JP2005232384A - Epoxy resin composition and semiconductor device using the same - Google Patents

Epoxy resin composition and semiconductor device using the same Download PDF

Info

Publication number
JP2005232384A
JP2005232384A JP2004045394A JP2004045394A JP2005232384A JP 2005232384 A JP2005232384 A JP 2005232384A JP 2004045394 A JP2004045394 A JP 2004045394A JP 2004045394 A JP2004045394 A JP 2004045394A JP 2005232384 A JP2005232384 A JP 2005232384A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing agent
oligomer
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045394A
Other languages
Japanese (ja)
Inventor
Toshimitsu Fukase
利光 深瀬
Yukinori Takeda
幸典 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004045394A priority Critical patent/JP2005232384A/en
Publication of JP2005232384A publication Critical patent/JP2005232384A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition having excellent moldability and flowability that gives a cured product showing only a limited decrease in elastic modulus in a temperature region that exceeds its Tg, and provide a semiconductor device using the composition. <P>SOLUTION: This epoxy resin composition comprises, as indispensable components, an epoxy resin (A), a curing agent (B), and an epoxysilane oligomer (C) obtained by condensation reaction of a compound represented by general formula (1) and a compound represented by general formula (2). The epoxysilane oligomer (C) is a precondesate. In general formula (1), R<SB>1</SB>is a methyl, ethyl, phenyl or hexyl group, and R<SB>2</SB>is a methyl or ethyl group. In general formula (2), R<SB>1</SB>is a methyl or ethyl group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エポキシ樹脂組成物およびそれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition and a semiconductor device using the same.

情報技術化の進展に伴って、電気・電子機器、通信機器、コンピューターなどの機器における小型化および情報伝達の高速化が急速に進み、こららに用いる集積回路(IC)パッケージは、高密度化や高集積化が進展している。また、ICパッケージの封止に使用されている半導体封止材料としては、エポキシ樹脂が一般的であるが、最近のIC実装においては、環境問題の配慮から、従来の錫−鉛共晶半田接合から鉛フリー半田接合への転換が急ピッチに進められていて、それに伴い、半田接合時の加熱温度が高くなり、半導体封止材料用エポキシ樹脂組成物から得られる硬化物には、、更なる高耐熱・高弾性率化や線膨張係数(以下αと略す)の低減等の高信頼性化と優れた成形性が求められることになった。   With the progress of information technology, miniaturization and high-speed information transmission in devices such as electric / electronic devices, communication devices, and computers are rapidly progressing, and the integrated circuit (IC) packages used for these devices are becoming higher in density. High integration is progressing. In addition, epoxy resin is generally used as a semiconductor sealing material used for sealing an IC package. However, in recent IC mounting, conventional tin-lead eutectic solder joints are used in consideration of environmental problems. The transition from lead-free solder joints is proceeding at a rapid pace, and as a result, the heating temperature at the time of solder joints is increased, and the cured product obtained from the epoxy resin composition for semiconductor sealing materials is further High reliability and excellent moldability, such as high heat resistance and high elastic modulus and reduction of linear expansion coefficient (hereinafter abbreviated as α), have been demanded.

従来、エポキシ樹脂組成物の耐熱化の要求においては、耐熱性の高い樹脂構造を有するエポキシ樹脂の構造を用いたり、他の熱硬化性樹脂との変性が行われたり、また、硬化剤に耐熱性の高い構造を有するフェノール樹脂を用いるのが一般的であった。
しかし、他の熱硬化性樹脂との変性エポキシ樹脂、例えば、ポリイミド樹脂変性エポキシ樹脂を用いた場合は、成形温度が高くなり過ぎて、封止するICを破壊する欠点があり、また、耐熱性の高い樹脂構造を有するエポキシ樹脂や、耐熱性の高いフェノール樹脂を用いることは一時的に効果があったが、更なる高耐熱化が要求されており十分に対応できていない。
Conventionally, in the demand for heat resistance of an epoxy resin composition, an epoxy resin structure having a resin structure with high heat resistance is used, modification with other thermosetting resin is performed, In general, a phenol resin having a highly structural structure is used.
However, when a modified epoxy resin with another thermosetting resin, for example, a polyimide resin-modified epoxy resin is used, the molding temperature becomes too high, and there is a defect of destroying the IC to be sealed, and the heat resistance The use of an epoxy resin having a high resin structure or a phenol resin having high heat resistance was temporarily effective, but it has not been able to cope with it sufficiently because higher heat resistance is required.

一方、エポキシ樹脂組成物から得られる硬化物の欠点を改良する目的で、関西大の越智らは、ビスフェノールA型エポキシ樹脂とテトラエチレンペンタミン(以下TEPAと略す)の樹脂系に、アルコキシシランをゾルゲル反応を用いて化学結合させる手法を報告している(例えば、非特許文献1参照。)。具体的には、ビスフェノールA型エポキシ樹脂にTEPAとγ−グリシドキシプロピルトリメトキシシラン(以下γ−GPSと略す)を一度に作用させる所謂In−Situ法により反応させたものが、動的粘弾性測定に於いてガラス転移温度(Tg)が消滅し、弾性率の減少が殆どない硬化物が得られると報告している。しかし、一般に、TEPAを含む脂肪族アミン類は、常温でもエポキシ樹脂との反応性が高く、それ故に保存安定性と成形性及び流動性に難点が有り、半導体封止材料への適用が非常に困難という欠点を有する。また、前記有機無機ハイブリッド化手法に於いて、エポキシ樹脂とエポキシ樹脂硬化剤とアルコキシ基を持つシラン化合物の組成物にアルコキシシラン化合物用重縮合触媒を必須成分として用いる例がある(例えば、特許文献1参照。)。該重縮合触媒は、アルコキシシランの加水分解、重縮合には効果的であるが、常温でも反応が進み、その結果保存安定性の低下と共に成形性が悪くなり、半導体封止材料への適用が非常に困難という欠点を有している。   On the other hand, for the purpose of improving the defects of the cured product obtained from the epoxy resin composition, Ochi et al. Of Kansai University has added alkoxysilane to the resin system of bisphenol A type epoxy resin and tetraethylenepentamine (hereinafter abbreviated as TEPA). A method of chemically bonding using a sol-gel reaction has been reported (for example, see Non-Patent Document 1). Specifically, a reaction product obtained by reacting bisphenol A type epoxy resin with TEPA and γ-glycidoxypropyltrimethoxysilane (hereinafter abbreviated as γ-GPS) at a time by the so-called In-Situ method is used. It has been reported that in the measurement of elasticity, the glass transition temperature (Tg) disappears and a cured product with almost no decrease in elastic modulus can be obtained. However, in general, aliphatic amines including TEPA are highly reactive with epoxy resins even at room temperature, and therefore have difficulties in storage stability, moldability and fluidity, and are very applicable to semiconductor encapsulation materials. It has the disadvantage of being difficult. In the organic-inorganic hybrid method, there is an example in which a polycondensation catalyst for an alkoxysilane compound is used as an essential component in a composition of a silane compound having an epoxy resin, an epoxy resin curing agent, and an alkoxy group (for example, Patent Documents). 1). The polycondensation catalyst is effective for hydrolysis and polycondensation of alkoxysilane, but the reaction proceeds even at room temperature. As a result, the storage stability is lowered and the moldability is deteriorated. It has the disadvantage of being very difficult.

また、荒川化学の合田らは、ビスフェノールA型エポキシ樹脂の二級水酸基にメトキシシランオリゴマーを化学結合させて得られたシラン変性エポキシ樹脂に、硬化剤を当量配合して硬化させることで、動的粘弾性測定に於いてTgが消失し、弾性率の減少が殆どない硬化物が得られると報告している(例えば、非特許文献2参照。)。これらの場合には、エポキシ樹脂組成物の一液化は可能になるが、エポキシ樹脂において二級水酸基が必須となるため、二級水酸基を持たないエポキシ樹脂には適用が出来ないという点で、材料設計に制約を受ける欠点を有している。   Arakawa Chemical's Aida et al. Also added a curing agent in an equivalent amount to a silane-modified epoxy resin obtained by chemically bonding a methoxysilane oligomer to the secondary hydroxyl group of a bisphenol A type epoxy resin. It has been reported that a cured product can be obtained in which Tg disappears in the viscoelasticity measurement and the elastic modulus hardly decreases (see, for example, Non-Patent Document 2). In these cases, the epoxy resin composition can be made into one component, but since a secondary hydroxyl group is essential in the epoxy resin, it cannot be applied to an epoxy resin having no secondary hydroxyl group. It has the disadvantage of being constrained by the design.

特開平10−298405号公報(請求項1)JP-A-10-298405 (Claim 1) 越智等、ポリマーフロンティア21講演要旨集 2000年、(社)高分子学会、p.8〜13Ochi et al., Polymer Frontier 21 Abstracts 2000, The Society of Polymer Science, p. 8-13 合田等、第9回ポリマー材料フォーラム講演要旨集 2000年、(社)高分子学会、p.115〜116Sumida et al., 9th Polymer Materials Forum Lecture Collection 2000, The Society of Polymer Science, p. 115-116

本発明は、この様な事情に鑑み、成形性および流動性に優れ、更に、硬化物がそのTgを上回る温度領域での弾性率の低下が少ないエポキシ樹脂組成物、およびそれを用いた半導体装置を提供することにある。   In view of such circumstances, the present invention is an epoxy resin composition that is excellent in moldability and fluidity, and further has a reduced elastic modulus in a temperature range in which a cured product exceeds its Tg, and a semiconductor device using the same Is to provide.

即ち、本発明は、エポキシ樹脂(A)、硬化剤(B)、及び一般式(1)で表される化合物と一般式(2)で表される化合物とを縮合反応して得られるエポキシシランオリゴマー(C)を必須成分とするエポキシ樹脂組成物であって、前記エポキシシランオリゴマー(C)は予備縮合したものであることを特徴とするエポキシ樹脂組成物である。   That is, the present invention provides an epoxy silane obtained by condensation reaction of the epoxy resin (A), the curing agent (B), and the compound represented by the general formula (1) with the compound represented by the general formula (2). An epoxy resin composition comprising an oligomer (C) as an essential component, wherein the epoxysilane oligomer (C) is pre-condensed.

Figure 2005232384
[式中、R1はメチル基、エチル基、フェニル基またはヘキシル基を示し、R2はメチル基又はエチル基を示す。]
Figure 2005232384
[Wherein, R 1 represents a methyl group, an ethyl group, a phenyl group or a hexyl group, and R 2 represents a methyl group or an ethyl group. ]

Figure 2005232384
[式中、R1はメチル基またはエチル基を示す。]
Figure 2005232384
[Wherein, R 1 represents a methyl group or an ethyl group. ]

本発明のエポキシ樹脂組成物は、前記予備縮合したエポキシシランオリゴマー(C)と、少なくともエポキシ樹脂(A)および/または硬化剤(B)とを加熱溶融混合して得ることが好ましい。
本発明のエポキシ樹脂組成物において、前記硬化剤(B)は、一分子内に少なくとも2個のフェノール性水酸基を有する化合物であることが好ましい。
本発明のエポキシ樹脂組成物は、成形性および流動性、更に、硬化物がそのTgを上回る温度領域での弾性率を維持する上で、前記エポキシシランオリゴマー(C)の配合量が、エポキシ樹脂(A)と硬化剤(B)およびエポキシシランオリゴマー(C)の合計100重量部に対し、シリカ(SiO2)成分として5〜15重量%の割合で含むように配合することがより好ましい。
前記エポキシ樹脂組成物は、充填剤(D)を含むことができる。
本発明は、前記充填剤(D)を含むエポキシ樹脂組成物の硬化物によって、電子部品を封止してなることを特徴とする半導体装置である。
The epoxy resin composition of the present invention is preferably obtained by heat-melting and mixing the pre-condensed epoxy silane oligomer (C) and at least the epoxy resin (A) and / or the curing agent (B).
In the epoxy resin composition of the present invention, the curing agent (B) is preferably a compound having at least two phenolic hydroxyl groups in one molecule.
In the epoxy resin composition of the present invention, the epoxy silane oligomer (C) is blended in an epoxy resin in order to maintain the moldability and fluidity, and further the elastic modulus in the temperature range where the cured product exceeds its Tg. More preferably, the silica (SiO 2 ) component is contained in a proportion of 5 to 15% by weight with respect to a total of 100 parts by weight of (A), the curing agent (B) and the epoxysilane oligomer (C).
The epoxy resin composition can include a filler (D).
The present invention is a semiconductor device wherein an electronic component is sealed with a cured product of an epoxy resin composition containing the filler (D).

本発明によれば、硬化物の作成において、成形性および流動性に優れるエポキシ樹脂組成物が得られ、しかも、硬化物のTgを上回る温度領域でも弾性率低下が少ない硬化物が得られるエポキシ樹脂組成物を提供でき、これを用いた半導体装置は、耐熱性と電子部品実装における接合信頼性とを有するものである。   According to the present invention, an epoxy resin composition that is excellent in moldability and fluidity is obtained in the production of a cured product, and further, a cured product that has little decrease in elastic modulus even in a temperature range that exceeds the Tg of the cured product. A composition can be provided, and a semiconductor device using the composition has heat resistance and bonding reliability in electronic component mounting.

本発明に用いるエポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、アルキル置換型ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、アルキル置換型ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂等が挙げられ、こららの1種又は2種以上を用いても良い。   Examples of the epoxy resin (A) used in the present invention include a bisphenol A type epoxy resin, an alkyl substituted bisphenol A type epoxy resin, a bisphenol F type epoxy resin, an alkyl substituted bisphenol F type epoxy resin, a bisphenol S type epoxy resin, Phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, cyclopentadiene type epoxy resin and the like can be mentioned, and one or more of these are used. Also good.

本発明に用いる硬化剤(B)としては、エポキシ樹脂組成物に用いられる硬化剤であれば限定されないが、電子部品の封止において半導体装置の耐湿信頼性等の観点から、1分子内に少なくとも2個のフェノール性水酸基を有する化合物が好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ターシャリー−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂などのノボラック型フェノール樹脂と、ビフェニルアラルキル型フェノール樹脂、フェノールアラルキル樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレンなどが例示される。前記硬化剤は、単独で用いても良く、2種以上を組み合わせて使用しても良い。   The curing agent (B) used in the present invention is not limited as long as it is a curing agent used in an epoxy resin composition, but at least in one molecule from the viewpoint of moisture resistance reliability of a semiconductor device in sealing an electronic component. Compounds having two phenolic hydroxyl groups are preferred, specifically, novolac type phenol resins such as phenol novolak resin, cresol novolak resin, tertiary-butylphenol novolak resin, nonylphenol novolak resin, biphenylaralkyl type phenol resin, phenol Examples thereof include aralkyl resins, resol type phenol resins, and polyparaoxystyrene. The said hardening | curing agent may be used independently and may be used in combination of 2 or more type.

本発明に用いる一般式(1)で表される化合物としては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、ヘキシルトリメトキシシラン、エチルトリエトキシシランなどのアルキル基含有アルコキシシランが挙げられる。これらは1種又は2種以上で用いることができる。   Examples of the compound represented by the general formula (1) used in the present invention include alkyl group-containing alkoxysilanes such as methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, hexyltrimethoxysilane, and ethyltriethoxysilane. Is mentioned. These can be used alone or in combination of two or more.

本発明に用いる一般式(2)で表される化合物としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、などのグリシジルエーテル基含有アルコキシシランが挙げられる。これらは1種又は2種以上を用いても良い。   Examples of the compound represented by the general formula (2) used in the present invention include glycidyl ether group-containing alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropyltriethoxysilane. . These may be used alone or in combination of two or more.

本発明に用いるエポキシシランオリゴマー(C)は、前記一般式(1)で表される化合物と前記一般式(2)で表される化合物とを、縮合反応して得られるもので、アルキル基とグリシジルエーテル基とを有するオリゴマーである。
前記縮合反応としては、例えば、一般式(1)で表される化合物としてメチルトリメトキシシランと、一般式(2)で表される化合物としてγ−グリシドキシプロピルトリメトキシシランとを、1:1molの割合で、アルミニウム/チタネート系触媒を用いて縮合反応させて、エポキシシランオリゴマーを得ることができる。
The epoxysilane oligomer (C) used in the present invention is obtained by a condensation reaction between the compound represented by the general formula (1) and the compound represented by the general formula (2). It is an oligomer having a glycidyl ether group.
Examples of the condensation reaction include methyltrimethoxysilane as a compound represented by the general formula (1) and γ-glycidoxypropyltrimethoxysilane as a compound represented by the general formula (2). An epoxysilane oligomer can be obtained by a condensation reaction using an aluminum / titanate catalyst at a ratio of 1 mol.

本発明において、エポキシシランオリゴマー(C)は、上記のようにして得たエポキシシランオリゴマーを、予備縮合して得られたものを用いるが、例えば、該エポキシシランオリゴマーを、蒸留水とメタノール中で30分間攪拌して混合し、続いて、120℃に加温し、蒸留法により、6時間加水分解と縮重合反応を行い、エポキシシランオリゴマー中のアルコキシ基量の調整と、エポキシシランオリゴマーの粘度を調整して予備縮合物を得ることができる。前記予備縮合物におけるアルコキシ基量としては、例えば、初期値の17重量%から8〜12重量%程度に調整されることが好ましく、粘度としては、例えば初期値の40mPa・S/25℃から80〜200mPa・S/25℃程度に調整されることが好ましい。
また、エポキシシランオリゴマーの平均重合度としては、2〜50が好ましい。
In the present invention, the epoxysilane oligomer (C) is obtained by precondensing the epoxysilane oligomer obtained as described above. For example, the epoxysilane oligomer is distilled in distilled water and methanol. The mixture is stirred for 30 minutes, then heated to 120 ° C., and subjected to hydrolysis and polycondensation reaction for 6 hours by distillation, adjusting the amount of alkoxy groups in the epoxysilane oligomer, and the viscosity of the epoxysilane oligomer. Can be adjusted to obtain a precondensate. The amount of alkoxy groups in the precondensate is preferably adjusted, for example, from 17% by weight of the initial value to about 8 to 12% by weight, and the viscosity is, for example, from 40 mPa · S / 25 ° C. to 80% of the initial value. It is preferable to adjust to about ~ 200 mPa · S / 25 ° C.
Moreover, as an average degree of polymerization of an epoxy silane oligomer, 2-50 are preferable.

前記エポキシシランオリゴマー(C)の配合量としては、硬化物のTgを上回る温度領域における弾性率の維持及び樹脂組成物の成形性と流動性の観点から、エポキシ樹脂(A)、硬化剤(B)およびエポキシシランオリゴマー(C)との合計100重量部に対し、シリカ(SiO2)成分として5〜15重量%の割合で含むように配合することが好ましく、更に好ましくは、8〜12重量%である。 As a compounding quantity of the said epoxysilane oligomer (C), an epoxy resin (A) and a hardening | curing agent (B) from a viewpoint of the maintenance of the elasticity modulus in the temperature range exceeding Tg of hardened | cured material, and the moldability and fluidity | liquidity of a resin composition. ) And the epoxy silane oligomer (C) in a total amount of 100 parts by weight, the silica (SiO 2 ) component is preferably blended in a proportion of 5 to 15% by weight, more preferably 8 to 12% by weight. It is.

また、エポキシ樹脂(A)と硬化剤(B)との配合量としては、硬化剤(B)が一分子内に少なくとも2個のフェノール性水酸基を有する化合物である場合、そのフェノール性水酸基当量1に対し、エポキシ基当量が0.8〜1.4倍が好ましい。   Moreover, as a compounding quantity of an epoxy resin (A) and a hardening | curing agent (B), when a hardening | curing agent (B) is a compound which has at least 2 phenolic hydroxyl group in 1 molecule, the phenolic hydroxyl group equivalent 1 On the other hand, the epoxy group equivalent is preferably 0.8 to 1.4 times.

本発明のエポキシ樹脂組成物には、更に、充填剤(D)を含むことができ、その具体例としては、シリカ粉末、アルミナ、タルク、炭酸カルシウム、クレー、マイカなどがが挙げられ、特にシリカ粉末は、溶融シリカが好ましい。
また、本発明における充填剤(D)の配合量は、全樹脂組成物100重量部に対して60〜95重量部が好ましいが、特に、65〜90重量部の範囲とするのが好ましい。
The epoxy resin composition of the present invention may further contain a filler (D), and specific examples thereof include silica powder, alumina, talc, calcium carbonate, clay, mica and the like, particularly silica. The powder is preferably fused silica.
Further, the blending amount of the filler (D) in the present invention is preferably 60 to 95 parts by weight with respect to 100 parts by weight of the total resin composition, and particularly preferably in the range of 65 to 90 parts by weight.

本発明のエポキシ樹脂組成物には、上記成分以外に、更に必要に応じて天然ワックス類、合成ワックス類、直鎖脂肪族酸の金属酸化物、酸アミド類、エステル類及びパラフィン類などの離型剤、カーボンブラック及びベンガラなどの着色剤、トリスジメチルアミノメチルフェノール(TAP)、イミダゾール誘導体、トリフェニルフォスフィン(TPP)及びジブチルウンデカン(DBU)塩等の硬化促進剤、金属水和物、硼酸系化合物及びリン系化合物等の難燃性付与剤、カップリング剤など、当業者において公知の添加剤を配合できる。   In addition to the above components, the epoxy resin composition of the present invention may further include natural waxes, synthetic waxes, metal oxides of linear aliphatic acids, acid amides, esters, paraffins, and the like as necessary. Molding agents, colorants such as carbon black and bengara, curing accelerators such as trisdimethylaminomethylphenol (TAP), imidazole derivatives, triphenylphosphine (TPP) and dibutylundecane (DBU) salts, metal hydrates, boric acid Additives known to those skilled in the art, such as flame retardant imparting agents, such as flame retardant compounds and phosphorus compounds, and coupling agents.

本発明のエポキシ樹脂組成物の製造方法としては、先ず、前記エポキシシランオリゴマー(C)を予備縮合したものと、少なくともエポキシ樹脂(A)および/または硬化剤(B)とを加熱溶融混合を行うことが好ましい。この時、予め、エポキシ樹脂および/または硬化剤を溶融し、これに前記エポキシシランオリゴマーの予備縮合物を添加して、加熱溶融混合すると良い。加熱溶融混合温度は、エポキシ樹脂および/または硬化剤の軟化点以上であれば良いが、通常は、軟化点に対して、30℃〜70℃程度高めに設定することが好ましい。
このようにして加熱溶融混合を行うことにより、それぞれの成分が均一に分散し、成形性および流動性に優れるエポキシ樹脂組成物を得ることができる。
次いで、上記で得た加熱溶融混合物と、充填剤(D)、およびその他の成分とを、所定の組成比で、ミキサーなどにより十分に均一になるように混合した後、熱ロールやコニーダなどにより混練を行い、冷却、固化させ、適当な大きさに粉砕することで、エポキシ樹脂組成物をする方法を挙げることができる。
As a method for producing the epoxy resin composition of the present invention, first, the one obtained by precondensing the epoxysilane oligomer (C) and at least the epoxy resin (A) and / or the curing agent (B) are heated and melt mixed. It is preferable. At this time, it is preferable to melt the epoxy resin and / or curing agent in advance, add the precondensate of the epoxy silane oligomer to this, and heat and mix them. The heating / melting mixing temperature may be equal to or higher than the softening point of the epoxy resin and / or the curing agent, but it is usually preferable to set the mixing temperature higher by about 30 ° C to 70 ° C with respect to the softening point.
Thus, by performing heat-melt mixing, each component can disperse | distribute uniformly and the epoxy resin composition excellent in a moldability and fluidity | liquidity can be obtained.
Next, the heated melt mixture obtained above, the filler (D), and other components are mixed at a predetermined composition ratio so as to be sufficiently uniform by a mixer or the like, and then heated by a hot roll or a kneader. A method of forming an epoxy resin composition by kneading, cooling, solidifying, and pulverizing to an appropriate size can be mentioned.

本発明の半導体装置は、上記で得られるエポキシ樹脂(A)、硬化剤(B)、エポキシシランオリゴマー(C)および充填剤(D)を必須とするエポキシ樹脂組成物を用いて、トランスファー成形や射出成形等の成形方法により、半導体素子等の電子部品を封止して硬化させることにより得ることができる。   The semiconductor device of the present invention uses an epoxy resin composition essentially comprising an epoxy resin (A), a curing agent (B), an epoxy silane oligomer (C) and a filler (D) obtained as described above. It can be obtained by sealing and curing an electronic component such as a semiconductor element by a molding method such as injection molding.

以下、本発明実施例により具体的に説明するが、本発明はこれらの実施例によって何ら制約されるものではない。特性評価のため、実施例で得られたエポキシ樹脂組成物を用いて、流動性、弾性率の温度変化、高温保管特性、高温体積抵抗率を測定したが、測定方法はそれぞれ下記の通りとし、測定結果は、まとめて表1(流動性、弾性率、高温保管特性、高温体積抵抗率)と図1(弾性率)に示した。以下、部は重量部を表すものとする。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. For property evaluation, the epoxy resin composition obtained in the examples was used to measure fluidity, temperature change in elastic modulus, high-temperature storage characteristics, and high-temperature volume resistivity. The measurement results are collectively shown in Table 1 (fluidity, elastic modulus, high temperature storage characteristics, high temperature volume resistivity) and FIG. 1 (elastic modulus). Hereinafter, a part represents a weight part.

(1)流動性
EMMI−1−66に準じた金型を使用し、トランスファー成形機により、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で成形し、スパイラルフローを測定した。得られた測定値は、大きい方が流動性の良いことを示す。
(2)弾性率
成形品(127mm×12.7mm×1.0mm)をトランスファー成形機により、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で成形し、得られた成形品を175℃、8時間でポストキュア処理後、所定の大きさに切断した試験片を用いて、動的粘弾性測定装置(オリエンテック社製レオバイブロン、引っ張り法、周波数:100Mz、測定温度範囲:−150℃〜260℃、昇温速度:2℃/分)を用いて弾性率の変化を測定した。
(3)高温保管特性
トランスファー成形機により、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、16pDIP(16ピンDual Inline Package、サイズ3.0mm×3.5mmの模擬素子を搭載)を成形し、175℃、8時間でポストキュア処理後、高温保管試験(185℃、1000時間)を行い、配線間の電気抵抗値が初期値に対し20%増加したパッケージを不良と判定した。15個のパッケージ中の不良なパッケージ個数の率(不良率)を百分率で示した。単位は%。
(4)高温体積抵抗率
試験片(100mmΦ×2.0mm)をトランスファー成形機により、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で成形し、得られた試験片を175℃、8時間でポストキュア処理後、JIS K6911に準じて150℃の体積抵抗率を測定した。
(1) Fluidity Using a mold conforming to EMMI-1-66, molding with a transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds, and measuring the spiral flow did. The larger the measured value, the better the fluidity.
(2) Elastic modulus Molded product (127 mm × 12.7 mm × 1.0 mm) was molded by a transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. After the product was post-cured at 175 ° C. for 8 hours and then cut into a predetermined size, a dynamic viscoelasticity measuring apparatus (Orientec Leo Vibron, tensile method, frequency: 100 Mz, measurement temperature range: The change of the elastic modulus was measured using −150 ° C. to 260 ° C., heating rate: 2 ° C./min).
(3) High-temperature storage characteristics 16 pDIP (16-pin Dual Inline Package, size 3.0 mm × 3.5 mm simulated element under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. ) And post-cure treatment at 175 ° C. for 8 hours, followed by a high-temperature storage test (185 ° C., 1000 hours). Judged. The ratio of the number of defective packages in 15 packages (defective ratio) is shown as a percentage. Units%.
(4) High temperature volume resistivity A test piece (100 mmΦ × 2.0 mm) was molded by a transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. After post-cure treatment at 175 ° C. for 8 hours, the volume resistivity at 150 ° C. was measured according to JIS K6911.

[エポキシシランオリゴマー(C)の予備縮合]
一般式(1)で表される化合物として、メチルトリメトキシシランと、一般式(2)で表される化合物として、γ−グリシドキシプロピルトリメトキシシランとを縮合反応して得られるエポキシシラノリゴマー(信越化学工業社製、商品名X−41−1056、グリシジルエーテル基数=3個、シリカ含有量35wt%)100重量部を、500mlのセパラブルフラスコに取り、蒸留水4重量部とメタノール17重量部を滴下し、30分攪拌混合した。続いて、120℃に加温したオイルバスに浸漬し、蒸留法にて6時間加水分解・縮重合反応をさせてながら、アルコキシ基量は初期値の17重量%から8〜12%程度に、粘度は初期値の40mPa・S/25℃から80〜200mPa・S/25℃程度に調整したエポキシシランオリゴマー(以下予備縮合型エポキシシランオリゴマーと略す)を得た。
[Precondensation of epoxy silane oligomer (C)]
Epoxysilanololigomer obtained by condensation reaction of methyltrimethoxysilane as a compound represented by general formula (1) and γ-glycidoxypropyltrimethoxysilane as a compound represented by general formula (2) 100 parts by weight (manufactured by Shin-Etsu Chemical Co., Ltd., trade name X-41-1056, number of glycidyl ether groups = 3, silica content 35 wt%) is taken in a 500 ml separable flask, 4 parts by weight of distilled water and 17 parts by weight of methanol. Part was added dropwise and mixed with stirring for 30 minutes. Subsequently, it is immersed in an oil bath heated to 120 ° C. and subjected to a hydrolysis / condensation polymerization reaction by distillation for 6 hours, while the amount of alkoxy groups is reduced from the initial value of 17% by weight to about 8 to 12%. The viscosity was adjusted to an initial value of 40 mPa · S / 25 ° C. to about 80 to 200 mPa · S / 25 ° C. to obtain an epoxy silane oligomer (hereinafter abbreviated as precondensation type epoxy silane oligomer).

(実施例1)
ビフェニルアラルキル型エポキシ樹脂(日本化薬社製、商品名NC−3000P)11.8重量部およびビフェニルアラルキル型フェノール樹脂(明和化成社製、商品名MEH−7851)9.8重量部をセパラブルフラスコに取り、120℃に加熱したオイルバスに浸漬し、溶融後、30分攪拌混合した。次いで、これに、上記で得た予備縮合型エポキシシランオリゴマー4.1重量部(組成中のアルコキシシランのSiO2含有率が6.0wt%)を添加し、10分攪拌混合して均一分散させて溶融混合物を得た。溶融混合物は、セパラブルフラスコからバットに移しかえて、直ちに冷却して固形物とし、これを粉砕した。
次いで、上記で得た溶融混合物の粉砕品と、破砕シリカ(平均粒径15μm)72.5重量部、トリフェニルフォスフィン0.7重量部、エポキシシラン(γ−グリシドキシプロピルトリメトキシシラン)0.3重量部、カーボンブラック0.5重量部およびカルナバワックス0.4重量部をミキサーを用いて常温で混合した後、表面温度が80℃と20℃の2本ロールを用いて混練し、冷却後粉砕して、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を上記の方法で評価し、その結果を表1および図1に示す。
(Example 1)
11.8 parts by weight of biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., trade name NC-3000P) and 9.8 parts by weight of biphenyl aralkyl type phenol resin (Maywa Kasei Co., Ltd., trade name MEH-7851) are separable flasks. The sample was then immersed in an oil bath heated to 120 ° C., and after melting, mixed by stirring for 30 minutes. Next, 4.1 parts by weight of the precondensation type epoxysilane oligomer obtained above (the SiO 2 content of the alkoxysilane in the composition is 6.0 wt%) is added to this, and the mixture is stirred and mixed for 10 minutes to uniformly disperse. To obtain a molten mixture. The molten mixture was transferred from the separable flask to a vat and immediately cooled to a solid, which was pulverized.
Next, the pulverized product of the molten mixture obtained above, 72.5 parts by weight of crushed silica (average particle size 15 μm), 0.7 parts by weight of triphenylphosphine, epoxysilane (γ-glycidoxypropyltrimethoxysilane) 0.3 parts by weight, carbon black 0.5 parts by weight and carnauba wax 0.4 parts by weight were mixed at room temperature using a mixer, and then kneaded using two rolls with surface temperatures of 80 ° C. and 20 ° C., After cooling, the mixture was pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the above method, and the results are shown in Table 1 and FIG.

(実施例2)
実施例1において、ビフェニルアラルキル型エポキシ樹脂の添加量5.1重量部、ビフェニルアラルキル型フェノール樹脂の添加量9.4重量部、予備縮合型エポキシシランオリゴマーの添加量11.2重量部(組成中のアルコキシシランのSiO2含有率が15.0wt%)とした以外は、すべて実施例1と同様にして、エポキシ樹脂組成物を作製し、特性評価に供した。
(Example 2)
In Example 1, the addition amount of biphenyl aralkyl type epoxy resin is 5.1 parts by weight, the addition amount of biphenyl aralkyl type phenol resin is 9.4 parts by weight, the addition amount of precondensation type epoxy silane oligomer is 11.2 parts by weight (in the composition) Except that the alkoxysilane SiO 2 content was 15.0 wt%, an epoxy resin composition was prepared in the same manner as in Example 1 and subjected to characteristic evaluation.

(比較例1)
実施例1において、溶融混合物の粉砕品に代えてビフェニルアラルキル型エポキシ樹脂(NC−3000P)15.9重量部およびビフェニルアラルキル型フェノール樹脂(MEH−7851)9.8重量部を用いた以外は、すべて実施例1と同様にして、エポキシ樹脂組成物を作製し、特性評価に供した。
(Comparative Example 1)
In Example 1, except that 15.9 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000P) and 9.8 parts by weight of biphenyl aralkyl type phenol resin (MEH-7851) were used instead of the pulverized product of the molten mixture, All were carried out similarly to Example 1, and the epoxy resin composition was produced and it used for characteristic evaluation.

(比較例2)
実施例1において、溶融混合物の粉砕品に代えてビフェニルアラルキル型エポキシ樹脂(NC−3000P)11.8重量部、ビフェニルアラルキル型フェノール樹脂(MEH−7851)9.9重量部、予備縮合していなエポキシシランオリゴマー(X−41−1056)4.3重量部(組成中のアルコキシシランのSiO2含有率が6.0wt%)およびアルコキシシラン用重合触媒(和光純薬社製、ジブチル錫ラウリート)0.02重量部の混合物を用いた以外は、すべて実施例1と同様にして、エポキシ樹脂組成物を作製し、特性評価に供した。
(Comparative Example 2)
In Example 1, 11.8 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000P) instead of pulverized product of the molten mixture, 9.9 parts by weight of biphenyl aralkyl type phenol resin (MEH-7851), not precondensed Epoxysilane oligomer (X-41-1056) 4.3 parts by weight (SiO 2 content of alkoxysilane in composition is 6.0 wt%) and polymerization catalyst for alkoxysilane (manufactured by Wako Pure Chemical Industries, Ltd., dibutyltin laurito) An epoxy resin composition was prepared in the same manner as in Example 1 except that 0.02 part by weight of the mixture was used, and was subjected to characteristic evaluation.

(比較例3)
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、エピコート828)63.0重量部とγ−グリシドキシプロピルトリメトキシシラン(シリカ含有量26%)25.0重量部を500mlのビーカーに取り、40℃2時間攪拌混合後、室温に戻し水1.0部を添加後1時間攪拌混合して混合物を得た。更に、該混合物に硬化剤としてテトラエチレンペンタミン12.0部を添加して5分間攪拌混合後、真空乾燥機を用いて脱泡して気泡を取り除き、注型用金型に投入後熱風乾燥機にて、60℃2時間、100℃4時間、150℃4時間、190℃4時間の硬化条件にてアルコキシシランのSiO2含有率が6.0wt%のエポキシ樹脂硬化物を作製し、特性評価に供した。
(Comparative Example 3)
63.0 parts by weight of bisphenol A-type epoxy resin (Japan Epoxy Resin, Epicoat 828) and 25.0 parts by weight of γ-glycidoxypropyltrimethoxysilane (silica content 26%) were placed in a 500 ml beaker, After stirring and mixing at 2 ° C. for 2 hours, the mixture was returned to room temperature and 1.0 part of water was added, followed by stirring and mixing for 1 hour to obtain a mixture. Furthermore, 12.0 parts of tetraethylenepentamine as a curing agent was added to the mixture, mixed with stirring for 5 minutes, defoamed using a vacuum dryer to remove bubbles, put into a casting mold, and then dried with hot air Machine to produce a cured epoxy resin having a SiO 2 content of 6.0 wt% of alkoxysilane under curing conditions of 60 ° C. for 2 hours, 100 ° C. for 4 hours, 150 ° C. for 4 hours, and 190 ° C. for 4 hours. It used for evaluation.

Figure 2005232384
Figure 2005232384

表1中の流動性の保存安定性は、25℃に7日間保管後判定し、判定記号は、次の通りとした。
○:一日後と比較して流動性の低下率が10%未満。
△:一日後と比較して流動性の低下率が30%未満。
×:一日後と比較して流動性の低下率が30%以上から流動性が損なわれた。
表1中の熱時弾性率の保持率は、200℃にて判定し、判定記号は、次の通りとした。
○:常温と比較して弾性率の低下が少ない。
×:常温と比較して弾性率の低下が著しい。
The storage stability of fluidity in Table 1 was determined after storage at 25 ° C. for 7 days, and the determination symbols were as follows.
○: The rate of decrease in fluidity is less than 10% compared to one day later.
(Triangle | delta): The fall rate of fluidity | liquidity is less than 30% compared with one day later.
X: The fluidity was impaired from the rate of decrease in fluidity of 30% or more compared to one day later.
The retention ratio of the elastic modulus during heating in Table 1 was determined at 200 ° C., and the determination symbols were as follows.
○: Less decrease in elastic modulus than normal temperature.
X: Decrease in elastic modulus is remarkable compared with normal temperature.

表1と図1にまとめた評価結果から明らかなように、本発明によるエポキシ樹脂組成物は、予備縮合型エポキシシランオリゴマーを使用しない比較例1に比べて、高温における弾性率の低下が少ないことが分かり、アルコキシシラン用重合触媒を用いた比較例2と常温硬化剤を用いる比較例3に比べて、流動性の保存安定性に優れていることが分かる。   As is clear from the evaluation results summarized in Table 1 and FIG. 1, the epoxy resin composition according to the present invention has less decrease in elastic modulus at high temperature compared to Comparative Example 1 in which the precondensation type epoxysilane oligomer is not used. It can be seen that the fluid storage stability is superior to Comparative Example 2 using a polymerization catalyst for alkoxysilane and Comparative Example 3 using a room temperature curing agent.

本発明のエポキシ樹脂組成物は、成形性及び流動性に優れ、その硬化物は高温での弾性率の保持率が良好であり、これを用いた半導体装置を搭載する、電気・電子機器分野、通信機器分野、コンピューター分野等の多くの産業分野での利用の可能性が考えられる。   The epoxy resin composition of the present invention is excellent in moldability and fluidity, and the cured product has a good elastic modulus retention at high temperatures, and is equipped with a semiconductor device using the same, in the electrical / electronic equipment field, The possibility of use in many industrial fields such as the communication equipment field and the computer field is considered.

実施例及び比較例における、動的粘弾性評価で得られた貯蔵弾性率(E′)の変化を示す図である。It is a figure which shows the change of the storage elastic modulus (E ') obtained by dynamic viscoelasticity evaluation in an Example and a comparative example.

Claims (6)

エポキシ樹脂(A)、硬化剤(B)、及び一般式(1)で表される化合物と一般式(2)で表される化合物とを縮合反応して得られるエポキシシランオリゴマー(C)を必須成分とするエポキシ樹脂組成物であって、前記エポキシシランオリゴマー(C)は予備縮合したものであることを特徴とするエポキシ樹脂組成物。
Figure 2005232384
[式中、R1はメチル基、エチル基、フェニル基またはヘキシル基を示し、R2はメチル基又はエチル基を示す。]
Figure 2005232384
[式中、R1はメチル基またはエチル基を示す。]
The epoxy resin (A), the curing agent (B), and the epoxysilane oligomer (C) obtained by condensation reaction of the compound represented by the general formula (1) and the compound represented by the general formula (2) are essential. An epoxy resin composition as a component, wherein the epoxysilane oligomer (C) is precondensed.
Figure 2005232384
[Wherein, R 1 represents a methyl group, an ethyl group, a phenyl group or a hexyl group, and R 2 represents a methyl group or an ethyl group. ]
Figure 2005232384
[Wherein, R 1 represents a methyl group or an ethyl group. ]
前記予備縮合したエポキシシランオリゴマー(C)と、少なくともエポキシ樹脂(A)および/または硬化剤(B)とを加熱溶融混合して得られる請求項1に記載のエポキシ樹脂組成物。   2. The epoxy resin composition according to claim 1, which is obtained by heat-melt mixing the pre-condensed epoxy silane oligomer (C) and at least the epoxy resin (A) and / or the curing agent (B). 前記硬化剤(B)が、一分子内に少なくとも2個のフェノール性水酸基を有する化合物である、請求項1または2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1 or 2, wherein the curing agent (B) is a compound having at least two phenolic hydroxyl groups in one molecule. 前記エポキシシランオリゴマー(C)の配合量が、エポキシ樹脂(A)と硬化剤(B)およびエポキシシランオリゴマー(C)の合計100重量部に対し、シリカ(SiO2)成分として5〜15重量%の割合で含むように配合されている請求項1乃至3のいずれかに記載のエポキシ樹脂組成物。 Amount of the epoxy silane oligomer (C) is, relative to the total 100 parts by weight of the epoxy resin (A) and the curing agent (B) and an epoxy silane oligomer (C), silica (SiO 2) ingredient as a 5 to 15 wt% The epoxy resin composition according to any one of claims 1 to 3, which is blended so as to be contained at a ratio of 前記エポキシ樹脂組成物は、充填剤(D)を含むものである請求項1乃至4のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 4, wherein the epoxy resin composition contains a filler (D). 請求項5に記載のエポキシ樹脂組成物の硬化物によって、電子部品を封止してなることを特徴とする半導体装置。   An electronic component is sealed with a cured product of the epoxy resin composition according to claim 5.
JP2004045394A 2004-02-20 2004-02-20 Epoxy resin composition and semiconductor device using the same Pending JP2005232384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045394A JP2005232384A (en) 2004-02-20 2004-02-20 Epoxy resin composition and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045394A JP2005232384A (en) 2004-02-20 2004-02-20 Epoxy resin composition and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2005232384A true JP2005232384A (en) 2005-09-02

Family

ID=35015662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045394A Pending JP2005232384A (en) 2004-02-20 2004-02-20 Epoxy resin composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2005232384A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022153A (en) * 2004-07-06 2006-01-26 Yokohama Rubber Co Ltd:The Curable resin composition
US20110070436A1 (en) * 2008-03-17 2011-03-24 My Nguyen Adhesive compositions for use in die attach applications
JP2014009233A (en) * 2012-06-27 2014-01-20 Hitachi Chemical Co Ltd Encapsulation epoxy resin molding material and electronic part device
US8698320B2 (en) 2009-12-07 2014-04-15 Henkel IP & Holding GmbH Curable resin compositions useful as underfill sealants for use with low-k dielectric-containing semiconductor devices
JP2017101254A (en) * 2017-02-28 2017-06-08 日立化成株式会社 Encapsulation epoxy resin molding material and electronic part device
CN114656771A (en) * 2020-12-24 2022-06-24 广东生益科技股份有限公司 Resin composition and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022153A (en) * 2004-07-06 2006-01-26 Yokohama Rubber Co Ltd:The Curable resin composition
US20110070436A1 (en) * 2008-03-17 2011-03-24 My Nguyen Adhesive compositions for use in die attach applications
US8338536B2 (en) * 2008-03-17 2012-12-25 Henkel Corporation Adhesive compositions for use in die attach applications
US8835574B2 (en) 2008-03-17 2014-09-16 Henkel IP Holding GmbH Adhesive compositions for use in die attach applications
US8698320B2 (en) 2009-12-07 2014-04-15 Henkel IP & Holding GmbH Curable resin compositions useful as underfill sealants for use with low-k dielectric-containing semiconductor devices
JP2014009233A (en) * 2012-06-27 2014-01-20 Hitachi Chemical Co Ltd Encapsulation epoxy resin molding material and electronic part device
JP2017101254A (en) * 2017-02-28 2017-06-08 日立化成株式会社 Encapsulation epoxy resin molding material and electronic part device
CN114656771A (en) * 2020-12-24 2022-06-24 广东生益科技股份有限公司 Resin composition and application thereof
CN114656771B (en) * 2020-12-24 2023-09-12 广东生益科技股份有限公司 Resin composition and application thereof

Similar Documents

Publication Publication Date Title
TWI386460B (en) Curable silicone composition and cured product therefrom
KR101076977B1 (en) Resin composition for encapsulating semiconductor chip and semiconductor device
CN106084184B (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
KR20110017853A (en) Electronic packaging
TWI793340B (en) Heat-curable resin composition for semiconductor encapsulation and semiconductor device
JP4710379B2 (en) Epoxy resin composition and epoxy resin for semiconductor encapsulation
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2009001638A (en) Molding resin composition, molded article and semiconductor package
JP2005232384A (en) Epoxy resin composition and semiconductor device using the same
JP5278386B2 (en) Mounting sealing material and semiconductor device sealed using the same
JP2005145911A (en) Aryloxysilane compound, method for producing the same and its application
JP4560928B2 (en) Epoxy resin composition for interposer, prepreg, and copper-clad laminate using the same
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JPH03411B2 (en)
JP2005281619A (en) Semiconductor device using epoxy resin composition
JPH07242799A (en) Epoxy resin composition for semiconductor sealing
JPH04337316A (en) Epoxy resin composition
KR102570300B1 (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
KR101293791B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
KR102228914B1 (en) Epoxy resin composition
JP2005336329A (en) Surface-treated inorganic filler, epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH03119051A (en) Epoxy resin composition
JPH03157447A (en) Epoxy resin composition and cured product of epoxy resin
JP2005002221A (en) Epoxy resin composition and its cured product
JPH04183710A (en) Epoxy resin composition for sealing semiconductor