JPS5891006A - Manufacture of alpha-type silicon nitride powder - Google Patents

Manufacture of alpha-type silicon nitride powder

Info

Publication number
JPS5891006A
JPS5891006A JP18844681A JP18844681A JPS5891006A JP S5891006 A JPS5891006 A JP S5891006A JP 18844681 A JP18844681 A JP 18844681A JP 18844681 A JP18844681 A JP 18844681A JP S5891006 A JPS5891006 A JP S5891006A
Authority
JP
Japan
Prior art keywords
powder
si3n4
particle size
crystalline
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18844681A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
寛 井上
Katsutoshi Yoneya
勝利 米屋
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP18844681A priority Critical patent/JPS5891006A/en
Publication of JPS5891006A publication Critical patent/JPS5891006A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture alpha-type Si3N4 powder in a high yield by hydrolyzing a liq. material prepared by adding carbon powder and Si3N4 powder or SiC powder to methyltrichlorosilane and by treating the resulting precipitate under heating in an N2 atmosphere. CONSTITUTION:To methyltrichlorosilane (A) having >=99% purity fed by an amount required to form 1 part by weight of SiO2 by hydrolysis and calcination are added 0.1-2 parts carbon powder (B) having <=1mum average particle size and >=99% purity and 0.005-1.0 part crystalline Si3N4 powder and/or SiC powder (C) having <=2mum average particle size and >=99% purity. The prepared liq. material is hydrolyzed, washed and dried. The resulting precipitate is heated to 1,300-1,500 deg.C in an atmosphere contg. N2 to cause reduction and nitriding reactions, or it is further treated under heating at 600-800 deg.C in an oxidizing atmosphere. Thus, high quality alpha-type Si3N4 powder having a uniform and minute particle size and suitable for use as a heat resistant high stress material is obtd.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明はαS窒化ケイ素(α型S i 3N4)粉末の
製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a method for producing αS silicon nitride (α-type Si 3N4) powder.

(従来技術およびその問題点) 例えば窒化ケイ累−酸化イットリウムもしくけ酸化マグ
ネシウム(S i 31’J4  Y2O3もしくはS
i3N4−MgO系)焼結体は機械的強度が高く巨つ耐
熱性もすぐれているため高温ガスタービン部材への適用
が試みられている。しかして上記SI3N4系焼結体を
高温高応力材料として実用に供する場合には高昌時にお
ける物理的、化学的安定性と信頼性が厳しく要求される
。とりわけ重要な因子である熱的、機械的特性は出発原
料の種類、不純物含有着に大きく影響され窒化ケイ素に
ついてはできるだけα型SI3N4粉末を多く含んでい
ることが望まれる。
(Prior art and its problems) For example, silicon nitride-yttrium oxide or magnesium oxide (S i 31'J4 Y2O3 or S
Since the i3N4-MgO-based sintered body has high mechanical strength, large size, and excellent heat resistance, attempts have been made to apply it to high-temperature gas turbine components. However, when the above-mentioned SI3N4-based sintered body is used as a high-temperature, high-stress material, physical and chemical stability and reliability at high temperatures are strictly required. Thermal and mechanical properties, which are particularly important factors, are greatly influenced by the type of starting materials and impurity content, and it is desirable for silicon nitride to contain as much α-type SI3N4 powder as possible.

ところでSI3N4粉末の合成法としては一般に(1)
金属けい素粉末を窒化させる方法3si+2N2→5I
3N4 (2)四塩化けい素やシランとアンモニアを原料とする
気相反応法 35iC14+ 4 NH3→S i 3 N4 +1
2 HClなど+31ノIJ力(Sin2)を反応量論
比程匿のカーボンCで還元して得だSiOを窒化する方
法3 SiO2+6C+2Nz→S i 3N4 + 
6 COが採られている。
By the way, the general method for synthesizing SI3N4 powder is (1)
Method for nitriding metal silicon powder 3si+2N2→5I
3N4 (2) Gas phase reaction method using silicon tetrachloride, silane and ammonia as raw materials 35iC14+ 4 NH3→S i 3 N4 +1
2 Method of nitriding SiO obtained by reducing +31 IJ force (Sin2) such as HCl with carbon C of reaction stoichiometry 3 SiO2 + 6C + 2Nz → Si 3N4 +
6 CO is collected.

しかしく1)の場合のSiの窒化が発熱反応で、その発
熱制御のためプロセス上工夫を要し例えばSiとして比
較的粗粒のものを選び嗜化後微粉砕化している。このた
め不純物の混入が避けられず(粉砕過程)、耐火レンガ
など一般耐熱材料としての使用には支障ないが高温ガス
タービン用などには適さない。
However, in the case of 1), the nitriding of Si is an exothermic reaction, and in order to control the heat generation, a process must be devised. For example, relatively coarse grains of Si are selected and pulverized after attenuation. For this reason, contamination with impurities is unavoidable (during the crushing process), and although there is no problem in using it as a general heat-resistant material such as refractory bricks, it is not suitable for high-temperature gas turbines.

また(2)の場合は例えば半導体素子の表面被覆などに
は適するが無機耐熱材料には量産的とけ云えず工業的製
造には適さない。
In the case of (2), it is suitable for, for example, surface coating of semiconductor elements, but cannot be mass-produced as an inorganic heat-resistant material and is not suitable for industrial manufacturing.

さらに(3)の場合は原料として光分精製されたS +
 02粉末およびC粉末を用いる必要があるばかりでな
く生成物はα型S’ 3N4 +β型S’3N4+シリ
コンオキンナイトライド(S i 2ON2 )および
SiCなどの混合系でα型S i 3N4の収率が低い
と云う欠点がある。即ちこの場合には反応操作上煩雑さ
を要しないと云う利点がある反面、上記の如く収率(α
咽Si3N4の含有率が低い)が劣るため実用的でない
Furthermore, in the case of (3), optically purified S + is used as a raw material.
Not only is it necessary to use 02 powder and C powder, but the product is a mixed system of α-type S' 3N4 + β-type S'3N4 + silicon oquine nitride (S i 2ON2 ) and SiC, etc. The disadvantage is that the rate is low. That is, in this case, although there is an advantage that no complicated reaction operation is required, as mentioned above, the yield (α
It is not practical because the content of Si3N4 is low.

さらに上記(1)〜(3)の製法を用いた場合にはその
粒径を小さくする事、ならびに粒径および粒径のバラツ
キを小さくする事が困難であった。本発明行らはこのよ
うな点に対処して検討を進めた結果、上記シリカ(Si
n2)の還元、窒化法(てしいて、高温で分解j7てS
 i 02となるメチルトリクロルシランを原料として
、且つ微細な結晶質窒化ケイ素(Si3N4)粉をC粉
末とともに所定量共存させて加水分解させた後、反応温
度を所定温度に選んだ場合、高品質のα型Si3N4粉
末が(著しく微粒子)高収率で、かつ粒径の微細化及び
均一化を向上でさることを見い出した。
Furthermore, when the above manufacturing methods (1) to (3) were used, it was difficult to reduce the particle size and to reduce the particle size and the variation in particle size. The inventors of the present invention have addressed these points and proceeded with their studies, and as a result, the above-mentioned silica (Si
n2) reduction, nitriding method (decomposition at high temperature)
Using methyltrichlorosilane as a raw material and hydrolyzing fine crystalline silicon nitride (Si3N4) powder together with C powder in a predetermined amount, if the reaction temperature is selected at a predetermined temperature, high quality It has been found that the α-type Si3N4 powder (remarkably fine particles) has a high yield and improves the refinement and uniformity of the particle size.

(発明の目的) 本発明はこのような知見に基づき、煩雑な操作乃至反応
装置を要せずにSi3N4系の高温高応力材料用として
適するα型Si3N4粉末を尚収率でかつ粒径の微細化
及び均一性を向上させる事のできる製造方法を庚供しよ
うとするものである。
(Objective of the Invention) Based on this knowledge, the present invention has been developed to produce α-type Si3N4 powder suitable for Si3N4-based high-temperature, high-stress materials at a high yield and with fine particle size without requiring complicated operations or reaction equipment. The aim is to provide a manufacturing method that can improve uniformity and uniformity.

(発明の概要) 以下本発明の詳細な説明すると、本発明はシリカ(Si
02 ) 1. k を部を加水分解焼成処理して生成
するに相当するー:のメチルトリクロルシランに、カー
ボン(c)粉末01〜2重鎗部と結畠質の窒化ケイ素(
Si3N4)粉末、炭化ケイ素(SiC)粉末の少なく
ともいずれか1種0.005〜1.0畝縁部との割合で
混合してなる液状懸濁物質を加水分解、洗浄、乾燥1〜
、得られた沈l殿物を窒素を含むふん囲気中1300〜
151) 0°Cで加熱処理l〜、蓋元、窒化反応させ
、要すればさらに酸化性雰囲気下600〜800’Oで
加熱肌理を施すことを特徴とするα型窒化ケイ素(α型
5i3N4)粉末の製造方法である。本発明において出
発原料として用いるメチルトリクロルシラン−カーボン
−結晶質窒化ケイ素などの(CH3S i C1h  
C−8!aN4)混合系においてメチルトリクロルシラ
ンを加水分解、焼成処理して得られる81021市着部
に換算して、5i02(CI−I3S’1C13から)
−C−8i3N4を1:01〜2:0.005〜1.0
の重量割合に選冨のは次の理由による。即ち換算5i0
21重着部当りCが0.1重寸部未満では5i02が未
反応として残留し、かつ、512ON2の多酸生成がみ
られる反面α観S i 3N4の生成吐が少なく、また
2重1部を超えるとβ型SI3N4の生成がみられ結果
的にα−313N4の純度が悪化するほか、とくに収率
低下がみられるからである。
(Summary of the Invention) The present invention will be described in detail below.
02) 1. Carbon (c) powder 01 to 2 layers and granular silicon nitride (corresponding to that produced by hydrolysis and calcination treatment of k) are added to methyltrichlorosilane of
A liquid suspension obtained by mixing at least one of Si3N4) powder and silicon carbide (SiC) powder in a ratio of 0.005 to 1.0 ridges is hydrolyzed, washed, and dried.
, the resulting precipitate was heated in a nitrogen-containing atmosphere for 1300~
151) α-type silicon nitride (α-type 5i3N4) characterized by heat treatment at 0°C, nitriding reaction at the base of the lid, and if necessary further heating texture at 600 to 800°C in an oxidizing atmosphere. This is a method for producing powder. Methyltrichlorosilane-carbon-crystalline silicon nitride used as a starting material in the present invention
C-8! aN4) 5i02 (from CI-I3S'1C13) in terms of 81021 obtained by hydrolyzing and firing methyltrichlorosilane in a mixed system
-C-8i3N4 1:01~2:0.005~1.0
The reason for selecting the weight ratio is as follows. That is, conversion 5i0
If C is less than 0.1 heavy part per 21 heavy part, 5i02 remains unreacted and the production of polyacid 512ON2 is observed, but less α-view Si 3N4 is produced and 1 part of double This is because if the amount exceeds 100%, the formation of β-type SI3N4 is observed, resulting in a deterioration in the purity of α-313N4, and in particular, a decrease in the yield.

一方換xSi021重量部に対する結晶質のS’ 3 
N4 rSiCのうち少なくとも1種の比が0.005
ti部未満ではα型S i 3N4の高収率化効果が少
なく、逆に1tli部を超えると酸化物還元で得られる
好ましい粉末特性を有する粉末が得られず添加した5j
3N4粉末の特性が顕著となり本来の目的が達すられな
い。しかしてこれらCH3SI C13T Cおよび結
晶質S i 3N4の各原料成分はいずれも99係程I
f以上の高純度のものが好ましく、また粒度については
Cは平均粒径1μm以下のものが、結晶質5j3N4は
なるべく微粒、たとえば2μm以下のものがそれぞれ好
ましい。尚原料として用いる結晶質Si3N4はα型が
よいがβ型を含むものでもまた他の元素例えば/Ll、
oなと固溶しているものでもさしつかえない。さらに結
晶質5i3N40代りに結晶質の炭化ケイ素SiCなど
の単独あるいはそれ゛らの混合物、まだはこれらの1部
を金属Siで置きかえても同様な反応促進効果かえられ
る。但し、結晶質SiC。
Crystalline S' 3 for parts by weight of monoconverted xSi021
The ratio of at least one of N4 rSiC is 0.005
If it is less than ti part, the effect of increasing the yield of α-type S i 3N4 is small, and on the other hand, if it exceeds 1 tli part, a powder with favorable powder characteristics obtained by oxide reduction cannot be obtained, and the added 5j
The characteristics of the 3N4 powder become so pronounced that the original purpose cannot be achieved. However, each raw material component of these CH3SI C13T C and crystalline S i 3N4 has a 99 coefficient I.
It is preferable to have a high purity of f or more, and as for the particle size, it is preferable that C has an average particle size of 1 μm or less, and that crystalline 5j3N4 has as fine particles as possible, for example, 2 μm or less. The crystalline Si3N4 used as a raw material is preferably in the α-type, but it may also contain the β-type or other elements such as /Ll,
Even if it is a solid solution, it is acceptable. Further, the same reaction promoting effect can be obtained by replacing crystalline 5i3N40 with crystalline silicon carbide, SiC, etc., alone or in a mixture thereof, or by replacing a portion of these with metal Si. However, crystalline SiC.

を用いた場合には純度の点でやや劣る傾向が認められる
。以下メチルトリクロルシラ/の使用及び結晶質5i3
N41に8加を中心に説明を進める。メチルトリルクロ
ルシラン((y(3SiC13)Uシリコーン工業の副
産物として高純度品が豊富に供給される。ところでとの
檀シラン化合物としては他に例えばテトラヒドロ7ラン
(SiH4)、四塩化ケイ素(SiC14)、テトラエ
トキンンラン(Si(OC2Hs)4)、メチルシラン
(CI(3S iHa )、テトラメトキシシラン(S
 i (Cot−I3 )4)等がある。しかしてこれ
らの中でS l (OC2[(5) 4 。
There is a tendency for the purity to be slightly inferior when using . The following uses of methyltrichlorosila/ and crystalline 5i3
The explanation will focus on N41 and 8 additions. Methyltolylchlorosilane ((y(3SiC13)U) Highly purified products are abundantly supplied as a by-product of the silicone industry.By the way, other silane compounds include tetrahydro7rane (SiH4) and silicon tetrachloride (SiC14). , tetraethquinane (Si(OC2Hs)4), methylsilane (CI(3S iHa ), tetramethoxysilane (S
i (Cot-I3)4), etc. However, among these, S l (OC2[(5) 4 ).

Cl43Siトf3,5i(OCf(3)4などの素原
料は加水分解処理条件がむずかしく完全に分解しえない
欠点を有する。その状態で、加熱反応させると残存アル
コキシ基のため昇温途中で沈#物が凝集し、反応が円滑
に進行しなくなり、合成された5L3N4粉末の純IW
を極端に悪くする。その点メチルトリクロルシランは加
水分解処理が容易であり、発熱さえ十分に制御しさえす
れば次の反応式に従って完全な中間生成沈澱物が得られ
る。
Raw materials such as Cl43Si and f3,5i (OCf(3)4) have the disadvantage that they cannot be completely decomposed due to difficult hydrolysis treatment conditions.If the reaction is heated in that state, the residual alkoxy groups will cause precipitation during heating. # Things aggregate, the reaction does not proceed smoothly, and the synthesized 5L3N4 powder becomes pure IW.
make it extremely bad. In this respect, methyltrichlorosilane is easy to hydrolyze, and as long as the heat generation is sufficiently controlled, a complete intermediate precipitate can be obtained according to the following reaction formula.

CH3S i C1l 3 + H20→CH3S i
03/2+ HClここでメチルトリクロルシランを素
原料として用いると、さらに好ましい現象を生ずる。す
なわち加水分解時に多量のHCJが同時に生成するが、
HCeはCや結晶質513N4等に含まれるカルシウム
(Ca) 、鉄(F”e)等の不純物を除去するのにす
ぐれた効果がある。例えば通常採られている遣元法によ
るシリカ(S 102)粉末を用いC2Si3N4等を
ボールミルにより混合しS r 3 N4粉末を得る場
合に較べ本発明に係るメチルトリクロルシランカラノS
i3N4粉末を得た場合には不純物縫が8+02を出発
原料としたものに比べ1/10以下に減少する。本発明
においてもう一つの特徴である結晶質Si3N4゛粉末
添加についてさらに説明する。
CH3S i C1l 3 + H20→CH3S i
03/2+ HCl If methyltrichlorosilane is used as the raw material here, a more favorable phenomenon occurs. In other words, a large amount of HCJ is simultaneously generated during hydrolysis, but
HCe has an excellent effect in removing impurities such as calcium (Ca) and iron (F"e) contained in C and crystalline 513N4. For example, silica (S 102 ) powder and mixing C2Si3N4 etc. in a ball mill to obtain S r 3 N4 powder.
When i3N4 powder is obtained, the impurity content is reduced to 1/10 or less compared to when 8+02 is used as the starting material. The addition of crystalline Si3N4 powder, which is another feature of the present invention, will be further explained.

本発明においてメチルトリクロルシランの加水分解沈澱
物であるcl−(3S i03/2− C結晶質S’3
N4混合物の加熱焼成に際し、その雰囲気はN2.NI
]3.N2水素(1−(2)、N2−不活性ガスなどの
系が挙げられるが主反応ガスはN2またはNH3でなけ
ればならない。
In the present invention, cl-(3S i03/2-C crystalline S'3
When heating and firing the N4 mixture, the atmosphere is N2. N.I.
]3. Systems such as N2 hydrogen (1-(2), N2-inert gas) may be mentioned, but the main reaction gas must be N2 or NH3.

その理由は最終的に高純度のα型Si3N4の生成に大
きく影響することが実験的に確認されたからである。一
方このN2まだはNI■3を主反応ガスとする雰囲気中
での加熱焼成温度は1300〜1500’Oの範囲内に
選ばれる。その理由は1300’O未満ではS ! 3
N4が生成し難く、また1500°0を超えるとSiC
の生成がみられ、結局所望の、高温高応力材料用に適す
るα型5j3N4系粉末を得られないからである。
The reason for this is that it has been experimentally confirmed that it greatly influences the final production of highly pure α-type Si3N4. On the other hand, the firing temperature in this atmosphere containing N2 or NI3 as the main reaction gas is selected within the range of 1300 to 1500'O. The reason is that below 1300'O, S! 3
N4 is difficult to generate, and if the temperature exceeds 1500°0, SiC
This is because the desired α-type 5j3N4 powder suitable for high-temperature, high-stress materials cannot be obtained.

さらに上記N2などを主反応ガスとした雰囲気中での加
熱焼成後、酸化性雰囲気下での加熱処理は残存している
Cの除去を目的としたものであるがその温度は600〜
800°0の範囲に選ばれる。
Furthermore, after heating and firing in an atmosphere using N2 as the main reaction gas, heat treatment in an oxidizing atmosphere is aimed at removing residual C, but the temperature is 600 - 600℃.
The range is selected to be 800°0.

上記の如(5i02の置元、窒化反応において過剰のC
を用いる一方、特に所定量の結晶質Si3N4を共存さ
せる本発明によれば5i02の還元が大いに促進され、
径および粒形のばらつきが少ない優れた特性を有する粉
末であり、この粉末を用いて得られよ焼結体は優れた高
温強度を有する。
As mentioned above (placement of 5i02, excess C in nitriding reaction)
According to the present invention, in which a predetermined amount of crystalline Si3N4 is used, the reduction of 5i02 is greatly promoted,
This powder has excellent properties such as small variations in diameter and particle shape, and the sintered body obtained using this powder has excellent high-temperature strength.

ここで本発明においてあらかじめ加えるSi3N4を結
晶質に限る理由を説明する。
Here, the reason why the Si3N4 added in advance in the present invention is limited to crystalline materials will be explained.

Si3N4は製造方法、条件により非結晶質から結晶質
まで結晶形態の異るものが得られる。しかし本発明で眼
科として加えるSi3N4は気相状態で生成したSi3
N4を沈着、成長させるだめの核として働くもので、そ
の結晶形線は他の純度、粒径等の特性上ともに反応速度
、収率、合成粉の粒径、形に大きく影響する。
Si3N4 can be obtained in different crystal forms, from amorphous to crystalline, depending on the manufacturing method and conditions. However, the Si3N4 added for ophthalmology in the present invention is Si3N4 produced in a gaseous state.
It acts as a nucleus for depositing and growing N4, and its crystalline shape, along with other characteristics such as purity and particle size, greatly influences the reaction rate, yield, and particle size and shape of the synthetic powder.

すなわち、核自身はSi3N4合成過程中は物理的、化
学的に安定な状態で存在していることが必要であり、例
えば非結晶質から結晶質への変化、粒成長、化学的成分
変化等は核としての機能低下をまねく。一般に気相合成
法により作られる5L3N4はその合成条件にもよるが
、大部分が非結晶質の結晶形態を示す。この非結晶質S
 i 3N4は化学敏論的には結晶質Si3N4に近い
Sl及びNの含有率を示すが、結晶構造の点から見れば
その配列が必ずしも規則的ではない状態であり、他の合
成法においても条件によ#)見られるものである。
In other words, the nucleus itself must exist in a physically and chemically stable state during the Si3N4 synthesis process; for example, changes from amorphous to crystalline, grain growth, chemical composition changes, etc. This leads to a decline in nuclear function. 5L3N4, which is generally produced by vapor phase synthesis, mostly exhibits an amorphous crystalline form, although it depends on the synthesis conditions. This amorphous S
From a chemical perspective, i3N4 exhibits a content of Sl and N close to that of crystalline Si3N4, but from the point of view of its crystal structure, its arrangement is not necessarily regular, and it does not meet the conditions of other synthesis methods. #) It is something that can be seen.

しかしてこの非結晶状態は1200〜1600°0のl
晶度で熱処理することにより結晶質へ変化するが、理由
はさだかではないが、必ず粒径、形の粗大化が伴う。こ
のような非結晶質813N4粉末を本発明に示す核とし
て用いた場合、合成温度頭載が非結品質から結晶質へ変
化する温度領域とほとんど同じため、核としての特性が
変化し、反応促進、粒径、形制御の効果が全く失われ、
合成粉の純度低F1粒径粗大化を士ね〈。
However, this amorphous state is 1200-1600°0 l
Heat treatment with crystallinity changes it to crystallinity, but the reason is not clear, but it is always accompanied by coarsening of grain size and shape. When such amorphous 813N4 powder is used as the core shown in the present invention, the synthesis temperature head is almost the same as the temperature range where the non-crystalline state changes to the crystalline state, so the characteristics of the core change and the reaction is accelerated. , the effect of particle size and shape control is completely lost,
If the purity of the synthetic powder is low, try to coarsen the F1 particle size.

さらに本発明においてメチルトリクロルシランをC結晶
質S+3N4等と混合し加水分解して沈澱物を生成する
場合加水分解物が炭素粉末粒子の周囲に沈着していると
考えられる。しかしてこの沈澱物は200〜300 ’
Oで加熱処理して脱水1−でおくことが好ましく、また
Si3N4粉末合成反応においては前記一般式(CE(
3SiO3//2)で示される化合物が炭素に吸着して
いるだめ接触面積が大きく、炭素還元が円滑に進み、ま
たアルキル基が窒素と置換し易いため窒化反応が速やか
に進行する。
Furthermore, in the present invention, when methyltrichlorosilane is mixed with C crystalline S+3N4 and the like and hydrolyzed to form a precipitate, it is thought that the hydrolyzate is deposited around the carbon powder particles. However, the precipitate is 200-300'
It is preferable to heat-treat with O and dehydrate 1-, and in the Si3N4 powder synthesis reaction, the general formula (CE(
Since the compound represented by 3SiO3//2) is adsorbed on carbon, the contact area is large, and carbon reduction proceeds smoothly, and the alkyl group is easily substituted with nitrogen, so the nitriding reaction proceeds quickly.

しかしこの1易合、各原料の混合分牧状暢は合成反応に
微妙に影響するため、必要l(応じて、沈澱物を乾燥し
た後、軽くボールミル等の手段を施してさらに混合分数
状態を改善することが好ましい。
However, in this case, the mixed fraction state of each raw material slightly affects the synthesis reaction, so it is necessary to It is preferable to improve.

(発明の実施例) 次に本発明の実施例を記載する。(Example of the invention) Next, examples of the present invention will be described.

加水分解、焼成処理して5lo2i重綾部を生成に相当
する駿のメチルトリクロルシランに、粒径0029μm
のCを0.5重着部、粒径03μmの結晶質Si3N4
0.1重重部を飽加して混合液状物を調製した。この液
状混合物に多量の純水を加え、かつ発熱を制御しつつ加
水分解して沈澱物を生成した。
Shun's methyltrichlorosilane, which corresponds to hydrolysis and calcination treatment to produce 5lo2i heavy twill part, has a particle size of 0029 μm.
Crystalline Si3N4 with a particle size of 03 μm and 0.5 C overlapped part
A liquid mixture was prepared by adding 0.1 parts by weight. A large amount of pure water was added to this liquid mixture, and the mixture was hydrolyzed while controlling heat generation to form a precipitate.

この沈澱物に水洗を漉こし、充分にH(Jを除去してf
&、110’Oで3hr乾燥処理を怖こ17た。この生
成物をボールミルにより軽く粉砕して、窒素気流中14
00’0.5 fir放置し反応させた。その後、残留
Cを除去するだめ空気中700°Q、3hr熱処理して
s  S’3”4粉末を得た。かぐして得だ粉末は99
%以上の純度を何し、全金属系不純物1は009係以丁
で、同時生成する5iCtiは0.3%であった。また
上記合成粉末の平均粒径は1.2μmで、α−8i3N
4含有率は95%であった。
This precipitate was washed with water and filtered, thoroughly removing H (J and f).
A drying process was performed for 3 hours at 110'O. This product was lightly pulverized using a ball mill, and
00'0.5 fi was left to react. Thereafter, to remove residual C, heat treatment was performed in air at 700°Q for 3 hours to obtain S'3''4 powder.
The total metal impurity 1 was 009% and the simultaneously generated 5iCti was 0.3%. In addition, the average particle size of the above synthetic powder was 1.2 μm, and α-8i3N
4 content was 95%.

また粒度分布測定器により、合成粉の粒度分布を調べた
結果、1,2μm±10チの粒径を有するSi3N4粒
子は全体の93重t%を占めており、均一な粒子から構
成されていることがわかった。その他の実施例2〜12
および比較例とし上記メチルトリクロルシランから生成
された5i02.粒径0029μmのCを用いえ場合(
al及び、さらに粒径03μmの非結晶質Si3N4を
所定の割合に混合し、上記実施例1に準じた製造方法で
、それぞれ得たα−8i3N4粉末について同様に特性
を評価した。この実施例2〜12および比較例の製造条
件、生成粉末の特性を次表に実施例1の場合を含めて示
しだ。
In addition, as a result of examining the particle size distribution of the synthetic powder using a particle size distribution measuring device, it was found that Si3N4 particles with a particle size of 1.2 μm ± 10 cm accounted for 93 wt% of the total, and were composed of uniform particles. I understand. Other Examples 2 to 12
and 5i02. produced from the above methyltrichlorosilane as a comparative example. If C with a particle size of 0029 μm cannot be used (
Al and amorphous Si3N4 having a particle size of 03 μm were mixed in a predetermined ratio, and the properties of the α-8i3N4 powders obtained were evaluated in the same manner using a manufacturing method similar to Example 1 above. The manufacturing conditions and characteristics of the produced powders of Examples 2 to 12 and Comparative Examples are shown in the following table, including Example 1.

以下余白 (発明の効果) 以上の結果からも明らかのように実施例の場合、得られ
た生成粉末はα−8i3N4が90チ以上を占め、目一
つN含有率(N率)が34〜38チと高いことから、そ
れらα−8i 3N4は窒化物としても純度の高いもの
であり、さらに合成粉の粒子構成状態も非常に均一な粒
径を持っていることがわかる。
Blank space below (effects of the invention) As is clear from the above results, in the case of the example, α-8i3N4 accounts for 90 or more, and the N content (N ratio) is 34 to 34%. Since the value is as high as 38 cm, it can be seen that these α-8i 3N4 have high purity as nitrides, and furthermore, the particle structure of the synthetic powder has a very uniform particle size.

代理人 弁理士 則 近 憲 佑 (ほか1名) −35〜Agent: Patent Attorney Noriyuki Chika (1 other person) -35~

Claims (1)

【特許請求の範囲】[Claims] シリカ(8i02)を1重量部生成相当着のメチルトリ
クロルシラン(CH3S + C13)に、カーボン粉
末01〜2重量部と、結晶質窒化ケイ素(Si3N4)
粉末、炭化ケイ素(SiC)粉末のうち少なくともいず
れか1種を5i020.005〜1重歇部の割合でそれ
ぞれ加えてなる液状物質を加水分解洗浄し、得られた沈
澱物を窒素を含むふん囲気中1300〜1500’Oで
加熱処理し、還元、窒化反応させることを特徴とするα
型窒化ケイ素粉末の製造方法。
Silica (8i02) was added to methyltrichlorosilane (CH3S + C13) equivalent to 1 part by weight, 01 to 2 parts by weight of carbon powder, and crystalline silicon nitride (Si3N4).
A liquid substance prepared by adding at least one of silicon carbide (SiC) powder and silicon carbide (SiC) powder at a ratio of 5i020.005 to 1 part is hydrolyzed and washed, and the resulting precipitate is placed in a nitrogen-containing atmosphere. α characterized by heat treatment at 1,300 to 1,500'O to cause reduction and nitriding reactions.
Method for producing type silicon nitride powder.
JP18844681A 1981-11-26 1981-11-26 Manufacture of alpha-type silicon nitride powder Pending JPS5891006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18844681A JPS5891006A (en) 1981-11-26 1981-11-26 Manufacture of alpha-type silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18844681A JPS5891006A (en) 1981-11-26 1981-11-26 Manufacture of alpha-type silicon nitride powder

Publications (1)

Publication Number Publication Date
JPS5891006A true JPS5891006A (en) 1983-05-30

Family

ID=16223824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18844681A Pending JPS5891006A (en) 1981-11-26 1981-11-26 Manufacture of alpha-type silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS5891006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113603A (en) * 1979-02-19 1980-09-02 Toshiba Corp Manufacture of alpha silicon nitride powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113603A (en) * 1979-02-19 1980-09-02 Toshiba Corp Manufacture of alpha silicon nitride powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
US5643843A (en) * 1994-04-14 1997-07-01 The Dow Chemical Company Silicon nitride/silicon carbide composite densified materials prepared using composite powders

Similar Documents

Publication Publication Date Title
EP0015422B1 (en) Method for producing powder of alpha-silicon nitride
JPS5891005A (en) Production of silicon nitride powder
JPS6112844B2 (en)
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
JPH01119559A (en) Mullite-alumina composite sintered compact and its production
JPS5891006A (en) Manufacture of alpha-type silicon nitride powder
JPS61242905A (en) Production of alpha-silicon nitride powder
JPH082907A (en) Powdery silicon nitride
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
Gomez-Aleixandre et al. Crystallization and sintering characteristics of chemically vapor deposited silicon nitride powders
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JPS6111885B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS5932402B2 (en) Method for producing α-type silicon nitride powder
JP3251060B2 (en) Silicon nitride powder
JPS62128913A (en) Production of silicon carbide powder
JPS5891007A (en) Manufacture of alpha-type silicon nitride powder
JPS6140805A (en) Manufacture of silicon nitride fine powder
JP3250677B2 (en) Silicon nitride powder
JP2610156B2 (en) Method for producing silicon nitride powder
JPH0218285B2 (en)
JPS6163510A (en) Production of composite fine powder
JPH0313166B2 (en)
JPS5891008A (en) Manufacture of alpha-type silicon nitride powder
JPS6048446B2 (en) Method for manufacturing silicon nitride powder