mullite powder and carbon as raw materials, SI coexisting in the reaction system
The mullite of I■ or less acts as a reaction accelerator to promote the reduction-nitridation reaction, resulting in a fine and highly pure sialon-based powder.
このようにして得られた微細で高純度のサイアロン系粉
末は、焼結性が良く、かつ、不純物が少ないので、β−
サイアロンセラミックス固有の特性である耐熱性、熱衝
撃抵抗5機械的強度、耐酸化性、耐食性等を十分発揮さ
せることができる。The fine, high-purity sialon-based powder obtained in this way has good sinterability and contains few impurities, so it has β-
It is possible to fully exhibit the heat resistance, thermal shock resistance, mechanical strength, oxidation resistance, corrosion resistance, etc. that are unique to Sialon ceramics.
Claims (2)
粉末を窒素含有雰囲気中で加熱し、還元窒化反応により
β−サイアロン粉末を製造する方法において、該アルミ
ノシリケート粉末として平均粒径が5μm以下で、かつ
、SiO_2とAl_2O_3の含有量が99.5%以
上のムライト質粉末を用いることを特徴とするβ−サイ
アロン粉末の製造方法。(1) In a method for producing β-sialon powder by heating a mixed powder of aluminosilicate powder and carbon powder in a nitrogen-containing atmosphere and performing a reductive nitriding reaction, the aluminosilicate powder has an average particle size of 5 μm or less, and A method for producing β-sialon powder, characterized by using mullite powder having a content of SiO_2 and Al_2O_3 of 99.5% or more.
はY、Ce、La及びHfから選ばれた希土類の酸化物
のうち少なくとも1種をアルミノシリケート粉末1重量
部に対して0.003〜0.3重量部配合した調整粉末
を用いる請求項1に記載のβ−サイアロン粉末の製造方
法。(2) As the aluminosilicate powder, at least one of β-sialon or a rare earth oxide selected from Y, Ce, La, and Hf is added in an amount of 0.003 to 0.3 parts by weight per 1 part by weight of the aluminosilicate powder. The method for producing β-sialon powder according to claim 1, which uses the blended adjusted powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2120453A JP2984796B2 (en) | 1990-05-10 | 1990-05-10 | Production method of β-sialon powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2120453A JP2984796B2 (en) | 1990-05-10 | 1990-05-10 | Production method of β-sialon powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0416564A true JPH0416564A (en) | 1992-01-21 |
JP2984796B2 JP2984796B2 (en) | 1999-11-29 |
Family
ID=14786563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2120453A Expired - Lifetime JP2984796B2 (en) | 1990-05-10 | 1990-05-10 | Production method of β-sialon powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2984796B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131869A (en) * | 2006-11-27 | 2008-06-12 | Shimano Inc | Stretchable fishing rod |
-
1990
- 1990-05-10 JP JP2120453A patent/JP2984796B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008131869A (en) * | 2006-11-27 | 2008-06-12 | Shimano Inc | Stretchable fishing rod |
Also Published As
Publication number | Publication date |
---|---|
JP2984796B2 (en) | 1999-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4428916A (en) | Method of making α-silicon nitride powder | |
EP0124199B1 (en) | Silicon aluminium oxynitride ceramic product and method of production | |
JPS5891005A (en) | Production of silicon nitride powder | |
JPS6047205B2 (en) | Method for producing silicon nitride powder | |
JPH0416564A (en) | Production of beta-sialon powder | |
JPH0611667B2 (en) | Method for producing alumina-silica ceramics sintered body having excellent high temperature strength | |
JPS63239104A (en) | Production of fine silicon nitride powder containing beta-phase | |
JPS6357383B2 (en) | ||
JPS61242905A (en) | Production of alpha-silicon nitride powder | |
JPS6047204B2 (en) | Method for manufacturing silicon nitride powder | |
JP3124863B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3007732B2 (en) | Silicon nitride-mixed oxide sintered body and method for producing the same | |
JPS58176109A (en) | Production of alpha-type silicon nitride | |
JP3620865B2 (en) | Silicon nitride composite sintered body and method for producing the same | |
JPH0733290B2 (en) | Silicon nitride sintered body and manufacturing method thereof | |
JPS60145902A (en) | Production of sialon powder | |
JP3034106B2 (en) | Method for producing silicon nitride based sintered body | |
JP2639687B2 (en) | Method for producing acicular silicon nitride | |
JP2652936B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3247688B2 (en) | Manufacturing method of high strength alumina-silica ceramics | |
JP3124862B2 (en) | Method for producing silicon nitride based sintered body | |
JP3251060B2 (en) | Silicon nitride powder | |
JPS5950006A (en) | Manufacture of alpha-type silicon nitride powder | |
JPS5891006A (en) | Manufacture of alpha-type silicon nitride powder | |
JPS58204813A (en) | Preparation of powdery carbide and nitride of silicon |