JP2018044072A - Aluminum nitride-containing curable resin composition - Google Patents

Aluminum nitride-containing curable resin composition Download PDF

Info

Publication number
JP2018044072A
JP2018044072A JP2016180134A JP2016180134A JP2018044072A JP 2018044072 A JP2018044072 A JP 2018044072A JP 2016180134 A JP2016180134 A JP 2016180134A JP 2016180134 A JP2016180134 A JP 2016180134A JP 2018044072 A JP2018044072 A JP 2018044072A
Authority
JP
Japan
Prior art keywords
aluminum nitride
curable resin
resin composition
epoxy resin
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016180134A
Other languages
Japanese (ja)
Inventor
猛 王
Meng Wang
猛 王
金近 幸博
Yukihiro Kanechika
幸博 金近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2016180134A priority Critical patent/JP2018044072A/en
Publication of JP2018044072A publication Critical patent/JP2018044072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition containing aluminum nitride powder which is excellent in water resistance, is low in cost and has high thermal conductivity, and an epoxy resin.SOLUTION: A curable resin composition contains aluminum nitride powder and a curable resin, where the curable resin is a curable resin composition containing an epoxy resin, an acid anhydride-based curing agent and a phosphorus-based curing accelerator. Phosphines such as triphenylphosphine and tri-p-tolylphosphine and phosphonium salts such as a tetrabutylphosphonium decane acid are used as the phosphorus-based curing accelerator.SELECTED DRAWING: None

Description

本発明は、高信頼性及び高熱伝導率を有する樹脂組成物に関する。   The present invention relates to a resin composition having high reliability and high thermal conductivity.

近年、半導体デバイスのパワー密度上昇に伴い、デバイスに使用される材料には、より高度な放熱特性が求められている。このような材料として、サーマルインターフェースマテリアルと呼ばれる一連の材料があり、その使用量は急速に拡大している。サーマルインターフェースマテリアルとは、半導体素子から発生する熱をヒートシンクまたは筐体等に逃がす経路の熱抵抗を緩和するための材料であり、シート、ゲル、グリースなど多様な形態が用いられる。一般に、サーマルインターフェースマテリアルは、熱伝導性のフィラーをエポキシやシリコーンの様な樹脂に分散した複合材料であり、フィラーとしてはシリカやアルミナが多く用いられている。しかし、シリカの熱伝導率は1W/m・K程度、アルミナの熱伝導率は36W/m・K程度であり、アルミナを用いた複合材料でも、その熱伝導率は1〜3W/m・K程度に留まるものであり、より高い熱伝導率の複合材料が要求されている。   In recent years, with the increase in power density of semiconductor devices, materials used for devices are required to have higher heat dissipation characteristics. As such a material, there is a series of materials called thermal interface materials, and the amount of use is rapidly expanding. The thermal interface material is a material for relaxing the thermal resistance of the path through which heat generated from the semiconductor element is released to the heat sink or the housing, and various forms such as a sheet, gel, and grease are used. Generally, the thermal interface material is a composite material in which a thermally conductive filler is dispersed in a resin such as epoxy or silicone, and silica or alumina is often used as the filler. However, the thermal conductivity of silica is about 1 W / m · K, and the thermal conductivity of alumina is about 36 W / m · K. Even in a composite material using alumina, the thermal conductivity is 1 to 3 W / m · K. There is a demand for composite materials with higher thermal conductivity.

このため、近年では、シリカ、アルミナより高い熱伝導率を有する窒化アルミニウムを上記複合材料に使用することが検討されている。しかしながら、窒化アルミニウムは水との反応性が高く、水と接触すると加水分解を受けてアンモニアを発生しながら水和アルミナに分解されるという性質を有しており、エポキシ樹脂に分散した複材料では高温高湿条件下品質が著しく低下するという問題があった。   For this reason, in recent years, use of aluminum nitride having higher thermal conductivity than silica and alumina for the composite material has been studied. However, aluminum nitride has a high reactivity with water, and when it comes into contact with water, it has the property of being hydrolyzed and decomposing into hydrated alumina while generating ammonia. There was a problem that the quality deteriorated significantly under high temperature and high humidity conditions.

そこで、このような耐水性の問題を解決するための手段として、窒化アルミニウム粉末表面に耐水性を付与するための皮膜を形成することが検討されている。例えば、特許文献1では、一次処理として、約700℃〜1000℃の空気中で加熱するなどして酸化アルミニウムの皮膜を形成した後に、二次処理として、溶剤中で酸性リン酸エステル類などの有機リン酸系カップリング剤で処理することによって被膜を形成し、耐水性を改良するという方法が提案されている。また、二次処理における溶剤としては、n−ヘキサンなどの中低級アルカンが単独で、またはこれらと混和性のあるエタノールなどの低級アルコールまたはアセトンと併用して使用され、溶剤中に水を混入させることは避けるべきである旨が記載されている。   Therefore, as a means for solving such a problem of water resistance, it has been studied to form a film for imparting water resistance to the surface of the aluminum nitride powder. For example, in Patent Document 1, as a primary treatment, an aluminum oxide film is formed by heating in air at about 700 ° C. to 1000 ° C., and then as a secondary treatment, acidic phosphate esters and the like are used in a solvent. A method of improving the water resistance by forming a film by treating with an organic phosphoric acid coupling agent has been proposed. Moreover, as a solvent in the secondary treatment, a middle-lower alkane such as n-hexane is used alone or in combination with a lower alcohol such as ethanol or acetone miscible with these, and water is mixed in the solvent. It is stated that this should be avoided.

しかしながら、本発明者らが検討したところ、当該方法では、窒化アルミニウム粉末の耐水性は改善されるものの、十分ではないという結果が得られた。そこで、その要因について検討したところ、上記のカップリング剤による処理では、窒化アルミニウムとカップリング剤との反応性が悪いことから皮膜が均一に形成されず、皮膜が形成されない箇所や、二重三重に厚く形成される箇所が生じてしまっていることが判明した。そのため、特に厚い皮膜が形成されている箇所では、複合材料においてフィラーと樹脂との界面での熱抵抗が高くなって熱伝導率が悪化していることが考えられた。   However, when the present inventors examined, although the water resistance of aluminum nitride powder was improved by this method, the result that it was not enough was obtained. Therefore, when the factors were examined, in the treatment with the above coupling agent, the film was not uniformly formed due to the poor reactivity of aluminum nitride and the coupling agent, and the film was not formed. It has been found that a thickly formed portion has occurred. For this reason, it was considered that the thermal resistance at the interface between the filler and the resin in the composite material was increased and the thermal conductivity was deteriorated in the part where the thick film was formed.

また、フィラーの充填量を増やすと粘度が上がりやすく、この要因として、皮膜が均一に形成されていないことから樹脂との親和性が悪化していることが考えられた。結果として、上記処理によって得られる窒化アルミニウム粉末を複合材料に用いたとき、フィラーの充填量を増やして熱伝導率を上げることができず、所望の熱伝導率を示す複合材料を得ることはできなかった。また、表面処理工程によりコストが高くなる問題があった。   Further, when the filler filling amount is increased, the viscosity is likely to increase. As a cause of this, it is considered that the affinity with the resin is deteriorated because the film is not uniformly formed. As a result, when the aluminum nitride powder obtained by the above treatment is used for a composite material, it is not possible to increase the filler filling amount to increase the thermal conductivity and to obtain a composite material exhibiting a desired thermal conductivity. There wasn't. Further, there is a problem that the cost is increased by the surface treatment process.

特平7−33415号公報Japanese Patent Publication No.7-33415

本発明は、上記のような従来技術に伴う問題点を解決しようとするものである。したがって、本発明の目的は、耐水性に優れ、低コスト、高い熱伝導性を有する窒化アルミニウム粉末とエポキシ樹脂とを含む樹脂組成物を提供することである。   The present invention seeks to solve the problems associated with the prior art as described above. Accordingly, an object of the present invention is to provide a resin composition comprising an aluminum nitride powder and an epoxy resin which are excellent in water resistance, low cost and high thermal conductivity.

このような状況に鑑み、本発明者らは鋭意検討した。その結果、窒化アルミニウムとエポキシ樹脂とを含む樹脂組成物において、エポキシ樹脂硬化系を特定のものとすることにより、窒化アルミニウムに特殊な耐水処理を施さなくても、樹脂組成物に十分な耐水性を付与できることを見いだし、その結果、本発明を完成した。   In view of such a situation, the present inventors have intensively studied. As a result, in a resin composition containing aluminum nitride and an epoxy resin, by making the epoxy resin curing system specific, water resistance sufficient for the resin composition can be achieved without performing special water resistance treatment on the aluminum nitride. As a result, the present invention was completed.

すなわち本発明は、窒化アルミニウム粉末と硬化性樹脂とを含む硬化性樹脂組成物において、硬化性樹脂がエポキシ樹脂と酸無水物系硬化剤とリン系硬化促進剤を含むものである硬化性樹脂組成物である。   That is, the present invention is a curable resin composition containing an aluminum nitride powder and a curable resin, wherein the curable resin contains an epoxy resin, an acid anhydride-based curing agent, and a phosphorus-based curing accelerator. is there.

本発明によれば、耐水処理されていない窒化アルミニウム粉末でもエポキシ樹脂と複合する際に、酸無水物系硬化剤及びリン系硬化促進剤も用いたことによって、耐水性に優れ、低コスト、高い熱伝導率性を有する樹脂組成物を製造することができる。   According to the present invention, when an aluminum nitride powder not treated with water resistance is combined with an epoxy resin, an acid anhydride-based curing agent and a phosphorus-based curing accelerator are also used, so that water resistance is excellent, low cost, and high. A resin composition having thermal conductivity can be produced.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の硬化性樹脂組成物に使用される窒化アルミニウムは特に限定されず、公知のものを使用することが出来る。その製法は直接窒化法、還元窒化法のいずれでもよい。   The aluminum nitride used for the curable resin composition of the present invention is not particularly limited, and known ones can be used. The production method may be either a direct nitridation method or a reduction nitridation method.

該硬化性樹脂組成物中の窒化アルミニウムの含有量は特に限定されないが、硬化性樹脂組成物の使用しやすさの点で、好ましくは50体積%〜80体積%であり、より好ましくは60体積%〜80体積%の割合である。窒化アルミニウムの含有量が多いほど硬化性樹脂組成物の熱伝導率が高くなる。また製造時の混合不良も起こしがたくなる。一方、窒化アルミニウムの含有量が低いほど窒化アルミニウムと樹脂を混合した時に、得られる樹脂組成物の粘度が低く、作業性が良好となる。   The content of aluminum nitride in the curable resin composition is not particularly limited, but is preferably 50% by volume to 80% by volume, and more preferably 60% by volume in terms of ease of use of the curable resin composition. % To 80% by volume. The greater the aluminum nitride content, the higher the thermal conductivity of the curable resin composition. In addition, poor mixing during production is less likely to occur. On the other hand, the lower the content of aluminum nitride, the lower the viscosity of the resulting resin composition and the better the workability when mixing aluminum nitride and resin.

本発明において用いる窒化アルミニウムの粒子径は制限されることはなく、一般的には平均粒子系で10nm〜100μmのものを使用することが出来る。更に、平均粒子径の異なる窒化アルミニウム粉末を混合して用いる事も好ましい態様である。例えば平均粒子径10〜100μmのものを窒化アルミニウム全体の30〜80質量%とし、平均粒子系1〜10μmのものを10〜60質量%、平均粒子系100nm〜1μmのものを3〜30質量%程度で混合すると、高熱電導性組成物の粘度を低く抑える事が出来、窒化アルミニウムの硬化性樹脂組成物への充填量を高くすることが可能となる。   The particle size of the aluminum nitride used in the present invention is not limited, and generally an average particle size of 10 nm to 100 μm can be used. Furthermore, it is also a preferable aspect to use a mixture of aluminum nitride powders having different average particle diameters. For example, the average particle diameter of 10 to 100 μm is 30 to 80% by mass of the entire aluminum nitride, the average particle system of 1 to 10 μm is 10 to 60% by mass, and the average particle system of 100 nm to 1 μm is 3 to 30% by mass. When mixed to the extent, the viscosity of the high thermal conductive composition can be kept low, and the filling amount of aluminum nitride into the curable resin composition can be increased.

窒化アルミニウム粒子の形状も特に限定されず、不定形、球状等公知の形状の形状のものを使用することができる。   The shape of the aluminum nitride particles is not particularly limited, and those having a known shape such as an indefinite shape or a spherical shape can be used.

本発明の硬化性樹脂組成物は、上記窒化アルミニウムに加えて硬化性樹脂を必須成分とし、当該硬化性樹脂は、少なくともエポキシ樹脂、酸無水物系硬化剤およびリン系硬化促進剤を含有している。ここでいうエポキシ樹脂とは、分子中に少なくとも1つ以上のエポキシ基を有する化合物である。なお、当該エポキシ樹脂に、さらに硬化剤や硬化促進剤を含んだ組成物も一般にはエポキシ樹脂と称されるが、本発明では特に断らない限り、上記定義に従ってエポキシ樹脂という用語を用いる。   The curable resin composition of the present invention comprises a curable resin as an essential component in addition to the aluminum nitride, and the curable resin contains at least an epoxy resin, an acid anhydride-based curing agent, and a phosphorus-based curing accelerator. Yes. The epoxy resin here is a compound having at least one epoxy group in the molecule. In addition, although the composition which further contains the hardening | curing agent and hardening accelerator in the said epoxy resin is also generally called an epoxy resin, unless otherwise indicated in this invention, the term epoxy resin is used according to the said definition.

本発明の硬化性樹脂組成物に使用されるエポキシ樹脂は特に限定されず、公知のものを使用することが出来る。例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、および脂環式エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、単独で、又は2種類以上を混合して使用することができる。   The epoxy resin used for the curable resin composition of this invention is not specifically limited, A well-known thing can be used. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, dihydroanthracene type epoxy resin, naphthalene type tetrafunctional epoxy resin, trisphenol methane type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy Examples thereof include resins and alicyclic epoxy resins. These epoxy resins can be used alone or in admixture of two or more.

本発明の樹脂組成物に使用される酸無水物系硬化剤としては、特に限定されず、公知のものを使用することが出来る。例えば、ヘキサヒドロフタル酸無水物、3−メチルヘキサヒドロフタル酸無水物、4−メチルヘキサヒドロフタル酸無水物、フタル酸無水物、1−メチルノルボルナン−2,3−ジカルボン酸無水物、5−メチルノルボルナン−2,3−ジカルボン酸無水物、ノルボルナン−2,3−ジカルボン酸無水物、1−メチルナジック酸無水物、5−メチルナジック酸無水物、ナジック酸無水物、3−メチルテトラヒドロフタル酸無水物、4−メチルテトラヒドロフタル酸無水物、テトラヒドロフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ドデセニルコハク酸無水物、無水マレイン酸、グルタル酸無水物などが挙げられる。   It does not specifically limit as an acid anhydride type hardening | curing agent used for the resin composition of this invention, A well-known thing can be used. For example, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, phthalic anhydride, 1-methylnorbornane-2,3-dicarboxylic anhydride, 5- Methylnorbornane-2,3-dicarboxylic acid anhydride, norbornane-2,3-dicarboxylic acid anhydride, 1-methylnadic acid anhydride, 5-methylnadic acid anhydride, nadic acid anhydride, 3-methyltetrahydrophthalic acid Anhydride, 4-methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, dodecenyl succinic anhydride, maleic anhydride, glutaric anhydride and the like can be mentioned.

酸無水物系硬化剤の含有量は、エポキシ樹脂中のエポキシ当量と、硬化剤の当量との当量比を考慮して決定される。一般的には、エポキシ当量と硬化剤の当量との当量比を1:1程度とするのが好ましい。   The content of the acid anhydride curing agent is determined in consideration of the equivalent ratio between the epoxy equivalent in the epoxy resin and the equivalent of the curing agent. In general, it is preferable that the equivalent ratio of the epoxy equivalent to the equivalent of the curing agent is about 1: 1.

本発明の樹脂組成物に使用されるリン系硬化剤促進剤としては、特に限定されず、公知のものを使用することが出来る。例えば、トリフェニルホスフィン、トリ−p−トリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリシクロヘキシルホスフィン、1,4−ビス(ジフェニルホスフィノ)ブタン等のホスフィン類や、テトラブチルホスホニウムデカン酸塩、テトラフェニルホスホニウム・テトラフェニルボレート等のホスホニウム塩類などが挙げられる。   It does not specifically limit as a phosphorus hardening | curing agent accelerator used for the resin composition of this invention, A well-known thing can be used. For example, phosphines such as triphenylphosphine, tri-p-tolylphosphine, diphenylcyclohexylphosphine, tricyclohexylphosphine, 1,4-bis (diphenylphosphino) butane, tetrabutylphosphonium decanoate, tetraphenylphosphonium tetra Examples thereof include phosphonium salts such as phenyl borate.

リン系硬化促進剤の含有量は、エポキシ樹脂100重量部に対して0.5重量部〜10重量部であることが好ましい。含有量が0.5重量部より多くすると、硬化促進効果を十分に発揮することができる。また、10重量部より少なくすることにより、組成物の貯蔵安定性を損なうことがない。硬化促進効果をより厳密に考慮すれば、含有量を1.0重量部〜5.0重量部とすることが更に好ましい。   It is preferable that content of a phosphorus hardening accelerator is 0.5 weight part-10 weight part with respect to 100 weight part of epoxy resins. When the content is more than 0.5 parts by weight, the curing accelerating effect can be sufficiently exhibited. Moreover, the storage stability of a composition is not impaired by making it less than 10 weight part. Considering the curing acceleration effect more strictly, the content is more preferably 1.0 to 5.0 parts by weight.

本発明の硬化性樹脂には、必要に応じて公知の成分が含まれていてもよいが、アミン系硬化促進剤は含まれていないことが好ましい。アミン系硬化促進剤は塩基性を示すため、窒化アルムニウムの加水分解を促進し、硬化性樹脂組成物の耐水性を低下させる恐れがある。   Although the well-known component may be contained in the curable resin of this invention as needed, it is preferable that the amine hardening accelerator is not contained. Since the amine-based curing accelerator exhibits basicity, it promotes hydrolysis of aluminum nitride and may reduce the water resistance of the curable resin composition.

含まれていてもよい公知の成分としては、シリカ、アルミナ、窒化ホウ素等の無機フィラー、難燃剤、着色剤、低応力付与剤、離型剤等があげられる。   Known components that may be included include inorganic fillers such as silica, alumina, and boron nitride, flame retardants, colorants, low stress imparting agents, release agents, and the like.

本発明の樹脂組成物は窒化アルミニウム粉末、エポキシ樹脂、酸無水物系硬化剤、リン系硬化剤促進剤、その他必要に応じて含まれる成分を、所定量はかりとり、これを混合することにより製造できる。これら各成分の混合は、例えば、ロール、ニーダ、バンバリーミキサー、自転・公転ミキサー等の通常の混練機により行うことができる。   The resin composition of the present invention is produced by weighing a predetermined amount of aluminum nitride powder, epoxy resin, acid anhydride curing agent, phosphorus curing agent accelerator, and other necessary components, and mixing them. it can. These components can be mixed with, for example, an ordinary kneader such as a roll, a kneader, a Banbury mixer, and a rotation / revolution mixer.

そして、以上のような本発明の樹脂組成物を従来公知の適当な方法により成形、硬化することにより、耐水性に優れ、低コスト、高い熱伝導性を持った成形硬化体を得ることができる。   Then, by molding and curing the resin composition of the present invention as described above by an appropriate method known in the art, a molded cured body having excellent water resistance, low cost, and high thermal conductivity can be obtained. .

以下、実施例および用途例によって本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and an application example demonstrate this invention concretely, this invention is not limited to these examples.

本発明にて用いた試験方法を以下に示す。   The test method used in the present invention is shown below.

(1)成形体の熱伝導率:
樹脂組成物を成形して得られる成形体の熱伝導率は熱拡散率、密度及び比熱から、下記式に基づき求めた。
熱伝導率=熱拡散率×密度×比熱
熱拡散率はレーザーフラッシュ法にて測定を行った。
密度はアルキノデス法にて測定を行った。
(1) Thermal conductivity of the molded body:
The thermal conductivity of the molded product obtained by molding the resin composition was determined based on the following formula from the thermal diffusivity, density and specific heat.
Thermal conductivity = thermal diffusivity × density × specific thermal thermal diffusivity was measured by a laser flash method.
The density was measured by the alkynodes method.

(2)成形体の耐水性の測定
樹脂組成物成形体100重量部とをとイオン交換水4000重量部をポリテトラフルオロエチレン製密封容器に入れ、120℃で静置し、24時間後、室温まで冷却し、密封容器内のイオン交換水を抽出した。抽出したイオン交換水の電気伝導率をポータブル防水型導電率計(CON400 ニッコー・ハンセン株式会社製)にて測定した。
(2) Measurement of water resistance of molded body 100 parts by weight of resin composition molded body and 4000 parts by weight of ion-exchanged water were put in a polytetrafluoroethylene sealed container, left at 120 ° C, and after 24 hours, room temperature The ion-exchanged water in the sealed container was extracted. The electrical conductivity of the extracted ion exchange water was measured with a portable waterproof conductivity meter (CON400 manufactured by Nikko Hansen Co., Ltd.).

実施例1
エポキシ樹脂(三菱化学株式会社製jER828)100重量部と酸無水物系硬化剤(三菱化学株式会社製jERキュアYH307)110重量部とリン系硬化促進剤(和光純薬工業株式会社製)5重量部と2−メトキシエタノール(和光純薬工業株式会社製)500重量部と平均粒径(D50)が28μmの窒化アルミニウム粉末(株式会社トクヤマ製HFS―30)1049重量部と平均粒径(D50)が5μmの窒化アルミニウム粉末(株式会社トクヤマ製HF―05)524重量部と平均粒径(D50)が1μmの窒化アルミニウム粉末(株式会社トクヤマ製HF―01)175重量部とを自転・公転ミキサー(株式会社シンキー製ARE−500)にて混合してスラリーを得た。
Example 1
100 parts by weight of epoxy resin (jER828 manufactured by Mitsubishi Chemical Co., Ltd.), 110 parts by weight of acid anhydride curing agent (jER Cure YH307 manufactured by Mitsubishi Chemical Co., Ltd.) and 5 parts by weight of phosphorus curing accelerator (manufactured by Wako Pure Chemical Industries, Ltd.) Part, 2-methoxyethanol (manufactured by Wako Pure Chemical Industries, Ltd.), 500 parts by weight, and aluminum nitride powder having an average particle size (D50) of 28 μm (HFS-30, manufactured by Tokuyama Co., Ltd.), 1049 parts by weight and average particle size (D50) 524 parts by weight of aluminum nitride powder having a particle diameter of 5 μm (HF-05 manufactured by Tokuyama Co., Ltd.) and 175 parts by weight of aluminum nitride powder having a mean particle diameter (D50) of 1 μm (HF-01 manufactured by Tokuyama Corporation) A slurry was obtained by mixing with ARE-500) manufactured by Shinky Corporation.

得られたスラリーを真空脱泡した後、バーコーターにて、PETフィルムの上に塗布した。100℃、1時間にて乾燥した後、熱プレスにて2MPa、150℃、2時間硬化した。硬化後、PETフィルムを剥がし、厚み約500μmの成形体を得た。成形体の一部を切り出し、耐水性測定前後の熱伝導率及び耐水性の測定を行った。熱伝導率及び耐水性の測定結果を表1に示した。   The resulting slurry was vacuum degassed and then applied onto a PET film with a bar coater. After drying at 100 ° C. for 1 hour, it was cured by hot pressing at 2 MPa and 150 ° C. for 2 hours. After curing, the PET film was peeled off to obtain a molded body having a thickness of about 500 μm. A part of the molded body was cut out, and the thermal conductivity and water resistance before and after the water resistance measurement were measured. The measurement results of thermal conductivity and water resistance are shown in Table 1.

実施例2〜5
表1に示す種類、量の酸無水物系硬化剤、リン系硬化促進剤を使用し、それ以外は実施例1と同様にして、得られた成形体の熱伝導率及び耐水性の測定結果を表1に示した。
Examples 2-5
Measurement results of thermal conductivity and water resistance of the obtained molded body were obtained in the same manner as in Example 1 except that the type and amount of acid anhydride-based curing agent and phosphorus-based curing accelerator shown in Table 1 were used. Are shown in Table 1.

比較例1〜3
表1に示す種類、量の硬化剤、硬化促進剤を使用し、それ以外は実施例1と同様にして、得られた成形体の熱伝導率及び耐水性の測定結果を表1に示した。
Comparative Examples 1-3
Table 1 shows the results of measurement of the thermal conductivity and water resistance of the obtained molded body in the same manner as in Example 1 except that the types and amounts of curing agents and curing accelerators shown in Table 1 were used. .

Figure 2018044072
Figure 2018044072

Claims (3)

窒化アルミニウムと硬化性樹脂とを含む硬化性樹脂組成物において、硬化性樹脂が、エポキシ樹脂と、酸無水物系硬化剤と、リン系硬化促進剤を含むものである硬化性樹脂組成物。   A curable resin composition comprising an aluminum nitride and a curable resin, wherein the curable resin comprises an epoxy resin, an acid anhydride-based curing agent, and a phosphorus-based curing accelerator. 前記窒化アルミニウム粉末が耐水処理されていないものである請求項1に記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, wherein the aluminum nitride powder is not treated with water resistance. 請求項1または2記載の硬化性樹脂組成物を硬化させてなる硬化体。   A cured product obtained by curing the curable resin composition according to claim 1.
JP2016180134A 2016-09-15 2016-09-15 Aluminum nitride-containing curable resin composition Pending JP2018044072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180134A JP2018044072A (en) 2016-09-15 2016-09-15 Aluminum nitride-containing curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180134A JP2018044072A (en) 2016-09-15 2016-09-15 Aluminum nitride-containing curable resin composition

Publications (1)

Publication Number Publication Date
JP2018044072A true JP2018044072A (en) 2018-03-22

Family

ID=61694385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180134A Pending JP2018044072A (en) 2016-09-15 2016-09-15 Aluminum nitride-containing curable resin composition

Country Status (1)

Country Link
JP (1) JP2018044072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157246A1 (en) * 2020-02-06 2021-08-12 富士フイルム株式会社 Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer
CN116477585A (en) * 2023-03-10 2023-07-25 四川大学 Method for improving water resistance of aluminum nitride powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157447A (en) * 1989-11-14 1991-07-05 Shin Etsu Chem Co Ltd Epoxy resin composition and cured product of epoxy resin
JPH05270809A (en) * 1992-03-24 1993-10-19 Showa Denko Kk Aluminum nitride powder and its production
JPH06132433A (en) * 1992-10-20 1994-05-13 Fujitsu Ltd Resin composition for radiating fin for cooling of semiconductor device
JP2005320479A (en) * 2004-05-11 2005-11-17 Kyocera Chemical Corp Liquid epoxy resin composition
WO2014126141A1 (en) * 2013-02-13 2014-08-21 株式会社トクヤマ Resin composition and method for producing same, and highly thermally conductive resin molded article
US20140231122A1 (en) * 2011-05-20 2014-08-21 Lg Innotek Co., Ltd. Epoxy resin compound and radiant heat circuit board using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157447A (en) * 1989-11-14 1991-07-05 Shin Etsu Chem Co Ltd Epoxy resin composition and cured product of epoxy resin
JPH05270809A (en) * 1992-03-24 1993-10-19 Showa Denko Kk Aluminum nitride powder and its production
JPH06132433A (en) * 1992-10-20 1994-05-13 Fujitsu Ltd Resin composition for radiating fin for cooling of semiconductor device
JP2005320479A (en) * 2004-05-11 2005-11-17 Kyocera Chemical Corp Liquid epoxy resin composition
US20140231122A1 (en) * 2011-05-20 2014-08-21 Lg Innotek Co., Ltd. Epoxy resin compound and radiant heat circuit board using the same
WO2014126141A1 (en) * 2013-02-13 2014-08-21 株式会社トクヤマ Resin composition and method for producing same, and highly thermally conductive resin molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157246A1 (en) * 2020-02-06 2021-08-12 富士フイルム株式会社 Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer
JPWO2021157246A1 (en) * 2020-02-06 2021-08-12
JP7297109B2 (en) 2020-02-06 2023-06-23 富士フイルム株式会社 Composition, thermally conductive material, thermally conductive sheet, device with thermally conductive layer
CN116477585A (en) * 2023-03-10 2023-07-25 四川大学 Method for improving water resistance of aluminum nitride powder
CN116477585B (en) * 2023-03-10 2024-02-23 四川大学 Method for improving water resistance of aluminum nitride powder

Similar Documents

Publication Publication Date Title
TWI693256B (en) A thermosetting epoxy resin composition for the preparation of outdoor articles, and the articles obtained therefrom
JP2015218229A (en) Liquid encapsulant and electronic part
TW201638175A (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
JP2017110146A (en) Epoxy resin composition
JP2016040383A (en) Epoxy resin composition for encapsulating electronic component and electronic component device using the same
TW201930455A (en) Epoxy resin composition for sealing ball grid array package, epoxy resin cured product and electronic component device
JP2014187152A (en) Epoxy resin molding material, method for producing molded coil and molded coil
TWI655238B (en) Epoxy resin composition, use thereof and filler for epoxy resin composition
JP2018044072A (en) Aluminum nitride-containing curable resin composition
JPS6230215B2 (en)
JP2014005382A (en) Epoxy resin composition and cured product thereof
TWI733821B (en) Sealing composition and semiconductor device
JP2017179199A (en) Resin composition, cured article, resin film, sealing material and sealed structure
JPH0450256A (en) Epoxy resin composition and production thereof
JP2019167436A (en) Resin composition, semiconductor device and method for producing semiconductor device
JP2015140427A (en) Epoxy compound, epoxy compound-containing composition, cured product and semiconductor encapsulating material
JP2016113475A (en) Epoxy resin-based composition
JP7263765B2 (en) Encapsulating composition and semiconductor device
JP6094849B2 (en) Nanocomposite resin composition and cured nanocomposite resin
JP2016216716A (en) Epoxy resin composition
JPS583382B2 (en) Resin-encapsulated semiconductor device
TW201934650A (en) Sealing composition and semiconductor device
JP2014005383A (en) Epoxy resin composition and cured product thereof
JP6385116B2 (en) Heat-curing epoxy resin curing agent and one-component heat-curing epoxy resin composition containing the same
JP2014001347A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222