JPH03157447A - Epoxy resin composition and cured product of epoxy resin - Google Patents

Epoxy resin composition and cured product of epoxy resin

Info

Publication number
JPH03157447A
JPH03157447A JP29528689A JP29528689A JPH03157447A JP H03157447 A JPH03157447 A JP H03157447A JP 29528689 A JP29528689 A JP 29528689A JP 29528689 A JP29528689 A JP 29528689A JP H03157447 A JPH03157447 A JP H03157447A
Authority
JP
Japan
Prior art keywords
epoxy resin
group
resin composition
alumina
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29528689A
Other languages
Japanese (ja)
Inventor
Toshio Shiobara
利夫 塩原
Koji Futatsumori
二ッ森 浩二
Seiji Katayama
片山 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP29528689A priority Critical patent/JPH03157447A/en
Publication of JPH03157447A publication Critical patent/JPH03157447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain an epoxy resin composition suitable as sealing materials, etc., for semiconductors by blending alumina and/or aluminum nitride as an inorganic filler with tetraphenylphosphonium tetraphenylborate as a curing accelerator. CONSTITUTION:An epoxy resin composition obtained by blending (A) an epoxy rein, preferably an epoxy resin containing 5-70wt.% silicone-modified epoxy resin prepared by adding SiH groups of an organosilicon compound expressed by the formula (R<1> is monofunctional hydrocarbon group, OH, etc.; a is 0.01-1; b is 1-3; a+b is integer of 1-4; the number of Si in one molecule is 1-400; the number of H directly bound to Si is >=1) to alkenyl groups of an alkenyl group- containing epoxy resin with (B) a curing agent (preferably phenol novolak resin), (C) alumina and/or aluminum nitride as an inorganic filler and (D) tetraphenylphosphonium tetraphenylborate as a curing accelerator.

Description

【発明の詳細な説明】 産1上魚七l透互 本発明は、成形材料、半導体の封止材等として好適に用
いられるエポキシ樹脂組成物及びその硬化物に関する・ の   び  が  しよ゛と る 従来、半導体封止用エポキシ樹脂組成物の充填材として
は、溶融シリカ、結晶シリカ等の無機充填材が主に使用
されており、特に高熱伝導性が要求される用途には、熱
伝導性の良好な結晶シリカが用いられている。
[Detailed Description of the Invention] The present invention relates to an epoxy resin composition suitable for use as a molding material, a semiconductor encapsulating material, etc., and a cured product thereof, which is easy to spread. Conventionally, inorganic fillers such as fused silica and crystalline silica have been mainly used as fillers in epoxy resin compositions for semiconductor encapsulation. Crystalline silica with good quality is used.

しかしながら、充填材として結晶シリカを使用し、その
配合量の増加を行なっても、熱伝導率を65cal/c
m・℃・sec程度までに上げるのが限界であり、これ
以上の熱伝導率を得るために結晶シリ力の含有率を上げ
ると、組成物の流動性が悪くなり過ぎ、トランスファー
成形ができなくなるなどの欠点があった。
However, even if crystalline silica is used as a filler and its content is increased, the thermal conductivity remains at 65 cal/c.
The limit is to increase the thermal conductivity to about m・℃・sec, and if the content of crystalline siliency is increased to obtain higher thermal conductivity, the fluidity of the composition will become too poor and transfer molding will no longer be possible. There were drawbacks such as.

そこで近年、充填材として結晶シリカよりも熱伝導性が
高く、かつ、熱膨張率の小さいアルミナや窒化アルミニ
ウムを使用して、」−記の問題を解決しようという試み
がなされてきた。しかし1本発明者らの検討によれば、
アルミナや窒化アルミニウムを用いると熱伝導性は高く
なるものの、それらの表面活性あるいは1#量に存在す
る不純物のためにエポキシ樹脂組成物中の硬化促進剤の
効果が阻害され、エポキシ樹脂組成物の初期及び保存後
の成形性が低下する一ヒ、従来のシリカ配合系に比べて
硬化物の耐湿性等も劣るという問題があった。
Therefore, in recent years, attempts have been made to solve the above problem by using alumina or aluminum nitride, which has a higher thermal conductivity than crystalline silica and a lower coefficient of thermal expansion, as a filler. However, according to the inventors' study,
Although thermal conductivity increases when alumina or aluminum nitride is used, the effect of the curing accelerator in the epoxy resin composition is inhibited due to their surface activity or impurities present in the 1# amount. There were problems in that initial and post-storage moldability deteriorated, and the moisture resistance of the cured product was inferior compared to conventional silica compound systems.

即ち、アルミナおよび窒化アルミニウムは熱伝導性が高
く、熱膨張率も小さいため、これからの半導体封止材料
の充填材として最適であり、一方、エポキシ樹脂の硬化
促進剤としては2−フェニルイミダゾールや1.8−ジ
アザビシクロ−7−ウンデセンなどのアミン化合物、ト
リフェニルホスフィンなどの燐化合物の単独使用または
併用系が一般的であったが、無機充填材としてアルミナ
や窒化アルミニウムを使用したエポキシ樹脂組成物にお
いて、硬化促進剤としてイミダゾールを用いた場合は組
成物純度が悪く、硬化物の耐湿信頼性カ劣り、一方、I
”リフェニルホスフィンや1,8−ジアザビシクロ−7
−ウンデセンを用いた場合には初期に示した硬化性が保
存中に低下するものであった。
That is, alumina and aluminum nitride have high thermal conductivity and low coefficient of thermal expansion, so they are ideal as fillers for future semiconductor encapsulation materials.On the other hand, 2-phenylimidazole and 1 are suitable as curing accelerators for epoxy resins. It has been common to use amine compounds such as 8-diazabicyclo-7-undecene and phosphorus compounds such as triphenylphosphine alone or in combination, but in epoxy resin compositions that use alumina or aluminum nitride as inorganic fillers. When imidazole is used as a curing accelerator, the purity of the composition is poor and the moisture resistance reliability of the cured product is poor;
``Riphenylphosphine and 1,8-diazabicyclo-7
- When undecene was used, the initial curability decreased during storage.

本発明は充填材としてアルミナや窒化アルミニウムを使
用したエポキシ樹脂組成物の上記問題点を解決するため
になされたもので、熱膨張率が小さく熱放散性に優れ、
同時に耐湿信頼性が良好な硬化物を与え、成形性も良好
で、半導体封止等に有用なエポキシ樹脂組成物及びその
硬化物を提供することを目的とする。
The present invention was made to solve the above-mentioned problems of epoxy resin compositions using alumina or aluminum nitride as fillers, and has a low coefficient of thermal expansion and excellent heat dissipation.
At the same time, it is an object of the present invention to provide an epoxy resin composition that gives a cured product with good moisture resistance reliability, good moldability, and is useful for semiconductor encapsulation, etc., and a cured product thereof.

を  するための   び 本発明者は、上記目的を達成するため、無機充填材とし
てアルミナ及び/又は窒化アルミニウムを使用したエポ
キシ樹脂組成物に配合する硬化促進剤について鋭意検討
を重ねた結果、硬化促進剤としてテトラフェニルホスホ
ニウムテトラフェニルボレートを使用した場合、上述し
たトリフェニルホスフィンや1.8−ジアザビシクロ−
7−ウンデセンを使用した場合の欠点が解消することを
知見した。更に、エポキシ樹脂として、アルケニル基含
有エポキシ樹脂のアルケニル基に下記式(1) %式%(1) (ただし、式中R1は置換もしくは非置換の一価炭化水
素法、水酸基、アルコキシ基又はアルケニルオキシ基を
示し、a、bは0.01≦a≦1゜1≦b≦3.1≦a
+b≦4を満足する正数である。また、1分子中のけい
素原子の数は1〜400の整数であり、1分子中のけい
素原子に直結した水素原子の数は1以上の整数である。
In order to achieve the above object, the inventor of the present invention has conducted extensive studies on curing accelerators to be added to epoxy resin compositions using alumina and/or aluminum nitride as inorganic fillers, and has found that curing accelerators can be added to epoxy resin compositions that use alumina and/or aluminum nitride as inorganic fillers. When tetraphenylphosphonium tetraphenylborate is used as an agent, the above-mentioned triphenylphosphine and 1,8-diazabicyclo-
It has been found that the disadvantages of using 7-undecene can be overcome. Furthermore, as an epoxy resin, the alkenyl group of the alkenyl group-containing epoxy resin has the following formula (1) % formula % (1) (wherein R1 is a substituted or unsubstituted monovalent hydrocarbon, a hydroxyl group, an alkoxy group, or an alkenyl group). Indicates an oxy group, a and b are 0.01≦a≦1゜1≦b≦3.1≦a
It is a positive number satisfying +b≦4. Further, the number of silicon atoms in one molecule is an integer of 1 to 400, and the number of hydrogen atoms directly bonded to silicon atoms in one molecule is an integer of 1 or more.

)で表される有機けい素化合物のE S i H基が付
加されてなるシリコーン変性エポキシ樹脂を配合するこ
とが有効であり、充填材としてアルミナ及び/又は窒化
アルミニウムを用い、テトラフェニルホスホニウムテト
ラフェニルボレートを硬化促進剤として使用すること、
更に好ましくは上記シリコーン変性エポキシ樹脂を配合
することにより、熱膨張率が小さく、熱放散性に優れて
いると共に、耐湿信頼性が良い硬化物を与え、成形性も
良好であり、成形材料、半導体の封止材等に好適なエポ
キシ樹脂組成物が得られることを知見し、本発明をなす
に至った。
) It is effective to blend a silicone-modified epoxy resin formed by adding an E S i H group of an organosilicon compound represented by using borate as a curing accelerator;
More preferably, by blending the above-mentioned silicone-modified epoxy resin, a cured product having a small coefficient of thermal expansion, excellent heat dissipation properties, and good moisture resistance reliability can be obtained, and moldability is also good, and it can be used as a molding material, semiconductor The present inventors have discovered that an epoxy resin composition suitable for sealing materials, etc. can be obtained, and the present invention has been completed.

従って、本発明は、無機充填材としてアルミナ及び/又
は窒化アルミニウムを配合し、かつ、硬化促進剤として
テトラフェニルホスホニウムテトラフェニルボレートを
配合したエポキシ樹脂組成物及びその硬化物を提供する
Therefore, the present invention provides an epoxy resin composition containing alumina and/or aluminum nitride as an inorganic filler and tetraphenylphosphonium tetraphenylborate as a curing accelerator, and a cured product thereof.

以下、本発明につき更に詳述する。The present invention will be explained in more detail below.

本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤
、無機充填材、硬化促進剤、更に必要により離型剤、顔
料、シランカップリング剤などを用いて構成されるもの
である。
The epoxy resin composition of the present invention is composed of an epoxy resin, a curing agent, an inorganic filler, a curing accelerator, and, if necessary, a release agent, a pigment, a silane coupling agent, and the like.

この場合、本発明組成物に使用するエポキシ樹脂は1分
子中に1個以上のエポキシ基を有するものであれば特に
制限はなく、例えばビスフェノールA型エポキシ検脂、
脂環式エポキシ樹脂、クレゾールノボラック型エポキシ
便脂等が好適に使用されるが、特にクレゾールノボラッ
ク型エポキシ樹脂を使用することが望ましい。
In this case, the epoxy resin used in the composition of the present invention is not particularly limited as long as it has one or more epoxy groups in one molecule, such as bisphenol A type epoxy resin,
Alicyclic epoxy resins, cresol novolac type epoxy stool fat, etc. are preferably used, and it is particularly desirable to use cresol novolac type epoxy resins.

なお、上記エポキシ樹脂は1組成物の耐湿性の点から加
水分解性塩素の含有量が500ρρm以下、遊離のNa
、CQイオンが各々2 ppm以下、有機酸含有量が1
100pp以下のものを用いることが望ましい。
Note that the above epoxy resin has a hydrolyzable chlorine content of 500 ρρm or less and a free Na content from the viewpoint of moisture resistance of one composition.
, CQ ions are less than 2 ppm each, organic acid content is 1
It is desirable to use one with a content of 100 pp or less.

また、本発明の組成物にはエポキシ樹脂として、アルケ
ニル基含有エポキシ樹脂、特に下記式1式%) は水酸基であり、p、qは0≦p≦10,1≦q≦3で
示される整数である。) で示されるアルケニル基含有エポキシ樹脂と、下記式(
1) %式%) (ただし、式中R1は置換もしくは非置換の一価炭化水
素基、水酸基、アルコキシ基又はアルケニルオキシ基を
示し、a、bは0.01≦a≦1゜1≦b≦3.1≦a
+b≦4を満足する正数である。また、1分子中のけい
35 JA子の数は1〜400の整数であり、1分子中
のけい素原子に直結した水素原子の数は1以上の整数で
ある。)で表される有機けい素化合物との付加重合体で
あるシリコーン変性エポキシ樹脂を配合することが好ま
しい。なお、この有機けい素化合物は、その=S i 
H基がエポキシ樹脂のアルケニル基に付加して付加重合
体となるものである。
The composition of the present invention also includes an alkenyl group-containing epoxy resin, especially the following formula 1 (%) is a hydroxyl group, and p and q are integers represented by 0≦p≦10, 1≦q≦3. It is. ) and an alkenyl group-containing epoxy resin represented by the following formula (
1) % formula %) (However, in the formula, R1 represents a substituted or unsubstituted monovalent hydrocarbon group, hydroxyl group, alkoxy group, or alkenyloxy group, and a and b are 0.01≦a≦1゜1≦b ≦3.1≦a
It is a positive number satisfying +b≦4. Further, the number of silicon atoms in one molecule is an integer of 1 to 400, and the number of hydrogen atoms directly bonded to silicon atoms in one molecule is an integer of 1 or more. ) It is preferable to blend a silicone-modified epoxy resin which is an addition polymer with an organosilicon compound represented by: In addition, this organosilicon compound has its =S i
The H group is added to the alkenyl group of the epoxy resin to form an addition polymer.

ここで、(1)式中のR1は置換もしくは非置換の一価
炭化水素基、水酸基、アルコキシ基又はアルケニルオキ
シ基であるが、好ましくはメチル基、エチル基等の炭素
数1〜8のアルキル基、フェニル基等の炭素数6〜10
のアリール基、これらの基の1以上の水素原子をハロゲ
ン原子で置換したCQC3)I−1ca÷等の基、水酸
基、メトキシ基、エトキシ基等の炭素数1〜5のアルコ
キシ基であり、a、bは0.01≦a≦1、好ましくは
0.03≦a≦1.1≦b≦3、好ましくは1.95≦
b≦2.05.1≦a+b≦4、好ましくは1.8≦a
十b≦4を満足する正数である。
Here, R1 in formula (1) is a substituted or unsubstituted monovalent hydrocarbon group, hydroxyl group, alkoxy group or alkenyloxy group, preferably an alkyl group having 1 to 8 carbon atoms such as a methyl group or an ethyl group. 6-10 carbon atoms such as groups, phenyl groups, etc.
an aryl group, a group such as CQC3)I-1ca÷ in which one or more hydrogen atoms of these groups are substituted with a halogen atom, an alkoxy group having 1 to 5 carbon atoms such as a hydroxyl group, a methoxy group, an ethoxy group, and a , b is 0.01≦a≦1, preferably 0.03≦a≦1.1≦b≦3, preferably 1.95≦
b≦2.05.1≦a+b≦4, preferably 1.8≦a
It is a positive number satisfying 10b≦4.

またこの場合、上記シリコーン変性エポキシ樹脂は、加
水分解性塩素の含有量が500ppm以下で、遊離のN
a、CQイオンが各々2ρρm以下である二とが好まし
く、加水分解性塩素、遊離のNa。
In this case, the silicone-modified epoxy resin has a hydrolyzable chlorine content of 500 ppm or less and free N.
A, CQ ion is preferably 2 ρρm or less, and 2 is preferably hydrolyzable chlorine and free Na.

CQイオン、有機酸の含有量が上記値を越えると。When the content of CQ ions and organic acids exceeds the above values.

封止した半導体装置の耐熱性が悪くなることがある。The heat resistance of the sealed semiconductor device may deteriorate.

上記シリコーン変性エポキシ樹脂は単独でもあるいは2
種以上を混合して配合してもよく、その配合量は、組成
物に配合するエポキシ樹脂100部(重量部、以下同様
)に対して5部以上、特に5〜70部とすることが好ま
しい。シリコーン変性エポキシ樹脂の配合量が5部より
少ないと十分な低応力性を得にくく、70部を越えると
成形品の機械的強度が低下する場合がある。
The above silicone-modified epoxy resin may be used alone or in combination.
A mixture of two or more species may be used, and the amount thereof is preferably 5 parts or more, particularly 5 to 70 parts, based on 100 parts (parts by weight, hereinafter the same) of the epoxy resin blended into the composition. . If the amount of silicone-modified epoxy resin is less than 5 parts, it is difficult to obtain sufficient low stress properties, and if it exceeds 70 parts, the mechanical strength of the molded product may decrease.

また、硬化剤はエポキシ樹脂に応じたものが使用され、
例えば無水トリメリット酸、無水テトラヒドロフタル酸
等の酸無水物やフェノールノボラック樹脂などが用いら
れるが、中でもフェノールノボラック樹脂を用いること
が最適である。なお、硬化剤として使用するフェノール
ノボラック樹脂は、含有する遊離のNa、CQイオンが
各々2 ppm以下、モノマーのフェノール量が1%以
下であると共に、製造時に残存する微量のホルムアルデ
ヒドのカニツアロ反応で生じる蟻酸等の有機酸が110
0pp以下であることが好ましく、遊離のNa、CQイ
オンや有機酸の含有量が上記値より多いと、組成物を半
導体封止材として用いた場合、封止した半導体装置の耐
湿特性が低下する場合があり、モノマーのフェノール量
が1%より多いと、組成物で作った成形品にボイド、未
充填、ひけ等の欠陥が発生する場合がある。更にフェノ
ールノボラック樹脂の軟化点は50〜120℃が好適で
あり、50℃未満であると組成物のガラス転移点が低く
なって耐熱性が悪くなる場合があり、120℃を越える
と組成物の溶融粘度が高くなって作業性に劣る場合が生
じる。
In addition, the hardening agent used is appropriate for the epoxy resin.
For example, acid anhydrides such as trimellitic anhydride and tetrahydrophthalic anhydride, phenol novolak resins, and the like are used, and among them, it is optimal to use phenol novolac resins. The phenol novolak resin used as a curing agent contains 2 ppm or less of free Na and CQ ions each, and 1% or less of monomer phenol, which is produced by the Cannizaro reaction of a trace amount of formaldehyde remaining during manufacturing. Organic acids such as formic acid are 110
It is preferably 0 pp or less, and if the content of free Na, CQ ions or organic acids is higher than the above value, when the composition is used as a semiconductor encapsulant, the moisture resistance of the encapsulated semiconductor device will deteriorate. If the amount of phenol in the monomer is more than 1%, defects such as voids, unfilling, sink marks, etc. may occur in molded articles made from the composition. Furthermore, the softening point of the phenol novolak resin is preferably 50 to 120°C; if it is less than 50°C, the glass transition point of the composition may become low and the heat resistance may deteriorate; if it exceeds 120°C, the composition may deteriorate. Melt viscosity may become high and workability may be poor.

ここで、硬化剤の配合量は別に制限されないが。Here, the blending amount of the curing agent is not particularly limited.

上記エポキシ樹脂のエポキシ基と上記硬化剤のフェノー
ル性水酸基又は酸無水物基とのモル比を0.8〜2、特
に1〜1.5の範囲にすることが好適である。両基のモ
ル比が0.8より小さくなると組成物の硬化特性や成形
品の二次転移温度(T’ g )が悪くなって耐熱性が
低下する場合があり、2より大きくなると成形品の二次
転移温度や電気特性が悪くなる場合がある。
It is preferable that the molar ratio between the epoxy group of the epoxy resin and the phenolic hydroxyl group or acid anhydride group of the curing agent is in the range of 0.8 to 2, particularly 1 to 1.5. If the molar ratio of both groups is less than 0.8, the curing characteristics of the composition and the secondary transition temperature (T' g ) of the molded product may deteriorate, leading to a decrease in heat resistance. Secondary transition temperature and electrical characteristics may deteriorate.

本発明のエポキシ樹脂組成物には、上記エポキシ樹脂、
硬化剤と共に、硬化促進剤としてテトラフェニルホスホ
ニウムテトラフェニルボレートを配合し、かつ無機充填
材としてアルミナ及び/又は窒化アルミニウムを配合す
る。
The epoxy resin composition of the present invention includes the above epoxy resin,
Together with the curing agent, tetraphenylphosphonium tetraphenylborate is blended as a curing accelerator, and alumina and/or aluminum nitride is blended as an inorganic filler.

この場合、硬化促進剤のテトラフェニルホスホニウムテ
トラフェニルボレートの配合量はエポキシ樹脂100部
に対して0.1〜10部、特に0.3〜5部が好ましく
、配合量が0.1部に満たないと硬化性が悪くなる場合
があり、一方10部を越えると保存安定性、耐湿特性が
悪くなる場合がある。
In this case, the amount of tetraphenylphosphonium tetraphenylborate as a curing accelerator is preferably 0.1 to 10 parts, particularly 0.3 to 5 parts, based on 100 parts of the epoxy resin, and the amount is less than 0.1 part. If it is not used, the curability may deteriorate, while if it exceeds 10 parts, the storage stability and moisture resistance properties may be deteriorated.

なお、硬化促進剤としてテトラフェニルホスホニウムテ
トラフェニルボレートと共にその他の硬化促進剤を併用
してもよく、特に耐湿性の点からその他の硬化促進剤と
して1,8−ジアザビシクロ−7−ウンデセンを例えば
テトラフェニルホスホニウムテ1〜ラフェニルボレート
1部に対し0.02〜2部の配合割合で併用することが
望ましい。
In addition, as a curing accelerator, other curing accelerators may be used in combination with tetraphenylphosphonium tetraphenylborate. In particular, from the viewpoint of moisture resistance, 1,8-diazabicyclo-7-undecene, for example, tetraphenyl It is desirable to use them together in a blending ratio of 0.02 to 2 parts per 1 part of phosphonium te to 1 part of raphenylborate.

次に、本発明において無機充填材として使用されるアル
ミナ及び窒化アルミニウムには、無定形、焼結、球状等
、種々の形状のものを用いることができるが、封止材料
として組成物を使用する場合は特に球状のものが好適で
ある。
Next, the alumina and aluminum nitride used as the inorganic filler in the present invention can be in various shapes such as amorphous, sintered, and spherical, but the composition can be used as the sealing material. In this case, a spherical one is particularly suitable.

また、アルミナ及び窒化アルミニウムの平均粒径は好ま
しくは1〜100ミクロン、より好ましくは5〜75ミ
クロンであるが、全アルミナ及び窒化アルミニウム量の
20重量%を越えない範囲で平均粒径が0.1〜1ミク
ロンのものを用いてもよい。
Further, the average particle size of alumina and aluminum nitride is preferably 1 to 100 microns, more preferably 5 to 75 microns, but the average particle size is 0.5 to 100. A material having a diameter of 1 to 1 micron may also be used.

更に、アルミナ及び窒化アルミニウムはシランカップリ
ング剤等であらかじめ処理することが好ましい、アルミ
ナ、窒化アルミニウムの処理に用いるシランカップリン
グ剤としては、構造式がRニーcSi(OR’)c で表されるような加水分解性残基含有シラン類が好まし
く用いられる。
Furthermore, it is preferable that alumina and aluminum nitride be treated in advance with a silane coupling agent, etc. The silane coupling agent used in the treatment of alumina and aluminum nitride has a structural formula represented by RniecSi(OR')c. Silanes containing hydrolyzable residues are preferably used.

この場合、R3は水素原子、メチル基、エチル基、プロ
ピル基、ビニル基、イソプロペニル基、フェニル基など
の無官能のアルキル基、アルケニル基、アリール基や、
エポキシ、アミノ、アクリル、アルケニル、カルボキシ
ル官能性である下記のような基を挙げることができる。
In this case, R3 is a hydrogen atom, a non-functional alkyl group such as a methyl group, an ethyl group, a propyl group, a vinyl group, an isopropenyl group, a phenyl group, an alkenyl group, an aryl group,
Mention may be made of the following groups which are epoxy, amino, acrylic, alkenyl, carboxyl functional.

Cl−1zCHCH,QC:H,CH,CH,−\ / H,NCH,CH2NHCH2C82CH,−HR’N
CH,CHiCHz−R’=H,CdHidゆ1.d=
1〜4の整数CHz=C(R’)Coo(CH2)n 
  R’=H1CH−n=1.3CH,=CH(CH2
)m−m=1〜4の整数HOCO(CHz’)Q−Ω=
2〜18の整数また。R4としてアルキル基、アルケニ
ル基。
Cl-1zCHCH,QC:H,CH,CH,-\/H,NCH,CH2NHCH2C82CH,-HR'N
CH, CHiCHz-R'=H, CdHid Yu1. d=
Integer from 1 to 4 CHz=C(R')Coo(CH2)n
R'=H1CH-n=1.3CH,=CH(CH2
) m-m=integer from 1 to 4 HOCO(CHz')Q-Ω=
An integer from 2 to 18. R4 is an alkyl group or an alkenyl group.

アリール基、カルボニル基などが挙げられるが、その内
メチル基、エチル基、イソプロペニル基などが一般的で
あり、特にイソプロペニル基が好ましい、更に、Cは1
〜4の数、特に3又は4であることが好ましい。
Examples include aryl groups and carbonyl groups, among which methyl groups, ethyl groups, isopropenyl groups, etc. are common, and isopropenyl groups are particularly preferred.
A number of ˜4 is preferred, especially 3 or 4.

なお、シランカップリング剤は、単独で用いてもよいが
、2種以上を併用してもよく、あるいは上記シランカッ
プリング剤を予め一部加水分解したものを用いるごとも
できる。
Note that the silane coupling agent may be used alone, or two or more types may be used in combination, or the above-mentioned silane coupling agent may be partially hydrolyzed in advance.

シランカップリング剤によるアルミナ及び窒化アルミニ
ウムの処理方法としては乾式、湿式のどちらを用いても
良く、乾式法はヘンシェルミキサー等で、湿式法は溶剤
中でそれぞれアルミナ及び窒化アルミニウムにシランカ
ップリング剤を混合、撹拌することによって行うことが
できる。
Either a dry or wet method can be used to treat alumina and aluminum nitride with a silane coupling agent. The dry method uses a Henschel mixer, etc., and the wet method involves treating alumina and aluminum nitride with a silane coupling agent in a solvent. This can be done by mixing and stirring.

この場合、使用するシランカップリング剤の量はアルミ
ナ及び窒化アルミニウム100部に対して0.001〜
8部、特に0.01〜5部の範囲であることが好ましい
。シランカップリング剤の使用量が0.001部より少
ないとト分な処理効果が現われない場合があり、8部よ
り多いとアルミナ及び窒化アルミニウムの特性である高
熱伝導性。
In this case, the amount of silane coupling agent used is 0.001 to 100 parts of alumina and aluminum nitride.
8 parts, particularly preferably in the range of 0.01 to 5 parts. If the amount of the silane coupling agent used is less than 0.001 part, the treatment effect may not be sufficiently obtained, and if it is more than 8 parts, the high thermal conductivity, which is a characteristic of alumina and aluminum nitride, will be achieved.

低熱膨張性が失われてしまう場合がある。Low thermal expansion properties may be lost.

また、溶剤としては、例えばトルエン、キシレンなどの
炭化水素系、メタノール、エタノール、イソプロピルア
ルコールなどのアルコール系、アセトン、2−ブタノン
などのケトン系、イソプロピルエーテル、テトラヒドロ
フランなどのエーテル系等が挙げられ、水および加水分
解促進剤としての錫系、チタン系、あるいはアミン化合
物を併用することもできる。
Examples of solvents include hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, and isopropyl alcohol, ketones such as acetone and 2-butanone, and ethers such as isopropyl ether and tetrahydrofuran. Water and a tin-based, titanium-based, or amine compound as a hydrolysis accelerator can also be used in combination.

更に、このようにシランカップリング剤により処理した
後は、400〜1200℃程度の加熱炉で焼結すること
ができる。
Furthermore, after being treated with a silane coupling agent in this way, it can be sintered in a heating furnace at about 400 to 1200°C.

なおまた、窒化アルミニラムレ3ついては、その一部を
酸化等により処理してその表面の酸化によってアルミナ
膜を形成することがより好適であり。
Furthermore, regarding the aluminum nitride laminated membrane 3, it is more preferable to treat a part of it by oxidation or the like so that an alumina film is formed by oxidizing its surface.

その上で前述のシラン処理をすることが望ましい。It is desirable to perform the above-mentioned silane treatment thereon.

本発明においては、無機充填材としてアルミナや窒化ア
ルミニウムと共に、その他の無機充填材、例えば溶融シ
リカ、結晶シリカ等を用いることができ、また、アルミ
ナ及び窒化アルミニウムの配合量は特に限定されないが
、それらの特徴である高熱放散性、低熱膨張率を有効に
作用させるため。
In the present invention, in addition to alumina and aluminum nitride, other inorganic fillers such as fused silica and crystalline silica can be used as the inorganic filler, and the amounts of alumina and aluminum nitride are not particularly limited. To make effective use of its characteristics of high heat dissipation and low coefficient of thermal expansion.

無機充填材の合計量が組成物全体の50重量%以上、特
に70〜90重量%であり、かつ、全無機充填材中のア
ルミナ及び窒化アルミニウムの配合割合が50重量%以
上、特に70〜95重量%であることが好ましい。
The total amount of inorganic fillers is 50% by weight or more, especially 70 to 90% by weight of the entire composition, and the blending ratio of alumina and aluminum nitride in the total inorganic fillers is 50% by weight or more, especially 70 to 95% by weight. Preferably, it is % by weight.

本発明の組成物には、更に必要により各種の添加材を添
加することができ、例えばカルナバワックス等のワック
ス類、ステアリン酸等の脂肪酸やその金属塩などの離型
剤(中でも接着性、離型性の面からカルナバワックスが
好適に用いられる)、カーボンブラック、コバルトブル
ー、ベンガラ等の顔料、酸化アンチモン、ハロゲン化合
物等の難燃化剤、老化防止剤、シランカップリング剤、
イオン交換物質、その他の添加剤の1種又は2種以上を
配合することができる。
Various additives can be further added to the composition of the present invention, if necessary. Carnauba wax is preferably used from the viewpoint of moldability), pigments such as carbon black, cobalt blue, red iron, flame retardants such as antimony oxide and halogen compounds, anti-aging agents, silane coupling agents,
One or more types of ion exchange substances and other additives can be blended.

なお、本発明のエポキシ樹脂組成物は、その製造に際し
、上述した成分の所定量を均一に撹拌、混合し、予め6
0〜95℃に加熱しであるニーダ−、ロール、エクスト
ルーダーなどで混練、冷却し、粉砕するなどの方法で得
ることができる。ここで、成分の配合順序に特に制限は
ない。
In addition, when producing the epoxy resin composition of the present invention, predetermined amounts of the above-mentioned components are uniformly stirred and mixed,
It can be obtained by heating to 0 to 95°C, kneading with a kneader, roll, extruder, etc., cooling, and pulverizing. Here, there is no particular restriction on the order of blending the components.

上述したように、本発明のエポキシ樹脂組成物はIC,
LSI、 トランジスタ、サイリスタ、ダイオード等の
半導体装置の封止樹脂やプリント回路板の製造などに有
効に使用できる。
As mentioned above, the epoxy resin composition of the present invention includes IC,
It can be effectively used for manufacturing printed circuit boards and sealing resins for semiconductor devices such as LSIs, transistors, thyristors, and diodes.

ここで、半導体装置の封止を行う場合は、従来より採用
されている成形法、例えばトランスファ成形、インジェ
クション成形、注型法などを採用して行なうことができ
る。この場合、エポキシ樹脂組成物の成形温度は150
〜180℃、ポストキュアーは150℃〜180℃で2
〜16時間行なうことが好ましい。
Here, when sealing the semiconductor device, conventionally employed molding methods such as transfer molding, injection molding, and casting can be used. In this case, the molding temperature of the epoxy resin composition is 150
~180℃, post cure at 150℃~180℃ 2
It is preferable to carry out the treatment for 16 hours.

災肌夏羞米 本発明のエポキシ樹脂組成物は、熱膨張率が小さく、熱
放散性に優れていると共に、耐湿信頼性が良く、かつ、
成形性も良好な硬化物を与え、成形材料、半導体の封止
材として有用である。
The epoxy resin composition of the present invention has a small coefficient of thermal expansion, excellent heat dissipation properties, and good moisture resistance reliability, and
It provides a cured product with good moldability and is useful as a molding material and a semiconductor encapsulating material.

〈実施例、比較例〉 以下、実施例及び比較例を示して本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではない
。なお、以下の例において部はいずれも重量部である。
<Examples, Comparative Examples> The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In addition, in the following examples, all parts are parts by weight.

〔実施例1〕 下記成分を80〜90℃の熱ロールにかけて混練し、冷
却粉砕してエポキシ樹脂組成物を得た。
[Example 1] The following components were kneaded using heated rolls at 80 to 90°C, cooled and ground to obtain an epoxy resin composition.

(エポキシ当j1230) 臭素化エポキシ樹脂 (エポキシ当量28o) フェノールノボラック樹脂 (フェノール当量100)  2 カルナバワックス トラメトキシシラン(TMS)を添加し、0.5部の純
水を加えて加熱し、トルエン還流下に5時間撹拌を続け
た後、減圧下に150’Cにて溶媒を留去することによ
り1表面処理したものを使用した。
(Epoxy equivalent j1230) Brominated epoxy resin (Epoxy equivalent 28o) Phenol novolac resin (Phenol equivalent 100) 2 Add carnauba wax tramethoxysilane (TMS), add 0.5 part of pure water and heat, and reflux toluene. After continuing to stir for 5 hours, the solvent was distilled off at 150'C under reduced pressure, and the surface was treated.

また、シリコーン変性エポキシ樹脂■はカーボンブラッ
ク 充填材 球状アルミナ(平均粒径25 pnI)溶融シリカ 硬化促進剤  00 00 シリコーン変性エポキシ樹脂1      50ここで
、充填材の球状アルミナは、その500部をトルエン5
00部に分散させ、1.0部のテとの付加反応物である
シリコーン変性エポキシ樹脂(式中の添字は平均値)を
用いた。
In addition, the silicone-modified epoxy resin (■) is carbon black filler, spherical alumina (average particle size 25 pnI), fused silica hardening accelerator, 00 00 silicone-modified epoxy resin 1, 50.
A silicone-modified epoxy resin (the subscript in the formula is an average value) which is an addition reaction product with 1.0 part of Te was used.

〔実施例2〕 球状アルミナとしてテトラメトキシシラン1.0部の代
わりにメチルトリイソプロペノキシシラン(MTTPS
)4−.0部を用いて表面処理したものを使用した以外
は実施例1と同様の配合、条件で処理を行ない、エポキ
シ樹脂組成物を得た。
[Example 2] Methyltriisopropenoxysilane (MTTPS) was used instead of 1.0 part of tetramethoxysilane as the spherical alumina.
)4-. An epoxy resin composition was obtained by carrying out the treatment under the same formulation and conditions as in Example 1, except that the surface treatment was carried out using 0 parts.

〔実施例3〕 充填材として溶融シリカを配合せず、実施例1と同様の
方法で処理した球状アルミナ600部を使用した以外は
実施例1と同様の配合でエポキシ樹脂組成物を得た。
[Example 3] An epoxy resin composition was obtained in the same manner as in Example 1, except that 600 parts of spherical alumina treated in the same manner as in Example 1 was used without blending fused silica as a filler.

〔実施例4〕 実施例1におけるシリコーン変性エポキシ樹脂Iの代わ
りに との付加反応物(シリコーン変性エポキシ樹脂■)を使
用した以外は実施例1と同様の配合でエポキシ樹脂組成
物を得た。
[Example 4] An epoxy resin composition was obtained in the same manner as in Example 1, except that an addition reaction product (silicone-modified epoxy resin (■)) was used instead of silicone-modified epoxy resin I in Example 1.

〔実施例5〕 硬化促進剤として実施例1におけるテトラフェニルホス
ホニウムテトラフェニルボレート1.27部、1,8−
ジアザビシクロ−7−ウンデセン0.14部をテトラフ
ェニルホスホニウムテトラフェニルボレートのみ1.8
2部に変えた以外は実施例1と同様の配合でエポキシ樹
脂組成物を得た。
[Example 5] 1.27 parts of tetraphenylphosphonium tetraphenylborate in Example 1 as a curing accelerator, 1,8-
0.14 parts of diazabicyclo-7-undecene and 1.8 parts of tetraphenylphosphonium tetraphenylborate
An epoxy resin composition was obtained using the same formulation as in Example 1 except that the amount was changed to 2 parts.

〔実施例6〕 表面処理した球状アルミナの代わりに未処理のアルミナ
を使用した以外は実施例1と同様の配合でエポキシ樹脂
組成物を得た。
[Example 6] An epoxy resin composition was obtained in the same manner as in Example 1 except that untreated alumina was used instead of surface-treated spherical alumina.

【実施例7〕 表面処理した球状アルミナの代わりに実施例2と同様の
方法で窒化アルミニウム(平均粒径17−)を処理した
もの350部を用いたほかは実施例1と同様の配合でエ
ポキシ樹脂組成物を得た。
[Example 7] Epoxy was used in the same formulation as in Example 1, except that 350 parts of aluminum nitride (average particle size 17-) treated in the same manner as in Example 2 was used instead of the surface-treated spherical alumina. A resin composition was obtained.

〔実施例8〕 充填材として溶融シリカを配合せず、実施例7と同様の
方法で処理した窒化アルミニウムを450部用いたほか
は実施例7と同様の配合でエポキシ樹脂組成物を得た。
[Example 8] An epoxy resin composition was obtained in the same manner as in Example 7, except that 450 parts of aluminum nitride treated in the same manner as in Example 7 was used without blending fused silica as a filler.

〔比較例1〕 実施例1におけるテトラフェニルホスホニウムテトラフ
ェニルボレー1−1.27部をトリフェニルホスフィン
(TPP)0155部に変えた以外は実施例1と同様の
配合でエポキシ樹脂組成物を得た。
[Comparative Example 1] An epoxy resin composition was obtained with the same formulation as in Example 1, except that 1-1.27 parts of tetraphenylphosphonium tetraphenylbore in Example 1 was changed to 0.155 parts of triphenylphosphine (TPP). .

〔比較例2〕 実施例1におけるテトラフェニルホスホニウムテトラフ
ェニルボレーh1.27部、1.8−ジアザビシクロ−
7−ウンデセン0.14部を2−フェニルイミダゾール
(2−PIZ)1.68部に変えた以外は実施例1と同
様の配合でエポキシ樹脂組成物を得た。
[Comparative Example 2] 1.27 parts of tetraphenylphosphonium tetraphenylbore h in Example 1, 1.8-diazabicyclo-
An epoxy resin composition was obtained in the same manner as in Example 1, except that 0.14 parts of 7-undecene was replaced with 1.68 parts of 2-phenylimidazole (2-PIZ).

〔比較例3〕 実施例6におけるテトラフェニルホスホニウムテトラフ
ェニルボレーh1.27部をトリフェニルホスフィン0
.55部に変えた以外は実施例6と同様の配合でエポキ
シ樹脂組成物を得た。
[Comparative Example 3] 1.27 parts of the tetraphenylphosphonium tetraphenylbore h in Example 6 was added to 0 part of triphenylphosphine.
.. An epoxy resin composition was obtained using the same formulation as in Example 6 except that the amount was changed to 55 parts.

〔比較例4〕 実施例7におけるテトラフェニルホスホニウムテトラフ
ェニルボレート1.2’7部をトリフェニルホスフィン
0.55部に変えた以外は実施例7と同様の配合でエポ
キシ樹脂組成物を得た。
[Comparative Example 4] An epoxy resin composition was obtained in the same manner as in Example 7 except that 1.2'7 parts of tetraphenylphosphonium tetraphenylborate in Example 7 was changed to 0.55 parts of triphenylphosphine.

〔比較例5〕 実施例1における表面処理球状アルミナ500重量部を
結晶性シリカ(平均粒径28μ5)500重量部に変え
た以外は実施例1と同様の配合でエポキシ樹脂組成物を
得た。
[Comparative Example 5] An epoxy resin composition was obtained using the same formulation as in Example 1, except that 500 parts by weight of surface-treated spherical alumina in Example 1 was replaced with 500 parts by weight of crystalline silica (average particle size 28 μ5).

これらのエポキシ樹脂組成物について、成形時の硬化性
、保存安定性、曲げ強さ、耐熱衝撃試験及びパワーIC
の耐湿性(アルミ腐食試験)について下記方法で3f価
した。結果を第1表及び第2表に示す。
Regarding these epoxy resin compositions, curability during molding, storage stability, bending strength, thermal shock resistance test, and power IC
The moisture resistance (aluminum corrosion test) was evaluated as 3f using the following method. The results are shown in Tables 1 and 2.

スパイラルフロー値 EMMI規格に準じた金型を使用して、175℃、70
kg/dの条件で測定した。
Spiral flow value: 175°C, 70°C using a mold that complies with EMMI standards.
It was measured under the condition of kg/d.

硬−凍一 バーコール硬度計935を用いて測定した。Hard-Koichi It was measured using Barcol hardness meter 935.

典仇芙敢 JIS−に6911に準じて、175°C170kg/
(d、成形時間2分の条件で10 rm X 4 nu
 X100Mの坑折捧を成形し、180℃で4時間ポス
トキュアしたものについて測定した。
According to JIS-6911, 175°C 170kg/
(d, 10 rm x 4 nu under conditions of 2 minutes of molding time
Measurements were made on molded X100M shafts and post-cured at 180° C. for 4 hours.

廠支囁仮歎 4 rrrn X 4 trrn X 15 mの試験
片を用いて、デイラドメーターにより毎分5℃の速さで
昇温した時の値を測定した。
Using a test piece measuring 4 rrrn x 4 trrn x 15 m, the temperature was measured using a deiradometer at a rate of 5° C. per minute.

然久貞皇 昭和電工製Shotherm Q T M −D■迅速
熱伝導計を使用し、 5011111φX9nwnの大
きさの円盤を非定常熱線法によって測定した。
A disk having a size of 5011111φX9nwn was measured by the unsteady hot wire method using a Shotherm QTM-D quick thermal conductivity meter manufactured by Showa Denko.

笠λユヱ久且 9、OnmX4.5nnX0.5onの大きさのシリコ
ンチップを14PIN−ICフレーム(4270イ)に
接着し、これにエポキシ樹脂組成物を成形条件175℃
×2分で成形し、180℃で4時間ポストキュアした後
、液相で一り0℃×5分〜180’CXS分の熱サイク
ルを繰り返し、1000サイクル後の樹脂クラック発生
率を測定した。
A silicon chip with a size of 9 nm x 4.5 nm x 0.5 on was glued to a 14PIN-IC frame (4270), and an epoxy resin composition was applied to it under molding conditions of 175°C.
After molding for 2 minutes and post-curing at 180°C for 4 hours, thermal cycles of 0°C x 5 minutes to 180' CXS were repeated in the liquid phase, and the resin crack occurrence rate after 1000 cycles was measured.

アルミニウム     の アルミニウム金属電極の腐食を検討するために設計した
14ピンICにエポキシ樹脂組成物をトランスファーモ
ールド法で成形し、121℃、湿度100%の高圧釜に
1500時間入れ、配線のオープン不良率を調べた。
An epoxy resin composition was molded into a 14-pin IC designed to examine the corrosion of aluminum metal electrodes using the transfer molding method, and the product was placed in a high-pressure cooker at 121°C and 100% humidity for 1500 hours to reduce the open failure rate of wiring. Examined.

〔実施例9〕 実施例1で得られた組成物をトルエンにより20%溶液
として液状の組成物を得た。この組成物を注型硬化させ
た成形物は実施例1〜8の硬化物と同様の良好な物性を
示した。
[Example 9] The composition obtained in Example 1 was made into a 20% solution in toluene to obtain a liquid composition. Molded products obtained by casting and curing this composition exhibited good physical properties similar to those of the cured products of Examples 1 to 8.

これらの結果より、無機充填材としてアルミナ及び/又
は窒化アルミニウムを配合し、かつ、硬化促進剤として
テトラフェニルホスホニウムテトラフェニルボレートを
配合した本発明のエポキシ樹脂組成物は、硬化物の熱膨
張率が小さく、耐湿信頼性に優れ、かつ成形性が良好で
あることが確認された。
From these results, the epoxy resin composition of the present invention containing alumina and/or aluminum nitride as an inorganic filler and tetraphenylphosphonium tetraphenylborate as a curing accelerator has a coefficient of thermal expansion of the cured product. It was confirmed that it is small, has excellent moisture resistance reliability, and has good moldability.

Claims (1)

【特許請求の範囲】 1、無機充填材としてアルミナ及び/又は窒化アルミニ
ウムを配合し、かつ、硬化促進剤としてテトラフェニル
ホスホニウムテトラフェニルボレートを配合してなるこ
とを特徴とするエポキシ樹脂組成物。 2、アルケニル基含有エポキシ樹脂のアルケニル基に下
記式(1) ▲数式、化学式、表等があります▼・・・(1) (ただし、式中R^1は置換もしくは非置換の一価炭化
水素基、水酸基、アルコキシ基又はアルケニルオキシ基
を示し、a、bは0.01≦a≦1、1≦b≦3、1≦
a+b≦4を満足する正数である、また、1分子中のけ
い素原子の数は1〜400の整数であり、1分子中のけ
い素原子に直結した水素原子の数は1以上の整数である
。) で表される有機けい素化合物の≡SiH基が付加されて
なるシリコーン変性エポキシ樹脂を配合した請求項1記
載のエポキシ樹脂組成物。 3、請求項1又は2に記載の組成物を硬化して得られる
エポキシ樹脂硬化物。
[Scope of Claims] 1. An epoxy resin composition comprising alumina and/or aluminum nitride as an inorganic filler and tetraphenylphosphonium tetraphenylborate as a curing accelerator. 2. The alkenyl group of the alkenyl group-containing epoxy resin has the following formula (1) ▲ Numerical formula, chemical formula, table, etc. ▼... (1) (However, in the formula, R^1 is a substituted or unsubstituted monovalent hydrocarbon group, hydroxyl group, alkoxy group or alkenyloxy group, a and b are 0.01≦a≦1, 1≦b≦3, 1≦
A positive number that satisfies a+b≦4, and the number of silicon atoms in one molecule is an integer of 1 to 400, and the number of hydrogen atoms directly bonded to silicon atoms in one molecule is an integer of 1 or more. It is. 2. The epoxy resin composition according to claim 1, further comprising a silicone-modified epoxy resin added with a ≡SiH group of an organosilicon compound represented by the following formula. 3. A cured epoxy resin obtained by curing the composition according to claim 1 or 2.
JP29528689A 1989-11-14 1989-11-14 Epoxy resin composition and cured product of epoxy resin Pending JPH03157447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29528689A JPH03157447A (en) 1989-11-14 1989-11-14 Epoxy resin composition and cured product of epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29528689A JPH03157447A (en) 1989-11-14 1989-11-14 Epoxy resin composition and cured product of epoxy resin

Publications (1)

Publication Number Publication Date
JPH03157447A true JPH03157447A (en) 1991-07-05

Family

ID=17818637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29528689A Pending JPH03157447A (en) 1989-11-14 1989-11-14 Epoxy resin composition and cured product of epoxy resin

Country Status (1)

Country Link
JP (1) JPH03157447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
WO2014208352A1 (en) * 2013-06-25 2014-12-31 味の素株式会社 Resin composition
JP2018044072A (en) * 2016-09-15 2018-03-22 株式会社トクヤマ Aluminum nitride-containing curable resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860874A (en) * 1971-11-30 1973-08-25
JPS49118797A (en) * 1973-03-19 1974-11-13
JPS6191243A (en) * 1984-10-11 1986-05-09 Fujitsu Ltd Resin composition for semiconductor sealing
JPS63183915A (en) * 1987-01-26 1988-07-29 Matsushita Electric Works Ltd High heat-emissive epoxy resin composition
JPS6437044A (en) * 1987-08-03 1989-02-07 Hitachi Ltd Resin-sealed semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860874A (en) * 1971-11-30 1973-08-25
JPS49118797A (en) * 1973-03-19 1974-11-13
JPS6191243A (en) * 1984-10-11 1986-05-09 Fujitsu Ltd Resin composition for semiconductor sealing
JPS63183915A (en) * 1987-01-26 1988-07-29 Matsushita Electric Works Ltd High heat-emissive epoxy resin composition
JPS6437044A (en) * 1987-08-03 1989-02-07 Hitachi Ltd Resin-sealed semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
WO2014208352A1 (en) * 2013-06-25 2014-12-31 味の素株式会社 Resin composition
JPWO2014208352A1 (en) * 2013-06-25 2017-02-23 味の素株式会社 Resin composition
TWI699399B (en) * 2013-06-25 2020-07-21 日商味之素股份有限公司 Resin composition
JP2018044072A (en) * 2016-09-15 2018-03-22 株式会社トクヤマ Aluminum nitride-containing curable resin composition

Similar Documents

Publication Publication Date Title
US6162878A (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JPH0216118A (en) Epoxy resin composition and semiconductor device
US5190995A (en) Naphthalene ring containing epoxy resin composition and semiconductor device encapsulated therewith
CN113402850B (en) Low-dielectric-constant and low-warpage epoxy plastic packaging material composition, preparation and application
JPS6284147A (en) Epoxy resin composition
JPH0418445A (en) Epoxy resin composition and cured product thereof
JP6816702B2 (en) Resin composition for encapsulating semiconductors and semiconductor devices
JPH0496929A (en) Epoxy resin composition and semiconductor device
JPH03157447A (en) Epoxy resin composition and cured product of epoxy resin
JP2817474B2 (en) Epoxy resin composition and cured product
JPS5981328A (en) Epoxy resin composition for semiconductor sealing
JPH03296526A (en) Epoxy resin composition and curing product thereof
JP2005232384A (en) Epoxy resin composition and semiconductor device using the same
JPH0346486B2 (en)
JP4618407B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH05125159A (en) Epoxy resin composition, its cured product and semiconductor device
JPH06145298A (en) Liquid epoxy resin composition and cured product therefrom
JPH02302426A (en) Epoxy resin composition
JPS63238123A (en) Epoxy resin composition
JPH03296524A (en) Epoxy resin composition and curing product thereof
JPH07102148A (en) Semiconductor-sealing resin composition
JPH01249826A (en) Epoxy resin molding material for sealing semiconductor
JP2005281619A (en) Semiconductor device using epoxy resin composition
JPH04100820A (en) Epoxy resin composition and semiconductor device