JP2014005382A - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP2014005382A
JP2014005382A JP2012142471A JP2012142471A JP2014005382A JP 2014005382 A JP2014005382 A JP 2014005382A JP 2012142471 A JP2012142471 A JP 2012142471A JP 2012142471 A JP2012142471 A JP 2012142471A JP 2014005382 A JP2014005382 A JP 2014005382A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing
cured
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012142471A
Other languages
Japanese (ja)
Inventor
Ai Kitamura
あい 北村
Kenji Ohashi
賢治 大橋
Masanori Oga
将範 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Original Assignee
Hokko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2012142471A priority Critical patent/JP2014005382A/en
Publication of JP2014005382A publication Critical patent/JP2014005382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition, which is suitable for many applications, including for power semiconductors, and gives a cured product improved in both thermostability and moisture resistance reliability, while having storage stability and quick curability contributing to improvement in work efficiency.SOLUTION: An epoxy resin composition at least contains a naphthalene type tetrafunctional epoxy resin of the following formula (1), a curing agent, and a phosphorus-based curing accelerator including one or more triarylphosphine triphenylborane adduct.

Description

本発明は、硬化物の高耐熱性および高耐湿信頼性を両立しつつ、貯蔵安定性と速硬化性を兼ね備えたエポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition having both storage stability and fast curability while achieving both high heat resistance and high moisture resistance reliability of a cured product.

近年、パワーデバイス(電力制御変換用半導体、以下、パワー半導体と呼ぶ)の分野では、パワー半導体材料としてシリコン(Si)の性能が限界にきており、次世代パワー半導体材料として炭化ケイ素(SiC)や窒化ガリウム(GaN)が用いられ始めている(特許文献1参照)。それに伴い、これら次世代パワー半導体封止用樹脂には高耐熱性(200℃以上の高温に長期耐えられる耐熱性)、低膨張性、高熱伝導、高耐湿信頼性などの面で、一層の性能向上が求められている(非特許文献1、2参照)。この要望に対応するために、従来から用いられているエポキシ樹脂組成物においても、エポキシ樹脂や硬化剤など、個別の材料における高性能化が期待されている。   In recent years, in the field of power devices (power control conversion semiconductors, hereinafter referred to as power semiconductors), the performance of silicon (Si) as a power semiconductor material has reached its limit, and silicon carbide (SiC) as a next-generation power semiconductor material And gallium nitride (GaN) have begun to be used (see Patent Document 1). As a result, these next-generation power semiconductor encapsulating resins have higher performance in terms of high heat resistance (heat resistance that can withstand high temperatures over 200 ° C for a long time), low expansion, high thermal conductivity, and high humidity resistance. Improvement is required (see Non-Patent Documents 1 and 2). In order to meet this demand, high performance of individual materials such as epoxy resins and curing agents is also expected in epoxy resin compositions that have been used conventionally.

また、エポキシ樹脂組成物の個別の材料における高性能化が期待される一方で、現場での作業効率を高めるために、調製した後に室温での貯蔵安定性に優れ、加熱時に速やかに硬化が進行するエポキシ樹脂組成物の開発も要望されていた(非特許文献3参照)。   In addition, while high performance is expected for individual materials of epoxy resin composition, it is excellent in storage stability at room temperature after preparation to improve work efficiency in the field, and curing progresses quickly upon heating. There has also been a demand for development of an epoxy resin composition (see Non-Patent Document 3).

このような状況下、エポキシ樹脂硬化促進剤に着目し、特定のリン系硬化促進剤を用いることにより、耐熱性、耐湿信頼性に優れた硬化物が得られると同時に、速硬化性に優れるエポキシ樹脂組成物が報告されている(非特許文献4、5参照)。   Under such circumstances, by paying attention to the epoxy resin curing accelerator and using a specific phosphorus curing accelerator, a cured product having excellent heat resistance and moisture resistance reliability can be obtained, and at the same time, an epoxy having excellent quick curing properties. Resin compositions have been reported (see Non-Patent Documents 4 and 5).

しかし、当該エポキシ樹脂組成物は、組成物の室温保管時の安定性(以下、貯蔵安定性と呼ぶ)に関しては不十分であり、また耐熱性においても、樹脂硬化物のガラス転移温度が140℃程度であり、パワー半導体用途には不向きであった。   However, the epoxy resin composition is insufficient in terms of stability of the composition at room temperature storage (hereinafter referred to as storage stability), and the glass transition temperature of the cured resin is 140 ° C. in heat resistance. This is not suitable for power semiconductor applications.

これらの個々の問題点の解決方法として、貯蔵安定性と速硬化性の両立を目的として、硬化促進剤としてイミダゾール化合物を用いた例(特許文献2、3参照)があるが、これらの場合は、エポキシ樹脂中の加水分解性塩素がイミダゾールにより引き抜かれ、その引き抜かれた塩化物イオンによる半導体回路や金属配線の腐食といった耐湿信頼性の悪化が懸念されている。   As a method for solving these individual problems, there is an example (see Patent Documents 2 and 3) using an imidazole compound as a curing accelerator for the purpose of achieving both storage stability and fast curability. In these cases, There is a concern that the hydrolyzable chlorine in the epoxy resin is pulled out by imidazole, and the moisture resistance reliability such as corrosion of the semiconductor circuit and metal wiring due to the extracted chloride ions is concerned.

また、下記式(1)

Figure 2014005382
Moreover, following formula (1)
Figure 2014005382

で表されるナフタレン型4官能エポキシ樹脂を用いることで、高耐熱性に優れた樹脂硬化物が得られる樹脂組成物が提案されている(非特許文献6参照)。しかしながら、前記エポキシ樹脂を用いた硬化物において、高耐熱性を有しつつ、高耐湿信頼性および、樹脂組成物の貯蔵安定性と速硬化性を兼ね備えたものについては知られていなかった。 There has been proposed a resin composition capable of obtaining a cured resin having high heat resistance by using a naphthalene-type tetrafunctional epoxy resin represented by (see Non-Patent Document 6). However, a cured product using the epoxy resin has not been known which has high heat resistance, high moisture resistance reliability, storage stability of the resin composition, and fast curing property.

さらに、下記一般式(2)

Figure 2014005382
Furthermore, the following general formula (2)
Figure 2014005382

で表されるトリアリールホスフィントリフェニルボラン付加体のうちRが、−Hおよび−CHである化合物は公知であり、リン系硬化促進剤として積層板用途などに用いられている(特許文献4〜6)が、耐熱性および耐湿信頼性の観点から上記式(2)をエポキシ樹脂用硬化促進剤として、パワー半導体用途に用いられている例は、これまでなかった。 Among the triarylphosphine triphenylborane adducts represented by general formula (I), compounds in which R is —H and —CH 3 are known, and are used as phosphorus-based curing accelerators for laminates and the like (Patent Document 4). Until now, there has been no example in which the above formula (2) is used as a curing accelerator for epoxy resins in power semiconductor applications from the viewpoint of heat resistance and moisture resistance reliability.

特開2009−272482号公報JP 2009-272482 A 特開2011−86669号公報JP 2011-86669 A 特開2004−346247号公報JP 2004-346247 A 特開平6−322073号公報JP-A-6-322073 特開平9−087367号公報JP-A-9-087367 特開2006−290949号公報JP 2006-290949 A

「高機能デバイス封止技術と最先端材料」、シーエムシー出版発行、p.101〜113(2009年)“High-performance device sealing technology and cutting-edge materials”, published by CMC Publishing, p. 101-113 (2009) 「ネットワークポリマー」、第33巻 第1号、合成樹脂工業協会発行、p.34〜41(2012年)“Network Polymer”, Vol. 33, No. 1, published by the Synthetic Resin Industry Association, p. 34-41 (2012) 「先端半導体パッケージ材料技術」、技術情報協会発行、p.38(2010年)"Advanced Semiconductor Package Material Technology", published by Technical Information Association, p. 38 (2010) 「第61回ネットワークポリマー講演討論会」講演要旨集、合成樹脂工業協会発行、p.143(2010年)A summary of the 61st Network Polymer Lecture Discussion Meeting, published by the Japan Plastics Industry Association, p. 143 (2010) 「ネットワークポリマー」、第33巻 第3号、合成樹脂工業協会発行、p.123〜129(2012年)“Network Polymer”, Vol. 33, No. 3, published by Synthetic Resin Industry Association, p. 123-129 (2012) 「エポキシ樹脂技術協会 特別講演 多様な用途に適応する多彩な高機能エポキシ樹脂」講演要旨集(2009年)"Special Epoxy Resin Technology Association Special Lecture Diverse High Performance Epoxy Resin Adapted to Various Applications" Lecture Summary (2009)

本発明は、パワー半導体用途を始めとする多くの用途に好適である、高耐熱性および高耐湿信頼性を両立した硬化物を与え、一方で、作業効率の向上に寄与する貯蔵安定性と速硬化性を兼ね備えたエポキシ樹脂組成物を提供することを目的とする。   The present invention provides a cured product having both high heat resistance and high humidity resistance, which is suitable for many applications including power semiconductor applications, while at the same time providing storage stability and speed that contribute to improvement of work efficiency. It aims at providing the epoxy resin composition which has sclerosis | hardenability.

このような状況を鑑み、本発明者らは、上記の課題を達成するために鋭意検討を行った。その結果、下記式(1)で表されるエポキシ樹脂、硬化剤、および下記一般式(2)で表されるリン系硬化促進剤を配合することにより、高耐熱性、高耐湿信頼性に優れた硬化物を得ることができ、かつ樹脂組成物自体は、貯蔵安定性と速硬化性の両立が達成されたものであることを見出し、本発明を完成した。   In view of such a situation, the present inventors have intensively studied in order to achieve the above-described problems. As a result, by blending an epoxy resin represented by the following formula (1), a curing agent, and a phosphorus curing accelerator represented by the following general formula (2), it is excellent in high heat resistance and high moisture resistance reliability. The present invention was completed by finding that the cured product can be obtained, and that the resin composition itself has achieved both storage stability and fast curability.

本発明は、すなわち以下のとおりである。
〔1〕次の構成要素(A)、(B)、(C)を少なくとも含むエポキシ樹脂組成物。
(A)下記式(1)

Figure 2014005382
で表されるナフタレン型4官能エポキシ樹脂を少なくとも含むエポキシ樹脂
(B)硬化剤
(C)下記一般式(2)
Figure 2014005382
〔式中、Rは、−H、−CH、炭素数2〜16の直鎖状もしくは分岐鎖状のアルキル基を示す〕で表されるトリアリールホスフィントリフェニルボラン付加体を1種類または2種類以上を少なくとも含むリン系硬化促進剤
〔2〕硬化剤が、フェノール樹脂であることを特徴とする〔1〕に記載のエポキシ樹脂組成物。
〔3〕さらに、無機充填剤として、溶融シリカ、クレー、マイカ、炭酸カルシウム、アルミナ、窒化ホウ素、窒化アルミニウムから選択される1種類または2種類以上を含有することを特徴とする〔1〕もしくは〔2〕に記載のエポキシ樹脂組成物。
〔4〕〔1〕〜〔3〕のいずれかに記載のエポキシ樹脂組成物を硬化して得られるエポキシ樹脂硬化物。 That is, the present invention is as follows.
[1] An epoxy resin composition containing at least the following components (A), (B), and (C).
(A) The following formula (1)
Figure 2014005382
An epoxy resin containing at least a naphthalene-type tetrafunctional epoxy resin represented by formula (B) Curing agent (C)
Figure 2014005382
[Wherein R represents —H, —CH 3 , a linear or branched alkyl group having 2 to 16 carbon atoms], or one or two triarylphosphine triphenylborane adducts represented by The epoxy resin composition according to [1], wherein the phosphorus-based curing accelerator [2] containing at least one kind is a phenol resin.
[3] Furthermore, the inorganic filler contains one or more selected from fused silica, clay, mica, calcium carbonate, alumina, boron nitride, aluminum nitride [1] or [1] 2].
[4] A cured epoxy resin obtained by curing the epoxy resin composition according to any one of [1] to [3].

本発明のエポキシ樹脂組成物は、高耐熱性と高耐湿信頼性に優れた硬化物を得ることができるため、次世代パワー半導体用途を始めとした多くの用途で使用可能であり、極めて有用である。さらに、樹脂組成物自体も、貯蔵安定性と速硬化性の両立を実現でき、作業利便性が高い。   Since the epoxy resin composition of the present invention can obtain a cured product having high heat resistance and high moisture resistance reliability, it can be used in many applications including next-generation power semiconductor applications and is extremely useful. is there. Furthermore, the resin composition itself can realize both storage stability and fast curability, and has high work convenience.

以下、本発明について詳細に説明する。
本発明は、(A)エポキシ樹脂、(B)硬化剤、(C)リン系硬化促進剤を含有するエポキシ樹脂組成物、およびその硬化物である。
Hereinafter, the present invention will be described in detail.
The present invention is (A) an epoxy resin, (B) a curing agent, (C) an epoxy resin composition containing a phosphorus-based curing accelerator, and a cured product thereof.

本発明においてエポキシ樹脂組成物とは、前記(A)エポキシ樹脂、(B)硬化剤、(C)リン系硬化促進剤を均一に混ぜ合わせた混合物を指し、エポキシ樹脂硬化物とは、エポキシ樹脂組成物にある特定の条件下で熱をかけることによってエポキシ樹脂が流動性を失って、硬化した固形物を指す。   In the present invention, the epoxy resin composition refers to a mixture obtained by uniformly mixing the (A) epoxy resin, (B) curing agent, and (C) phosphorus curing accelerator, and the epoxy resin cured product is an epoxy resin. By applying heat to the composition under certain conditions, the epoxy resin loses its fluidity and refers to a solid that has been cured.

<樹脂組成物>
(A)エポキシ樹脂
エポキシ樹脂としては、 下記式(1)で表されるナフタレン型4官能エポキシ樹脂が好ましい。

Figure 2014005382
<Resin composition>
(A) Epoxy resin As an epoxy resin, the naphthalene type | mold tetrafunctional epoxy resin represented by following formula (1) is preferable.
Figure 2014005382

当該エポキシ樹脂を使用すると高耐熱性の硬化物および速硬化性の組成物が得られるからである。更に 、本発明の効果を損なわない範囲で、エポキシ基を2個以上含有する他のエポキシ樹脂、例えば、式(1)で表される特定構造以外のナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂から1種類あるいは2種類以上を混合して使用することもできる。   This is because when the epoxy resin is used, a highly heat-resistant cured product and a fast-curing composition can be obtained. Furthermore, other epoxy resins containing two or more epoxy groups, for example, naphthalene type epoxy resins other than the specific structure represented by the formula (1), phenol novolac type epoxy resins, within a range not impairing the effects of the present invention, A cresol novolac type epoxy resin, a biphenyl type epoxy resin, a biphenyl aralkyl type epoxy resin, a bisphenol A type epoxy resin, or a bisphenol F type epoxy resin may be used alone or in combination.

(B)硬化剤
硬化剤としては、特に限定されず、公知である種々のものを使用することができる。例えば、ジシアンジアミド、ジアミドジフェニルメタン、ジアミノジフェニルスルホン、無水フタル酸、無水ピロメリット酸、ノボラック型フェノールやクレゾールノボラック型フェノール、アラルキル型フェノール、ビフェニル型フェノール、ジシクロペンタジエン型などの多官能性フェノール樹脂等を挙げることができる。これらの硬化剤は、何種類かを併用することも可能である。耐熱性向上のために、フェノール樹脂を用いることが好ましい。
(B) Curing agent The curing agent is not particularly limited, and various known ones can be used. For example, polyfunctional phenol resins such as dicyandiamide, diamidediphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, novolac phenol, cresol novolac phenol, aralkyl phenol, biphenyl phenol, dicyclopentadiene, etc. Can be mentioned. Several types of these curing agents can be used in combination. In order to improve heat resistance, it is preferable to use a phenol resin.

中でも、下記式(3)で表されるようなノボラック型のフェノール樹脂が好適である。

Figure 2014005382
Among these, a novolac type phenol resin represented by the following formula (3) is preferable.
Figure 2014005382

フェノール樹脂系硬化剤の配合量は、エポキシ樹脂中のエポキシ当量と、フェノール樹脂の水酸基当量との当量比を考慮して決定される。一般的には、エポキシ当量と水酸基当量との当量比が1:0.1〜1.5、より好ましくは1:0.7〜1.2となるように、含有量を決定する。   The blending amount of the phenol resin curing agent is determined in consideration of the equivalent ratio of the epoxy equivalent in the epoxy resin and the hydroxyl equivalent of the phenol resin. Generally, the content is determined so that the equivalent ratio of epoxy equivalent to hydroxyl equivalent is 1: 0.1 to 1.5, more preferably 1: 0.7 to 1.2.

(C)硬化促進剤
硬化促進剤としては、下記一般式(2)で示されるトリアリールホスフィンにトリフェニルボランが付加したリン系硬化促進剤が使用できる。

Figure 2014005382
〔式中、Rは、−H、−CH、炭素数2〜16の直鎖状もしくは分岐鎖状のアルキル基を示す〕 (C) Curing accelerator As the curing accelerator, a phosphorus curing accelerator obtained by adding triphenylborane to a triarylphosphine represented by the following general formula (2) can be used.
Figure 2014005382
[Wherein, R represents —H, —CH 3 , a linear or branched alkyl group having 2 to 16 carbon atoms]

Rで示される炭素数2〜16の直鎖状もしくは分岐鎖状のアルキル基としては、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、2−メチルブチル基、ネオペンチル基、n−ヘキシル基、4−メチルペンチル基、3−メチルペンチル基、2−メチルペンチル基、3,3−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、1−エチルブチル基、1−メチル−1−エチルプロピル基、1,2−ジメチルブチル基、2−メチル−1−エチルプロピル基、2,2−ジメチルブチル基などが挙げられる。より、好適であるのはRが水素もしくはメチル基であるトリフェニルホスフィントリフェニルボラン(TPP−S)およびトリ(p−トリル)ホスフィントリフェニルボラン(TPTP−S)である。   Examples of the linear or branched alkyl group having 2 to 16 carbon atoms represented by R include ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl. Group, n-pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, n-hexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 3,3-dimethylbutyl group, 1 , 3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 1-methyl-1-ethylpropyl group, 1,2-dimethylbutyl group, 2-methyl-1-ethylpropyl group, 2, Examples include 2-dimethylbutyl group. More preferred are triphenylphosphine triphenylborane (TPP-S) and tri (p-tolyl) phosphine triphenylborane (TPTP-S), where R is hydrogen or a methyl group.

エポキシ樹脂組成物の硬化促進剤の配合量は、エポキシ樹脂100重量部に対して0.5〜5重量部であることが好ましい。かかる含有量が0.5重量部より少ないと、硬化促進効果を十分に発揮することができない場合があり、また、5重量部より多くても、硬化促進性能は向上しないからである。硬化促進効果をより厳密に考慮すれば、かかる含有量を1〜3重量部とすることが、更に好ましい。   It is preferable that the compounding quantity of the hardening accelerator of an epoxy resin composition is 0.5-5 weight part with respect to 100 weight part of epoxy resins. This is because if the content is less than 0.5 parts by weight, the curing accelerating effect may not be sufficiently exhibited, and if the content is more than 5 parts by weight, the curing accelerating performance is not improved. Considering the curing acceleration effect more strictly, the content is more preferably 1 to 3 parts by weight.

本発明の樹脂組成物(A)〜(C)の配合により、高耐熱性と高耐湿信頼性に優れた硬化物を得ることができ、さらに、樹脂組成物自体も、貯蔵安定性と速硬化性の両立を実現できるものである。   By blending the resin compositions (A) to (C) of the present invention, a cured product excellent in high heat resistance and high moisture resistance reliability can be obtained. Furthermore, the resin composition itself has storage stability and fast curing. It is possible to realize compatibility of sex.

(D)無機充填剤
本発明のエポキシ樹脂組成物には、公知の各種無機充填剤を添加することができる。無機充填剤を添加することで、膨張係数の低減、あるいは熱伝導性向上、機械的強度、チクソ性の向上効果があり、例えば、溶融シリカ、結晶シリカ、クレー、マイカ、炭酸カルシウム、アルミナ、窒化ホウ素、窒化アルミニウム、またはこれらを球形化したビーズ、ガラス繊維等が挙げられる。
(D) Inorganic fillers Various known inorganic fillers can be added to the epoxy resin composition of the present invention. Addition of inorganic fillers has the effect of reducing expansion coefficient or improving thermal conductivity, mechanical strength and thixotropy. For example, fused silica, crystalline silica, clay, mica, calcium carbonate, alumina, nitriding Examples thereof include boron, aluminum nitride, beads formed by spheroidizing them, and glass fibers.

さらに、それらは、シランカップリング剤などのカップリング剤で表面処理してもよい。その他、エポキシ樹脂組成物に添加される公知の添加剤が含まれていてよい。添加剤としては、イオントラップ剤、離型剤、カーボンブラックなどの顔料などが挙げられる。   Furthermore, they may be surface treated with a coupling agent such as a silane coupling agent. In addition, the well-known additive added to an epoxy resin composition may be contained. Examples of the additive include an ion trap agent, a release agent, and a pigment such as carbon black.

<樹脂組成物の製造方法>
以下、本発明にかかるエポキシ樹脂組成物の製造方法について説明する。
まず、硬化剤と硬化促進剤の混合物を加熱後、冷却し、続いてエポキシ樹脂と混合し、加熱後、冷却する。
<Method for producing resin composition>
Hereinafter, the manufacturing method of the epoxy resin composition concerning this invention is demonstrated.
First, a mixture of a curing agent and a curing accelerator is heated and then cooled, then mixed with an epoxy resin, heated and then cooled.

硬化剤とリン系硬化促進剤の混合物を加熱するのは、硬化剤の粘度を低下させることで混合を容易とし、かかる硬化剤とリン系硬化促進剤が均一となるように撹拌するためである。ここで、加熱温度を好ましくは100℃〜180℃とすれば、容易に混合できる。エポキシ樹脂と混合する前に、上記混合物を予め冷却するのは、エポキシ当量と水酸基当量との当量比が1:1となるように、上記混合物を正確に計量する必要があるためであり、その際の取り扱いを容易とするためである。   The reason why the mixture of the curing agent and the phosphorus curing accelerator is heated is to facilitate the mixing by reducing the viscosity of the curing agent, and to stir the curing agent and the phosphorus curing accelerator to be uniform. . Here, if the heating temperature is preferably 100 ° C. to 180 ° C., it can be easily mixed. The reason for pre-cooling the mixture before mixing with the epoxy resin is that it is necessary to accurately weigh the mixture so that the equivalent ratio of epoxy equivalent to hydroxyl equivalent is 1: 1, This is for easy handling.

冷却された硬化剤とリン系硬化促進剤との混合物と、エポキシ樹脂とを混合し、エポキシ樹脂組成物とした後、加熱する。これにより、硬化剤とエポキシ樹脂が、リン系硬化促進剤による作用により、反応硬化する。その後、得られた反応硬化物を冷却することで、エポキシ樹脂硬化物が得られる。エポキシ樹脂組成物の加熱は、100℃〜250℃条件下にて行うことが好ましい。反応硬化が速やかに進行するからである。また、硬化剤とリン系硬化促進剤との混合や、エポキシ樹脂との混合の際は、均一に攪拌、混合することが容易となるため、真空ニーダーを用いることが好ましい。   The mixture of the cooled hardening | curing agent and phosphorus hardening accelerator, and an epoxy resin are mixed, and it is heated after setting it as an epoxy resin composition. Accordingly, the curing agent and the epoxy resin are reaction-cured by the action of the phosphorus-based curing accelerator. Then, an epoxy resin hardened material is obtained by cooling the obtained reaction hardened material. It is preferable to heat an epoxy resin composition on 100 to 250 degreeC conditions. This is because the reaction curing proceeds promptly. In addition, it is preferable to use a vacuum kneader when mixing the curing agent and the phosphorus-based curing accelerator or mixing with the epoxy resin because it is easy to uniformly stir and mix.

なお、これらの硬化剤、リン系硬化促進剤、およびエポキシ樹脂の各成分は、各混合工程において1度に混合してもよく、または複数回に分けて少しずつ混合してもよい。また、上記溶剤や添加剤、無機充填剤等を混合する場合も、同様に、任意の時期に1度または複数回に分けて混合することができる。   In addition, each component of these hardening | curing agents, a phosphorus hardening accelerator, and an epoxy resin may be mixed at once in each mixing process, or may be mixed little by little in several steps. Similarly, when the above-mentioned solvent, additive, inorganic filler, and the like are mixed, they can be mixed once or divided into a plurality of times at an arbitrary time.

以下、本発明について具体的に説明する。ただし、本発明の範囲はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be specifically described. However, the scope of the present invention is not limited by these examples.

〈実施例1〉
フェノール樹脂系硬化剤(フェノールノボラック型硬化剤)のフェノライトTD−2131(水酸基当量104、軟化点78℃、DIC社製)18.1重量部に、リン系硬化促進剤としてトリ(p−トリル)ホスフィントリフェニルボラン(北興化学工業社製、商品名TPTP−S)(以下、TPTP−Sと呼ぶ)0.35重量部を加え、150℃で2分間加熱下に攪拌・混合した後、室温まで冷却した。これにナフタレン型4官能エポキシ樹脂のEPICLON HP―4710(エポキシ当量172、軟化点96℃、DIC社製)30.0重量部を加え、130℃で2分間加熱下に攪拌・混合した後、室温まで冷却しエポキシ樹脂組成物を得た。ここで、エポキシ当量と水酸基当量の当量比は1.0である。
得られたエポキシ樹脂組成物を、硬化条件150℃で1時間、200℃で2時間、220℃で4時間硬化させる、またさらにアフターキュアとして250℃2時間硬化させることで、エポキシ樹脂硬化物を得た。
<Example 1>
Phenolite TD-2131 (hydroxyl equivalent 104, softening point 78 ° C., manufactured by DIC Corporation) of phenol resin curing agent (phenol novolak type curing agent) 18.1 parts by weight as a phosphorus curing accelerator tri (p-tolyl) ) Add 0.35 parts by weight of phosphine triphenylborane (trade name TPTP-S, manufactured by Hokuko Chemical Co., Ltd.) (hereinafter referred to as TPTP-S), stir and mix with heating at 150 ° C. for 2 minutes, Until cooled. To this was added 30.0 parts by weight of naphthalene-type tetrafunctional epoxy resin EPICLON HP-4710 (epoxy equivalent 172, softening point 96 ° C., manufactured by DIC Corporation), and the mixture was stirred and mixed at 130 ° C. for 2 minutes with heating, followed by room temperature. The product was cooled to an epoxy resin composition. Here, the equivalent ratio of epoxy equivalent to hydroxyl equivalent is 1.0.
The resulting epoxy resin composition is cured at 150 ° C. for 1 hour, 200 ° C. for 2 hours, and 220 ° C. for 4 hours, and further cured as an after-cure at 250 ° C. for 2 hours to obtain a cured epoxy resin product. Obtained.

〈実施例2〉
TPTP−S0.35重量部に代えて、トリフェニルホスフィントリフェニルボラン(北興化学工業社製、商品名TPP−S)(以下、TPP−Sと呼ぶ)0.30重量部とした以外は、実施例1と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Example 2>
Implemented except that instead of 0.35 part by weight of TPTP-S, 0.30 part by weight of triphenylphosphine triphenylborane (trade name TPP-S, manufactured by Hokuko Chemical Co., Ltd.) (hereinafter referred to as TPP-S) In the same manner as in Example 1, an epoxy resin composition and a cured epoxy resin were obtained.

〈比較例1〉
TPTP−S0.35重量部に代えて、トリ(p−トリル)ホスフィン(北興化学工業社製、商品名TPTP)(以下、TPTPと呼ぶ)0.20重量部とした以外は、実施例1と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Comparative example 1>
Example 1 except that in place of 0.35 part by weight of TPTP-S, 0.20 part by weight of tri (p-tolyl) phosphine (trade name TPTP, manufactured by Hokuko Chemical Co., Ltd.) (hereinafter referred to as TPTP) is used. Similarly, an epoxy resin composition and a cured epoxy resin were obtained.

〈比較例2〉
TPTP−S0.35重量部に代えて、トリフェニルホスフィン(北興化学工業社製、商品名TPP)(以下、TPPと呼ぶ)0.15重量部とした以外は、実施例1と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Comparative example 2>
In place of 0.35 parts by weight of TPTP-S, epoxy was used in the same manner as in Example 1 except that 0.15 parts by weight of triphenylphosphine (made by Hokuko Chemical Co., Ltd., trade name TPP) (hereinafter referred to as TPP) was used. A resin composition and a cured epoxy resin were obtained.

〈比較例3〉
TPTP−S0.35重量部に代えて、2―エチル−4−メチルイミダゾール(東京化成工業社製、商品名2E4MZ)(以下、2E4MZと呼ぶ)0.09重量部とした以外は、実施例1と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Comparative Example 3>
Example 1 except that in place of 0.35 parts by weight of TPTP-S, 2-ethyl-4-methylimidazole (trade name 2E4MZ, manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as 2E4MZ) was 0.09 parts by weight. In the same manner as above, an epoxy resin composition and a cured epoxy resin were obtained.

〈比較例4〉
ビフェニルアラルキル型硬化剤のMEH―7851M(水酸基当量210、軟化点79℃、明和化成社製)21.4重量部に、リン系硬化促進剤としてTPTP−S0.50重量部を加え、150℃で2分間加熱下に攪拌・混合した後、室温まで冷却した。これにビフェニルアラルキル型エポキシ樹脂の NC−3000(エポキシ当量275、軟化点57.1℃、日本化薬社製)28.0重量部を加え、130℃で1.5分間加熱下に攪拌・混合した後、室温まで冷却しエポキシ樹脂組成物を得た。ここで、エポキシ当量と水酸基当量の当量比は1.0である。
得られたエポキシ樹脂組成物を、硬化条件150℃で2時間、180℃で6時間硬化させることで、エポキシ樹脂硬化物を得た。
<Comparative example 4>
Add 20.5 parts by weight of biphenylaralkyl-type curing agent MEH-7851M (hydroxyl equivalent 210, softening point 79 ° C., Meiwa Kasei Co., Ltd.) to 0.54 parts by weight of TPTP-S as a phosphorus curing accelerator at 150 ° C. The mixture was stirred and mixed with heating for 2 minutes, and then cooled to room temperature. To this, 28.0 parts by weight of biphenylaralkyl type epoxy resin NC-3000 (epoxy equivalent 275, softening point 57.1 ° C., manufactured by Nippon Kayaku Co., Ltd.) was added and stirred and mixed while heating at 130 ° C. for 1.5 minutes. Then, it was cooled to room temperature to obtain an epoxy resin composition. Here, the equivalent ratio of epoxy equivalent to hydroxyl equivalent is 1.0.
The obtained epoxy resin composition was cured at 150 ° C. for 2 hours and at 180 ° C. for 6 hours to obtain a cured epoxy resin.

〈比較例5〉
TPTP−S0.50重量部に代えて、TPP−Sを0.55重量部とした以外は、比較例4と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Comparative Example 5>
An epoxy resin composition and a cured epoxy resin were obtained in the same manner as in Comparative Example 4 except that 0.55 parts by weight of TPP-S was used instead of 0.50 parts by weight of TPTP-S.

〈比較例6〉
TPTP−S0.50重量部に代えて、TPTPを0.22重量部とした以外は、比較例4と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Comparative Example 6>
An epoxy resin composition and a cured epoxy resin were obtained in the same manner as in Comparative Example 4 except that TPTP was changed to 0.22 parts by weight instead of 0.50 parts by weight of TPTP-S.

〈比較例7〉
TPTP−S0.50重量部に代えて、TPPを0.20重量部とした以外は、比較例4と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Comparative Example 7>
An epoxy resin composition and a cured epoxy resin were obtained in the same manner as in Comparative Example 4 except that TPP was changed to 0.20 parts by weight instead of 0.50 parts by weight of TPTP-S.

〈比較例8〉
TPTP−S0.50重量部に代えて、2E4MZを0.18重量部とした以外は、比較例4と同様にしてエポキシ樹脂組成物およびエポキシ樹脂硬化物を得た。
<Comparative Example 8>
An epoxy resin composition and a cured epoxy resin were obtained in the same manner as in Comparative Example 4 except that 2E4MZ was changed to 0.18 parts by weight instead of 0.50 parts by weight of TPTP-S.

次に、実施例1〜2および比較例1〜8で得られたエポキシ樹脂組成物および硬化物の物性について以下に示した方法で確認した。   Next, the physical properties of the epoxy resin compositions and cured products obtained in Examples 1-2 and Comparative Examples 1-8 were confirmed by the methods shown below.

<ゲルタイム測定>
JIS K 6910記載のゲル化時間測定方法に準じ、鋼板温度を175℃として、上記エポキシ樹脂組成物のゲルタイムを測定した。本測定において、ゲル化試験器としては日新科学社製GT−Dを使用した。
<Gel time measurement>
According to the gel time measurement method described in JIS K 6910, the gel time of the epoxy resin composition was measured at a steel plate temperature of 175 ° C. In this measurement, GT-D manufactured by Nisshin Kagaku Co., Ltd. was used as the gelation tester.

<熱時硬度測定>
JIS K 7215記載のプラスチックのデュロメーター硬さ試験方法に準じ、上記エポキシ樹脂組成物の熱時硬度を、デュロメーターにより経時測定した。デュロメーターとしては、TECLOCK社製デュロメーターGS−720Gを使用し、エポキシ樹脂組成物を175℃熱板上で測定した。
<Heat hardness measurement>
In accordance with the plastic durometer hardness test method described in JIS K 7215, the hot hardness of the epoxy resin composition was measured with a durometer over time. As the durometer, a durometer GS-720G manufactured by TECLOCK was used, and the epoxy resin composition was measured on a hot plate at 175 ° C.

<耐熱性試験>
上記エポキシ樹脂硬化物の耐熱性試験を実施した。本試験において、動的粘弾性試験機としてはSIIナノテクノロジー社製DMS6100を使用し、昇温5℃/分、周波数1Hz、曲げモードにて行った。ガラス転移温度は、tanδのピーク温度とした。
<Heat resistance test>
A heat resistance test of the cured epoxy resin was performed. In this test, DMS6100 manufactured by SII Nano Technology was used as a dynamic viscoelasticity tester, and the temperature was raised at 5 ° C./min, the frequency was 1 Hz, and the bending mode was used. The glass transition temperature was the peak temperature of tan δ.

<耐湿信頼性試験>
上記エポキシ樹脂硬化物の耐湿信頼性試験を実施した。耐湿信頼性試験方法としては、まず、超純水と樹脂硬化物をSUS/PTFE製2重耐圧容器(三愛科学社製HU―100)に入れた後に、小型恒温試験機に入れイオン抽出(120℃ / 100時間)を行い、イオン抽出後、DIONEX社製のイオンクロマトグラフ(DX―320)を用いて抽出されたイオン性不純物量を測定した。抽出塩素イオン量(ppm)は、樹脂硬化物の重量当量として算出した。
<Moisture resistance reliability test>
A moisture resistance reliability test of the cured epoxy resin was performed. As a moisture resistance reliability test method, first, ultrapure water and a cured resin product are placed in a double pressure vessel made of SUS / PTFE (HU-100, manufactured by Sanai Kagaku Co., Ltd.) and then placed in a small constant temperature tester to extract ions (120 C./100 hours), and after ion extraction, the amount of extracted ionic impurities was measured using an ion chromatograph (DX-320) manufactured by DIONEX. The amount of extracted chlorine ions (ppm) was calculated as the weight equivalent of the cured resin.

各例の配合、および物性試験結果を表1に示す。   Table 1 shows the composition of each example and the physical property test results.

Figure 2014005382
Figure 2014005382

実施例1、2に示すエポキシ樹脂硬化物は、エポキシ樹脂にナフタレン型4官能エポキシ樹脂および硬化促進剤にTPTP−SまたはTPP−Sを使用しているため、ガラス転移温度が高く240℃以上、またアフターキュアすることでガラス転移温度がさらに245℃以上となることから耐熱性に優れ、抽出塩素イオン量が少ないことから耐湿信頼性にも優れるものである。   The cured epoxy resin shown in Examples 1 and 2 uses a naphthalene-type tetrafunctional epoxy resin as an epoxy resin and TPTP-S or TPP-S as a curing accelerator, and thus has a high glass transition temperature of 240 ° C. or higher. Further, after-curing, the glass transition temperature becomes 245 ° C. or more, so that the heat resistance is excellent, and since the amount of extracted chlorine ions is small, the moisture resistance reliability is also excellent.

また、実施例1、2に示すエポキシ樹脂組成物は、エポキシ樹脂にナフタレン型4官能エポキシ樹脂、硬化促進剤にTPTP、TPP、2E4MZを使用した比較例1〜3の組成物と同様に熱時硬度の上昇が確認されたことから速硬化性を確保しつつも、比較例1〜3の組成物とは異なり、40℃で保管した場合でもゲルタイムは変化しないことから、貯蔵安定性に優れるものである。即ち、エポキシ樹脂にナフタレン型4官能エポキシ樹脂を使用したとしても、硬化促進剤にTPTP−S、TPP−Sを使用しないと貯蔵安定性が劣ることとなる。   In addition, the epoxy resin compositions shown in Examples 1 and 2 were heated in the same manner as the compositions of Comparative Examples 1 to 3 using naphthalene type tetrafunctional epoxy resin as the epoxy resin and TPTP, TPP, and 2E4MZ as the curing accelerator. It is excellent in storage stability because the gel time does not change even when stored at 40 ° C., unlike the compositions of Comparative Examples 1 to 3, while ensuring fast curability from the confirmed increase in hardness. It is. That is, even if a naphthalene-type tetrafunctional epoxy resin is used as an epoxy resin, storage stability is poor unless TPTP-S or TPP-S is used as a curing accelerator.

一方、比較例4〜8にかかるエポキシ樹脂硬化物は、エポキシ樹脂にナフタレン型4官能エポキシ樹脂を使用していないため、硬化促進剤の種類に関わらず、ガラス転移温度が130〜150℃と低く耐熱性に劣り、熱時硬度も450秒後においても上昇しないため、速硬化性に劣る。   On the other hand, since the epoxy resin hardened | cured material concerning Comparative Examples 4-8 does not use the naphthalene type | mold tetrafunctional epoxy resin for an epoxy resin, regardless of the kind of hardening accelerator, a glass transition temperature is as low as 130-150 degreeC. Since it is inferior in heat resistance and hot hardness does not increase even after 450 seconds, it is inferior in fast curability.

また、比較例3においては、エポキシ樹脂にナフタレン型4官能エポキシ樹脂を使用していても、硬化剤に2E4MZを使用しているため、耐湿信頼性に劣り、パワー半導体用途に使用できず、また貯蔵安定性に劣るため、作業効率の向上に寄与しない。   In Comparative Example 3, even though a naphthalene-type tetrafunctional epoxy resin is used as the epoxy resin, 2E4MZ is used as the curing agent, so that the moisture resistance is inferior and cannot be used for power semiconductor applications. Since it is inferior in storage stability, it does not contribute to improvement of work efficiency.

以上から、実施例にかかるエポキシ樹脂硬化物は、高耐熱性および高耐湿信頼性に優れるため、パワー半導体用途を始めとする多くの用途に好適で、その樹脂組成物自体は、貯蔵安定性と速硬化性の両立が達成されたものであるため、作業利便性が高いことが判る。   From the above, the cured epoxy resin according to the examples is excellent in high heat resistance and high moisture resistance reliability, and is therefore suitable for many applications including power semiconductor applications, and the resin composition itself has storage stability and It can be seen that the convenience of work is high because both quick curing properties are achieved.

Claims (4)

次の構成要素(A)、(B)、(C)を少なくとも含むエポキシ樹脂組成物。
(A)下記式(1)
Figure 2014005382
で表されるナフタレン型4官能エポキシ樹脂を少なくとも含むエポキシ樹脂
(B)硬化剤
(C)下記一般式(2)
Figure 2014005382
〔式中、Rは、−H、−CH、炭素数2〜16の直鎖状もしくは分岐鎖状のアルキル基を示す〕で表されるトリアリールホスフィントリフェニルボラン付加体を1種類または2種類以上を少なくとも含むリン系硬化促進剤
An epoxy resin composition comprising at least the following components (A), (B), and (C).
(A) The following formula (1)
Figure 2014005382
An epoxy resin containing at least a naphthalene-type tetrafunctional epoxy resin represented by formula (B) Curing agent (C)
Figure 2014005382
[Wherein R represents —H, —CH 3 , a linear or branched alkyl group having 2 to 16 carbon atoms], or one or two triarylphosphine triphenylborane adducts represented by Phosphoric curing accelerator containing at least one or more types
硬化剤が、フェノール樹脂である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the curing agent is a phenol resin. さらに無機充填剤として、溶融シリカ、結晶シリカ、クレー、マイカ、炭酸カルシウム、アルミナ、窒化ホウ素、窒化アルミニウムから選択される1種類または2種類以上を必須成分として含有することを特徴とする請求項1もしくは2に記載のエポキシ樹脂組成物。 The inorganic filler further contains one or more kinds selected from fused silica, crystalline silica, clay, mica, calcium carbonate, alumina, boron nitride, and aluminum nitride as essential components. Or the epoxy resin composition of 2. 請求項1〜3のいずれかに記載のエポキシ樹脂組成物を硬化して得られるエポキシ樹脂硬化物。 The epoxy resin hardened | cured material obtained by hardening | curing the epoxy resin composition in any one of Claims 1-3.
JP2012142471A 2012-06-25 2012-06-25 Epoxy resin composition and cured product thereof Pending JP2014005382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142471A JP2014005382A (en) 2012-06-25 2012-06-25 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142471A JP2014005382A (en) 2012-06-25 2012-06-25 Epoxy resin composition and cured product thereof

Publications (1)

Publication Number Publication Date
JP2014005382A true JP2014005382A (en) 2014-01-16

Family

ID=50103410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142471A Pending JP2014005382A (en) 2012-06-25 2012-06-25 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP2014005382A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131669A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Boron nitride particles, composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2022059706A1 (en) 2020-09-18 2022-03-24 富士フイルム株式会社 Composition, magnetic-particle-containing film, and electronic component
WO2022065183A1 (en) 2020-09-24 2022-03-31 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle introduced substrate, and electronic material
WO2022202394A1 (en) 2021-03-22 2022-09-29 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle-introduced substrate, and electronic material
WO2023054565A1 (en) 2021-09-30 2023-04-06 富士フイルム株式会社 Method for producing magnetic particle-containing composition, magnetic particle-containing composition, magnetic particle-containing cured product, magnetic particle-introduced substrate, and electronic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131669A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Boron nitride particles, composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2022059706A1 (en) 2020-09-18 2022-03-24 富士フイルム株式会社 Composition, magnetic-particle-containing film, and electronic component
WO2022065183A1 (en) 2020-09-24 2022-03-31 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle introduced substrate, and electronic material
WO2022202394A1 (en) 2021-03-22 2022-09-29 富士フイルム株式会社 Composition, magnetic particle-containing cured product, magnetic particle-introduced substrate, and electronic material
WO2023054565A1 (en) 2021-09-30 2023-04-06 富士フイルム株式会社 Method for producing magnetic particle-containing composition, magnetic particle-containing composition, magnetic particle-containing cured product, magnetic particle-introduced substrate, and electronic material

Similar Documents

Publication Publication Date Title
JP6686907B2 (en) Epoxy resin, epoxy resin composition, epoxy resin composition containing inorganic filler, resin sheet, cured product, and epoxy compound
JP6849698B2 (en) Cured resin composition, cured product and curing method of the cured resin composition, and semiconductor device
JP2014005382A (en) Epoxy resin composition and cured product thereof
JP6546527B2 (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
EP3101046A1 (en) Liquid resin composition
JP2020145424A (en) Silicon carbide, gallium oxide, gallium nitride, and molding material composition for sealing diamond element, and electronic component device
EP2952539B1 (en) Heat-curable resin composition
JP6497652B2 (en) Epoxy resin molding material for sealing and electronic parts
JPWO2019083002A1 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
JP2009120815A (en) Epoxy resin composition and semiconductor device
JP6794218B2 (en) Compositions for encapsulation molding materials and electronic component equipment
WO2020218457A1 (en) Curable-resin composition, cured product of curable-resin composition, production method for curable-resin composition and cured product of curable-resin composition, and semiconductor device
JP2014005383A (en) Epoxy resin composition and cured product thereof
JP6331500B2 (en) Epoxy resin composition and cured product
JP2010229295A (en) Epoxy resin composition
JP2018044072A (en) Aluminum nitride-containing curable resin composition
JP6946088B2 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
JP7410052B2 (en) Composition for cured resin, cured product of the composition, method for producing the composition and cured product, and semiconductor device
JP2009203266A (en) One-component epoxy resin composition
CN110603294B (en) Molding material composition for sealing SiC and GaN elements, and electronic component device
JP6867894B2 (en) Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials
CN114149616B (en) Heat conducting filler, preparation method, resin composite material containing heat conducting filler and application of resin composite material
JP2023159356A (en) Thermal conductive potting composition
JP2023181910A (en) Curable composition, cured product of the composition, method for producing the composition and the cured product, and semiconductor device
JP2019189765A (en) Thermosetting resin composition