JP6867894B2 - Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials - Google Patents

Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials Download PDF

Info

Publication number
JP6867894B2
JP6867894B2 JP2017122033A JP2017122033A JP6867894B2 JP 6867894 B2 JP6867894 B2 JP 6867894B2 JP 2017122033 A JP2017122033 A JP 2017122033A JP 2017122033 A JP2017122033 A JP 2017122033A JP 6867894 B2 JP6867894 B2 JP 6867894B2
Authority
JP
Japan
Prior art keywords
epoxy resin
compound
composition
composition according
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017122033A
Other languages
Japanese (ja)
Other versions
JP2019006867A (en
Inventor
航 高橋
航 高橋
清貴 村田
清貴 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2017122033A priority Critical patent/JP6867894B2/en
Priority to KR1020197035565A priority patent/KR102570300B1/en
Priority to PCT/JP2018/023027 priority patent/WO2018235751A1/en
Priority to CN201880040937.8A priority patent/CN110770276A/en
Publication of JP2019006867A publication Critical patent/JP2019006867A/en
Application granted granted Critical
Publication of JP6867894B2 publication Critical patent/JP6867894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、エポキシ樹脂の硬化剤の成分や熱硬化性組成物の成分として好適な組成物、この組成物を含有するエポキシ樹脂硬化剤、このエポキシ樹脂硬化剤を含むエポキシ樹脂組成物、このエポキシ樹脂組成物の硬化物、上記の組成物を含む熱硬化性組成物、この熱硬化性組成物の硬化物、上記のエポキシ樹脂組成物または上記の熱硬化性組成物で封止された半導体装置、および上記のエポキシ樹脂組成物または上記の熱硬化性組成物を含有する層間絶縁材料に関する。なお、本明細書において、「熱硬化性組成物」は熱硬化性を有する組成物を意味し、「エポキシ樹脂組成物」はエポキシ基を有する樹脂を含有する組成物を意味し、「熱硬化性組成物」なる用語の概念と、「エポキシ樹脂組成物」なる用語の概念とは重複部分を有するものとする。 The present invention relates to a composition suitable as a component of an epoxy resin curing agent or a component of a thermosetting composition, an epoxy resin curing agent containing this composition, an epoxy resin composition containing this epoxy resin curing agent, and this epoxy. A cured product of the resin composition, a thermocurable composition containing the above composition, a cured product of the thermocurable composition, the above epoxy resin composition or a semiconductor device sealed with the above thermocurable composition. , And the interlayer insulating material containing the above epoxy resin composition or the above thermocurable composition. In the present specification, the "thermosetting composition" means a composition having a thermosetting property, and the "epoxy resin composition" means a composition containing a resin having an epoxy group, and "thermosetting". It is assumed that the concept of the term "sex composition" and the concept of the term "epoxy resin composition" have overlapping parts.

エポキシ樹脂の硬化剤の中でも大きな一群をなすフェノール系硬化剤は、種類が豊富なことに加えて低コストなどの特徴により各種産業に用いられている。これらは産業の技術の進歩に伴い様々な要求性能に応えるべく多種多様なものがこれまでに開発されてきた。 Phenolic curing agents, which form a large group among epoxy resin curing agents, are used in various industries due to their abundant types and low cost. A wide variety of these have been developed to meet various required performances with the progress of industrial technology.

電子材料分野では近年、半導体パッケージの小型・薄型化および形状の複雑化に伴い、半導体封止材料用樹脂には、ますます低粘度のものが要求されるようになってきている。低粘度であればその流動性が向上することで複雑形状のパッケージ、例えばBGAなどにも対応が可能となり、またフィラーの高充填化が可能となることで、これらの用途に求められる難燃性、半田耐熱性、耐湿信頼性の面でも有利となる。 In the field of electronic materials, in recent years, as semiconductor packages have become smaller and thinner and their shapes have become more complicated, resins for semiconductor encapsulation materials are increasingly required to have low viscosities. If the viscosity is low, the fluidity is improved, which makes it possible to handle packages with complicated shapes, such as BGA, and the high filling of fillers makes it possible to increase the flame retardancy required for these applications. It is also advantageous in terms of solder heat resistance and moisture resistance reliability.

また、地球環境への配慮により、これまで利用されてきたハロゲン含有系化合物や、アンチモン化合物などの難燃剤に代わる新規な難燃性エポキシ樹脂組成物の要求が高まっており、汎用パッケージから先端パッケージ用に至る用途で使用されていたフェノールアラルキル樹脂にも、ハロゲン系難燃剤およびアンチモン化合物を用いなくても優れた難燃性を有することが求められている。そのような要請に応える材料として、ビフェニル骨格を導入したフェノールアラルキル樹脂は、高難燃性であることが知られており、先端パッケージ用途で使用されている(例えば特許文献1など)。 In addition, due to consideration for the global environment, there is an increasing demand for new flame-retardant epoxy resin compositions that replace flame retardants such as halogen-containing compounds and antimony compounds that have been used so far, and from general-purpose packages to advanced packages. Phenolic aralkyl resins used in various applications are also required to have excellent flame retardancy without using halogen-based flame retardants and antimony compounds. As a material that meets such a demand, a phenol aralkyl resin having a biphenyl skeleton introduced is known to have high flame retardancy, and is used for advanced packaging applications (for example, Patent Document 1).

特許文献1に記載される難燃性エポキシ樹脂組成物は、ガラス転移温度(Tg)が低くなる傾向を有し、Tgの低下は一般に高温信頼性と耐熱性の低下を引き起こすため、これを改善できるエポキシ樹脂硬化剤の提供が望まれている。特に、今後ますますの普及が予想される電気自動車やハイブリッド車に搭載されるパワーデバイスの封止材料には高い耐熱性が求められている。また、耐熱性に関連し、近年の封止材の物性要望として、高温下での熱分解性が低い特性(以下「高温下低分解特性」という)を有することも求められている。かかる要請に応え、特許文献2には、マレイミド化合物およびに加えて、特定のフェノール化合物を一定の割合で溶融混合して得られる組成物が記載される。かかる組成物は、エポキシ樹脂硬化剤の成分など熱硬化性組成物の成分として用いることが好適であり、上記の組成物を用いることにより、高難燃性、高耐熱性および高温下低分解特性を有する硬化物を形成可能な熱硬化性組成物が得られる。 The flame-retardant epoxy resin composition described in Patent Document 1 tends to have a low glass transition temperature (Tg), and a decrease in Tg generally causes a decrease in high-temperature reliability and heat resistance, which is improved. It is desired to provide an epoxy resin curing agent that can be used. In particular, high heat resistance is required for encapsulating materials for power devices installed in electric vehicles and hybrid vehicles, which are expected to become more and more popular in the future. Further, in relation to heat resistance, as a recent demand for physical properties of a sealing material, it is also required to have a characteristic of low thermal decomposability at high temperature (hereinafter referred to as "low decomposition characteristic at high temperature"). In response to such a request, Patent Document 2 describes a composition obtained by melt-mixing a specific phenol compound at a constant ratio in addition to the maleimide compound. Such a composition is preferably used as a component of a thermosetting composition such as a component of an epoxy resin curing agent, and by using the above composition, it has high flame retardancy, high heat resistance and low decomposition characteristics at high temperature. A thermosetting composition capable of forming a cured product having the above can be obtained.

特開2000−129092号公報Japanese Unexamined Patent Publication No. 2000-129092 特開2016−204626号公報Japanese Unexamined Patent Publication No. 2016-204626

特許文献2に記載される組成物を用いることにより、上記のように優れた特性を有する硬化物が提供される。この組成物の有する優れた特徴を維持しつつ、保存安定性(長期間保存しても物性変化が生じにくいこと)をさらに向上することができれば、その組成物の工業製品としての価値をさらに高めることができる。 By using the composition described in Patent Document 2, a cured product having excellent properties as described above is provided. If the storage stability (the physical properties are unlikely to change even after long-term storage) can be further improved while maintaining the excellent characteristics of the composition, the value of the composition as an industrial product will be further enhanced. be able to.

本発明は、高難燃性、高耐熱性および高温下低分解特性を満たし得るエポキシ樹脂の硬化剤の成分や熱硬化性組成物の成分として好適な組成物であって、保存安定性にも優れる組成物を提供することを目的とする。また、本発明は、上記の組成物を含有するエポキシ樹脂硬化剤、このエポキシ樹脂硬化剤を含むエポキシ樹脂組成物、このエポキシ樹脂組成物の硬化物、上記の組成物を含む熱硬化性組成物、この熱硬化性組成物の硬化物、上記のエポキシ樹脂組成物または上記の熱硬化性組成物で封止された半導体装置および上記のエポキシ樹脂組成物または上記の熱硬化性組成物を含有する層間絶縁材料を提供することを目的とする。 The present invention is a composition suitable as a component of a curing agent for an epoxy resin or a component of a thermosetting composition that can satisfy high flame retardancy, high heat resistance, and low decomposition characteristics at high temperatures, and also has storage stability. It is an object of the present invention to provide an excellent composition. The present invention also includes an epoxy resin curing agent containing the above composition, an epoxy resin composition containing the epoxy resin curing agent, a cured product of the epoxy resin composition, and a thermosetting composition containing the above composition. , The cured product of this thermocurable composition, the above epoxy resin composition or the semiconductor device sealed with the above thermocurable composition and the above epoxy resin composition or the above thermocurable composition. It is an object of the present invention to provide an interlayer insulating material.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、特許文献2に記載される組成物の成分のうち、芳香族アミン化合物が組成物の溶融粘度や保存安定性に影響を与えやすいことを見出し、この芳香族アミン化合物が有する複数のアミノ基の一部を水酸基に変更してアミノフェノール化合物とすることにより、組成物の溶融粘度、特に150℃溶融粘度を低下させることができ、さらに保存安定性を向上させることができるとの新たな知見を得た。 As a result of diligent research to solve the above problems, the present inventors have found that among the components of the composition described in Patent Document 2, the aromatic amine compound affects the melt viscosity and storage stability of the composition. Finding that it is easy to give, it is possible to reduce the melt viscosity of the composition, especially the melt viscosity at 150 ° C., by changing some of the plurality of amino groups of this aromatic amine compound to hydroxyl groups to form an aminophenol compound. We have obtained a new finding that it can be done and the storage stability can be further improved.

本発明は、上記の知見に基づき完成されたものであって、一態様において、下記一般式(1)で表されるマレイミド化合物(A)、下記一般式(2)で表されるアミノフェノール化合物(B)、および下記一般式(4)で表されるビスフェノール化合物(C1)を含有し、150℃溶融粘度が20mPa・s以上750mPa・s以下であり、かつ水酸基当量が300g/eq以上1500g/eq以下であり、35℃の環境に1週間保管した後の150℃溶融粘度の変化率が100%以下である、エポキシ樹脂硬化剤を提供する。 The present invention has been completed based on the above findings, and in one embodiment, the maleimide compound (A) represented by the following general formula (1) and the aminophenol compound represented by the following general formula (2). (B) and the bisphenol compound (C1) represented by the following general formula (4) are contained , the melt viscosity at 150 ° C. is 20 mPa · s or more and 750 mPa · s or less, and the hydroxyl equivalent is 300 g / eq or more and 1500 g /. Provided is an epoxy resin curing agent having an eq or less and a change rate of a melt viscosity at 150 ° C. of 100% or less after being stored in an environment of 35 ° C. for one week.

Figure 0006867894
Figure 0006867894

(式(1)中、Arは置換基が存在してよい炭素数6〜12のアリーレン基であり、Xは直接結合、炭素数1〜6の2価の炭化水素基、O、S、またはSOであり、pは0〜2の整数である。) (In the formula (1), Ar 1 is an arylene group having 6 to 12 carbon atoms in which a substituent may be present, X 1 is a direct bond, a divalent hydrocarbon group having 1 to 6 carbon atoms, O, S. , Or SO 2 , where p is an integer from 0 to 2.)

Figure 0006867894
Figure 0006867894

(式(2)中、Arは水酸基を0〜2個の範囲で含み、炭化水素の置換基が存在してよい炭素数6〜12のアリーレン基であり、Xは直接結合、炭素数1〜6の2価の炭化水素基、O、S、またはSOであり、qは0〜2の整数である。) (In the formula (2), Ar 2 is an arylene group having a hydroxyl group in the range of 0 to 2 and having 6 to 12 carbon atoms in which a hydrocarbon substituent may be present, and X 2 is a direct bond and has a carbon number of carbons. It is a divalent hydrocarbon group of 1 to 6, O, S, or SO 2 , and q is an integer of 0 to 2.)

Figure 0006867894
Figure 0006867894
(式(4)中、R(In equation (4), R 4Four およびRAnd R 5Five はそれぞれ独立に炭素数1〜4の炭化水素基であり、RAre independently hydrocarbon groups having 1 to 4 carbon atoms, and R 66 およびRAnd R 77 はそれぞれ独立に水素原子、メチル基、フェニル基であり、cおよびdはそれぞれ独立に0〜3の整数である。)Are independently hydrogen atoms, methyl groups, and phenyl groups, and c and d are independently integers of 0 to 3. )

上記のエポキシ樹脂硬化剤は、マレイミド化合物(A)とアミノフェノール化合物(B)との反応生成物をさらに含有してもよい。この反応生成物は、前記マレイミド化合物(A)と前記アミノフェノール化合物(B)とのマイケル付加物であってもよい。 The epoxy resin curing agent may further contain a reaction product of the maleimide compound (A) and the aminophenol compound (B). This reaction product may be a Michael adduct of the maleimide compound (A) and the aminophenol compound (B).

上記のエポキシ樹脂硬化剤は、前記マレイミド化合物(A)、前記アミノフェノール化合物(B)、および前記ビスフェノール化合物(C1)を含む組成物の溶融混合体であってもよい。 The epoxy resin curing agent may be a melt mixture of a composition containing the maleimide compound (A), the aminophenol compound (B), and the bisphenol compound (C1).

本発明は、別の一態様として、上記の本発明に係るエポキシ樹脂硬化剤とエポキシ樹脂とを含むエポキシ樹脂組成物を提供する。 As another aspect, the present invention provides an epoxy resin composition containing the above-mentioned epoxy resin curing agent according to the present invention and an epoxy resin.

上記の本発明に係るエポキシ樹脂組成物は、さらに硬化促進剤を含んでもよい。この場合において、前記硬化促進剤は、イミダゾール系化合物、ウレア系化合物、およびホスホニウム塩からなる群から選ばれる一種または二種以上を含むことが好ましく、前記硬化促進剤が、イミダゾール系化合物およびウレア系化合物を含むことがより好ましい。 The epoxy resin composition according to the present invention may further contain a curing accelerator. In this case, the curing accelerator preferably contains one or more selected from the group consisting of an imidazole compound, a urea compound, and a phosphonium salt, and the curing accelerator is an imidazole compound and a urea compound. More preferably, it contains a compound.

上記の本発明に係るエポキシ樹脂組成物は、さらに無機充填材を含んでいてもよい。 The epoxy resin composition according to the present invention may further contain an inorganic filler.

本発明は、さらに別の態様として、上記の本発明に係るエポキシ樹脂組成物の硬化物を提供する。 As yet another aspect, the present invention provides a cured product of the epoxy resin composition according to the present invention.

本発明は、さらに別の態様として、上記の本発明に係るエポキシ樹脂硬化剤を含む熱硬化性組成物を提供する。かかる熱硬化性組成物はさらに無機充填材を含んでいてもよい。
本発明は、さらに別の態様として、上記の本発明に係る熱硬化性組成物の硬化物を提供する。
As yet another aspect, the present invention provides a thermosetting composition containing the above-mentioned epoxy resin curing agent according to the present invention. Such a thermosetting composition may further contain an inorganic filler.
As yet another aspect, the present invention provides a cured product of the thermosetting composition according to the present invention.

本発明は、さらに別の態様として、上記の本発明に係るエポキシ樹脂組成物または上記の本発明に係る熱硬化性組成物で封止された半導体装置、および上記の本発明に係るエポキシ樹脂組成物または上記の本発明に係る熱硬化性組成物を含有する層間絶縁材料を提供する。 In still another aspect, the present invention comprises a semiconductor device sealed with the above-mentioned epoxy resin composition according to the present invention or the above-mentioned thermosetting composition according to the present invention, and the above-mentioned epoxy resin composition according to the present invention. Provided is an interlayer insulating material containing a product or the above-mentioned thermosetting composition according to the present invention.

本発明により、高難燃性、高耐熱性および高温下低分解特性を満たすエポキシ樹脂の硬化剤の成分や熱硬化性組成物の成分として好適な組成物であって、取扱い性および保存安定性に優れる組成物が提供される。また、本発明により、上記の組成物を含有するエポキシ樹脂硬化剤、このエポキシ樹脂硬化剤を含むエポキシ樹脂組成物、このエポキシ樹脂組成物のエポキシ樹脂硬化物、上記の組成物を含む熱硬化性組成物、この熱硬化性組成物の硬化物、上記のエポキシ樹脂組成物または上記の熱硬化性組成物で封止された半導体装置、および上記のエポキシ樹脂組成物または上記の熱硬化性組成物を含有する層間絶縁材料が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, the composition is suitable as a component of a curing agent for an epoxy resin or a component of a thermosetting composition satisfying high flame retardancy, high heat resistance and low decomposition characteristics under high temperature, and has handleability and storage stability. An excellent composition is provided. Further, according to the present invention, an epoxy resin curing agent containing the above composition, an epoxy resin composition containing the epoxy resin curing agent, an epoxy resin cured product of the epoxy resin composition, and a thermosetting property containing the above composition. The composition, the cured product of the thermosetting composition, the epoxy resin composition described above or a semiconductor device sealed with the thermosetting composition described above, and the epoxy resin composition or the thermosetting composition described above. An interlayer insulating material containing the above is provided.

以下、本発明の実施形態について説明する。
本発明の一実施形態に係る組成物(以下、この組成物を「本組成物」ともいう。)は、上記の一般式(1)で表されるマレイミド化合物(A)、上記の一般式(2)で表されるアミノフェノール化合物(B)、および上記の一般式(3)で表されるフェノール化合物(C)を含有する。一実施形態において、本組成物は、上記のマレイミド化合物(A)、アミノフェノール化合物(B)、およびフェノール化合物(C)を含む組成物の溶融混合体である。
Hereinafter, embodiments of the present invention will be described.
The composition according to one embodiment of the present invention (hereinafter, this composition is also referred to as “the present composition”) is a maleimide compound (A) represented by the above general formula (1), and the above general formula (hereinafter, the above general formula (1). It contains an aminophenol compound (B) represented by 2) and a phenol compound (C) represented by the above general formula (3). In one embodiment, the composition is a melt mixture of the composition comprising the maleimide compound (A), the aminophenol compound (B), and the phenol compound (C) described above.

マレイミド化合物(A)の好ましい例は、無水マレイン酸と2官能型芳香族アミン類を縮合させることで、容易に得ることが可能である(例えば特開昭60−260623号公報など参照)。本組成物が含有するマレイミド化合物(A)としては、融点が100〜250℃の物性を有するものが好ましい。 A preferred example of the maleimide compound (A) can be easily obtained by condensing maleic anhydride with bifunctional aromatic amines (see, for example, Japanese Patent Application Laid-Open No. 60-260623). The maleimide compound (A) contained in the present composition preferably has physical properties having a melting point of 100 to 250 ° C.

マレイミド化合物(A)の具体例としては、N,N’−4,4’−ジフェニルメタンビスマレイミド、N,N’−m−フェニレンビスマレイミド、N,N’−4,4’−ジフェニルエーテルビスマレイミド、N,N’−m−キシレンビスマレイミドなどを挙げることができる。これらのなかでも、耐熱性付与の観点から、マレイミド化合物(A)は、上記の一般式(1)におけるpが0または1であることが好ましく、上記の一般式(1)におけるpが1の場合の物質の一例であるN,N’−4,4’−ジフェニルメタンビスマレイミドを含有することがより好ましく、当該物質からなることが特に好ましい。なお、N,N’−4,4’−ジフェニルメタンビスマレイミドは、上記の一般式(1)において、Arがフェニレン基であり、Xがメチレン基である。 Specific examples of the maleimide compound (A) include N, N'-4,4'-diphenylmethanebismaleimide, N, N'-m-phenylene bismaleimide, N, N'-4,4'-diphenyl ether bismaleimide, and the like. N, N'-m-xylenebismaleimide and the like can be mentioned. Among these, from the viewpoint of imparting heat resistance, the maleimide compound (A) preferably has p in the above general formula (1) of 0 or 1, and p in the above general formula (1) is 1. It is more preferable to contain N, N'-4,4'-diphenylmethanebismaleimide which is an example of the substance of the case, and it is particularly preferable to be composed of the substance. In N, N'-4,4'-diphenylmethanebismaleimide, Ar 1 is a phenylene group and X 1 is a methylene group in the above general formula (1).

アミノフェノール化合物(B)の具体例としては、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、4−フェニル−2−アミノフェノール、4,6−ジメチル−3−アミノフェノール、3−メチル−4−アミノフェノール、2−アミノ−2'−ヒドロキシビフェニル、3−アミノ−3'−ヒドロキシジフェニルメタン、4−アミノ−4'−ヒドロキシジフェニルエーテル、2−アミノ−3'−ヒドロキシジフェニルスルフィド、4−アミノ−3',4'−ジヒドロキシジフェニルスルホンなどが挙げられる。これらの中でも熱時の流動性と入手のしやすさの観点から、アミノフェノール化合物(B)におけるqの値は0のものが好ましく、さらに硬化性の観点も含めるとArは置換基も含め炭素数が6〜7であるものがより好ましい。保存安定性を特に高める観点から、アミノフェノール化合物(B)が有する水酸基は1つであることが好ましい。 Specific examples of the aminophenol compound (B) include 2-aminophenol, 3-aminophenol, 4-aminophenol, 4-phenyl-2-aminophenol, 4,6-dimethyl-3-aminophenol, and 3-methyl. -4-Aminophenol, 2-Amino-2'-Hydroxybiphenyl, 3-Amino-3'-Hydroxydiphenylmethane, 4-Amino-4'-Hydroxydiphenyl ether, 2-Amino-3'-Hydroxydiphenylsulfide, 4-Amino Examples thereof include -3'and 4'-dihydroxydiphenyl sulfone. Among these, from the viewpoint of fluidity at the time of heat and availability, the value of q in the aminophenol compound (B) is preferably 0, and from the viewpoint of curability, Ar 2 includes substituents. Those having 6 to 7 carbon atoms are more preferable. From the viewpoint of particularly enhancing storage stability, the aminophenol compound (B) preferably has one hydroxyl group.

フェノール化合物(C)として、ビスフェノール化合物のアリル化化合物、アリル化フェノールノボラック樹脂などが例示される。これらの中でも、フェノール化合物(C)は、上記の一般式(4)で示されるビスフェノール化合物(C1)を含むことが好ましく、ビスフェノール化合物(C1)からなることがより好ましい。ビスフェノール化合物(C1)の具体的な構造は限定されない。ビスフェノールA構造、ビスフェノールF構造、ビスフェノールAP構造、ビスフェノールBP構造などが例示される。かかる構造を有することにより、成形時の適度な流動性と成形品の適度な耐熱性を確保できる。ビスフェノール化合物(C1)の具体例として、4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]、4,4’−メチレンビス[2−(2−プロペニル)フェノール]、4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)−6−メチルフェノール]などが挙げられる。フェノール化合物(C)がビスフェノール化合物(C1)を含有する場合において、ビスフェノール化合物(C1)は4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]を含有することが好ましく、フェノール化合物(C)が4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]からなることがより好ましい。 Examples of the phenol compound (C) include an allylated compound of a bisphenol compound and an allylated phenol novolac resin. Among these, the phenol compound (C) preferably contains the bisphenol compound (C1) represented by the above general formula (4), and more preferably consists of the bisphenol compound (C1). The specific structure of the bisphenol compound (C1) is not limited. Examples thereof include bisphenol A structure, bisphenol F structure, bisphenol AP structure, and bisphenol BP structure. By having such a structure, it is possible to secure an appropriate fluidity at the time of molding and an appropriate heat resistance of the molded product. Specific examples of the bisphenol compound (C1) include 4,4'-(dimethylmethylene) bis [2- (2-propenyl) phenol], 4,4'-methylenebis [2- (2-propenyl) phenol], 4, Examples thereof include 4'-(dimethylmethylene) bis [2- (2-propenyl) -6-methylphenol]. When the phenol compound (C) contains the bisphenol compound (C1), the bisphenol compound (C1) preferably contains 4,4'-(dimethylmethylene) bis [2- (2-propenyl) phenol]. It is more preferable that the phenol compound (C) is composed of 4,4'-(dimethylmethylene) bis [2- (2-propenyl) phenol].

本組成物は、マレイミド化合物(A)とアミノフェノール化合物(B)との反応生成物をさらに含有していてもよい。この場合において、反応生成物は、マレイミド化合物(A)とアミノフェノール化合物(B)とのマイケル付加物であってもよい。 The present composition may further contain a reaction product of the maleimide compound (A) and the aminophenol compound (B). In this case, the reaction product may be a Michael adduct of the maleimide compound (A) and the aminophenol compound (B).

上記の反応生成物を得ることを容易とする観点などから、本組成物は、マレイミド化合物(A)、アミノフェノール化合物(B)、およびフェノール化合物(C)を含む組成物の溶融混合体であってもよい。 From the viewpoint of facilitating the above-mentioned reaction product, the present composition is a melt mixture of the composition containing the maleimide compound (A), the aminophenol compound (B), and the phenol compound (C). You may.

本組成物において、マレイミド化合物(A)由来のマレイミド基に基づく部分構造の総数は、アミノフェノール化合物(B)由来の1級アミノ基に基づく部分構造とフェノール化合物(C)由来のアリル基に基づく部分構造との総数の1.5倍以上2.5倍以下であることが、本組成物を成分として含む熱硬化性組成物の硬化物の耐熱特性を向上させる観点から、好ましい場合がある。上記の比(マレイミド化合物(A)由来のマレイミド基に基づく部分構造の総数のアミノフェノール化合物(B)由来の1級アミノ基に基づく部分構造とフェノール化合物(C)由来のアリル基に基づく部分構造との総数に対する比)は、1.8以上2.2以下であることがより好ましい場合があり、1.9以上2.1以下であることが特に好ましい場合がある。
本組成物が上記の溶融混合体である場合において、マレイミド化合物(A)由来のマレイミド基の総数が、アミノフェノール化合物(B)由来の1級アミノ基とフェノール化合物(C)由来のアリル基との総数の1.5倍以上2.5倍以下となる成分混合比で、溶融混合が行われてもよい。このような条件で溶融混合が行われることにより、本組成物を成分として含む熱硬化性組成物の硬化物の耐熱特性を向上させることができる場合がある。上記の成分混合比は、1.8以上2.2以下であることが好ましく、1.9以上2.1以下であることがより好ましい。
In this composition, the total number of maleimide group-based partial structures derived from the maleimide compound (A) is based on the primary amino group-based partial structure derived from the aminophenol compound (B) and the allyl group derived from the phenol compound (C). It may be preferable that the total number of the partial structures is 1.5 times or more and 2.5 times or less from the viewpoint of improving the heat resistance characteristics of the cured product of the thermosetting composition containing the present composition as a component. The above ratio (the total number of maleimide group-based partial structures derived from the maleimide compound (A), the primary amino group-based partial structure derived from the aminophenol compound (B), and the allyl group-based partial structure derived from the phenol compound (C). The ratio) to the total number of the above may be more preferably 1.8 or more and 2.2 or less, and particularly preferably 1.9 or more and 2.1 or less.
When the present composition is the above-mentioned melt mixture, the total number of maleimide groups derived from the maleimide compound (A) is the primary amino group derived from the aminophenol compound (B) and the allyl group derived from the phenol compound (C). The melt mixing may be performed at a component mixing ratio of 1.5 times or more and 2.5 times or less of the total number of the above. By performing melt mixing under such conditions, it may be possible to improve the heat resistance characteristics of the cured product of the thermosetting composition containing the present composition as a component. The above component mixing ratio is preferably 1.8 or more and 2.2 or less, and more preferably 1.9 or more and 2.1 or less.

上記の溶融混合における具体的な方法は限定されない。マレイミド化合物(A)、アミノフェノール化合物(B)およびフェノール化合物(C)など各成分を、通常の混合容器において、加熱条件下で、好ましくは攪拌条件下に混合することによって得ることができる。これらの成分を組成物を混合する方法としては、マレイミド化合物(A)、アミノフェノール化合物(B)およびフェノール化合物(C)を一度に溶融混合する方法;アミノフェノール化合物(B)およびフェノール化合物(C)を溶融混合した後にマレイミド化合物(A)を混合する方法などが例示される。組成物の物性の安定性を高める観点から、マレイミド化合物(A)以外の成分をまず溶融混合し、得られた混合物にマレイミド化合物(A)をさらに混合して溶融混合物とすることが好ましい。 The specific method in the above-mentioned melt mixing is not limited. It can be obtained by mixing each component such as maleimide compound (A), aminophenol compound (B) and phenol compound (C) in a normal mixing container under heating conditions, preferably under stirring conditions. As a method of mixing the composition of these components, a method of melting and mixing the maleimide compound (A), the aminophenol compound (B) and the phenol compound (C) at once; the aminophenol compound (B) and the phenol compound (C). ) Is melt-mixed and then the maleimide compound (A) is mixed. From the viewpoint of enhancing the stability of the physical properties of the composition, it is preferable that the components other than the maleimide compound (A) are first melt-mixed, and the maleimide compound (A) is further mixed with the obtained mixture to obtain a melt mixture.

上記の溶融混合の条件は限定されない。限定されない例示を行えば、100〜200℃の温度範囲で15〜60分間程度撹拌混合することが挙げられる。本組成物の150℃溶融粘度は、上記のように、アミノフェノール化合物(B)を成分として含むことから、20mPa・s以上750mPa・s以下とすることが容易である。本組成物の取扱い性を高める観点から本組成物の150℃溶融粘度は、30mPa・s以上400mPa・s以下であることが好ましい。また、本組成物の水酸基当量は、300g/eq以上1500g/eq以下であることが好ましく、600g/eq以上1200g/eq以下であることがより好ましい。 The conditions for melting and mixing described above are not limited. To give an example without limitation, stirring and mixing in a temperature range of 100 to 200 ° C. for about 15 to 60 minutes can be mentioned. Since the aminophenol compound (B) is contained as a component, the melt viscosity at 150 ° C. of the present composition can be easily set to 20 mPa · s or more and 750 mPa · s or less. From the viewpoint of improving the handleability of the composition, the melt viscosity at 150 ° C. of the composition is preferably 30 mPa · s or more and 400 mPa · s or less. The hydroxyl group equivalent of the present composition is preferably 300 g / eq or more and 1500 g / eq or less, and more preferably 600 g / eq or more and 1200 g / eq or less.

本発明の混合生成物においては、混合成分は各成分が相溶状態もしくは成分同士が一部反応した状態で相溶しているものと推定される。上記のように、マイケル付加物が含まれていてもよい。 In the mixed product of the present invention, it is presumed that the mixed components are compatible with each other in a compatible state or in a state in which the components partially react with each other. As mentioned above, Michael adducts may be included.

本発明の一実施形態において、本組成物は、エポキシ樹脂硬化物の成分として用いられる。本発明の一実施形態に係るエポキシ樹脂硬化物は、本組成物を含み、好ましくは、本組成物からなる。本発明の一実施形態に係るエポキシ樹脂硬化剤は、成形温度域での溶融粘度が低く加工性に優れており、難燃性、耐熱性に優れることから、成形材、各種バインダー、コーティング材、積層材などに使用することができる。 In one embodiment of the invention, the composition is used as a component of a cured epoxy resin. The epoxy resin cured product according to one embodiment of the present invention contains the present composition, and preferably comprises the present composition. The epoxy resin curing agent according to the embodiment of the present invention has a low melt viscosity in a molding temperature range, is excellent in workability, and is excellent in flame retardancy and heat resistance. It can be used for laminated materials and the like.

本発明の一実施形態に係るエポキシ樹脂組成物は、上記の本発明の一実施形態に係るエポキシ樹脂硬化剤とエポキシ樹脂とを含むエポキシ樹脂組成物である。エポキシ樹脂組成物において、本発明の一実施形態に係るエポキシ樹脂硬化剤とともに使用することができるエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物、ジシクロペンタジエン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などの一分子中にエポキシ基を2個以上有するエポキシ化合物が挙げられる。これらエポキシ樹脂は単独使用でも2種類以上併用してもよい。耐湿性、熱時低弾性率、難燃性を考慮すると、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂などの2官能型エポキシ樹脂や、フェノ−ルビフェ
ニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物などから選ばれる芳香環の多い多官能型エポキシ樹脂を使用するのが好ましい。
The epoxy resin composition according to one embodiment of the present invention is an epoxy resin composition containing the epoxy resin curing agent and epoxy resin according to one embodiment of the present invention. Examples of the epoxy resin that can be used together with the epoxy resin curing agent according to the embodiment of the present invention in the epoxy resin composition include bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, and phenol novolac. Type epoxy resin, biphenyl type epoxy resin, phenol biphenyl aralkyl type epoxy resin, epoxy compound of aralkyl resin by xylylene bond such as phenol and naphthol, dicyclopentadiene type epoxy resin, dihydroxynaphthalene type epoxy resin, triphenol methane type epoxy resin, etc. Examples thereof include epoxy compounds having two or more epoxy groups in one molecule, such as glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, and glycidyl amine type epoxy resin. These epoxy resins may be used alone or in combination of two or more. Considering moisture resistance, low elasticity at heat, and flame retardancy, bifunctional epoxy resins such as bisphenol F type epoxy resin and biphenyl type epoxy resin, and xylylene such as phenolbiphenyl aralkyl type epoxy resin, phenol, and naphthol. It is preferable to use a polyfunctional epoxy resin having many aromatic rings, which is selected from an epoxidized product of an aralkyl resin by bonding.

エポキシ樹脂の硬化に際しては、硬化促進剤を併用することが好ましい。硬化促進剤としては、エポキシ樹脂をフェノール系硬化剤で硬化させるための公知の硬化促進剤を用いることができ、例えば、3級アミン化合物、4級アンモニウム塩、イミダゾール類、ウレア系化合物、ホスフィン化合物、ホスホニウム塩などを挙げることができる。より具体的には、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の3級アミン化合物;2−メチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類;3−フェニル−1,1−ジメチルウレア、3−(o−メチルフェニル)−1,1−ジメチルウレア、3−(p−メチルフェニル)−1,1−ジメチルウレア、1,1’−フェニレンビス(3,3−ジメチルウレア)、1,1’−(4−メチル−m−フェニレン)−ビス(3,3−ジメチルウレア)等のウレア系化合物;トリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィンなどのホスフィン化合物;トリフェニルホスホニオフェノラート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラナフトエ酸ボレート等のホスホニウム塩などを挙げることができる。エポキシ樹脂の硬化とビスマレイミドの重合の両方に高活性を示す、イミダゾール類、ウレア系化合物、およびホスホニウム塩からなる群から選ばれる一種または二種以上からなる硬化促進剤の使用が好ましい。硬化促進剤は、イミダゾール系化合物およびのウレア系化合物少なくとも一方を含むことがより好ましく、イミダゾール系化合物およびウレア系化合物を含むこと、すなわち、イミダゾール系化合物とウレア系化合物とを併用することが特に好ましい。 When curing the epoxy resin, it is preferable to use a curing accelerator in combination. As the curing accelerator, a known curing accelerator for curing the epoxy resin with a phenolic curing agent can be used. For example, a tertiary amine compound, a quaternary ammonium salt, imidazoles, a urea compound, and a phosphine compound can be used. , Phosphonium salt and the like. More specifically, tertiary amine compounds such as triethylamine, triethylenediamine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5,4,5) undecene-7, etc. Imidazoles such as 2-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole; 3-phenyl-1,1-dimethylurea , 3- (o-methylphenyl) -1,1-dimethylurea, 3- (p-methylphenyl) -1,1-dimethylurea, 1,1'-phenylenebis (3,3-dimethylurea), 1 , 1'-(4-Methyl-m-phenylene) -bis (3,3-dimethylurea) and other urea compounds; triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) Hosphin compounds such as phosphine; phosphonium salts such as triphenylphosphoniophenolate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetranaphthoic acid volate and the like can be mentioned. It is preferable to use one or more curing accelerators selected from the group consisting of imidazoles, urea compounds, and phosphonium salts, which are highly active in both curing of epoxy resins and polymerization of bismaleimide. The curing accelerator preferably contains at least one of the imidazole-based compound and the urea-based compound, and particularly preferably contains the imidazole-based compound and the urea-based compound, that is, the imidazole-based compound and the urea-based compound are used in combination. ..

本発明の一実施形態に係るエポキシ樹脂組成物には、必要に応じて無機充填剤、カップリング剤、離型剤、着色剤、難燃剤、低応力剤などを添加または予め反応して用いることができる。また他の硬化剤を併用することもできる。このような他の硬化剤の例として、フェノールノボラック樹脂、フェノールアラルキル樹脂、フェノールビフェニルアラルキル樹脂、フェノールナフチルアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型ノボラック樹脂などを挙げることができる。 To the epoxy resin composition according to one embodiment of the present invention, if necessary, an inorganic filler, a coupling agent, a mold release agent, a colorant, a flame retardant, a low stress agent, etc. are added or reacted in advance. Can be done. Further, other curing agents can be used in combination. Examples of such other curing agents include phenol novolac resin, phenol aralkyl resin, phenol biphenyl aralkyl resin, phenol naphthyl aralkyl resin, naphthol aralkyl resin, triphenol methane type novolac resin and the like.

無機充填剤の例として、非晶性シリカ、結晶性シリカ、アルミナ、ガラス、珪酸カルシウム、マグネサイト、クレー、タルク、マイカ、マグネシア、硫酸バリウムなどを挙げることができるが、特に非晶性シリカ、結晶性シリカ、硫酸バリウムが好ましい。また優れた成形性を維持しつつ充填剤の配合量を高めたい場合は、細密充填を可能とするような粒度分布の広い球形の充填剤を使用することが好ましい。 Examples of the inorganic filler include amorphous silica, crystalline silica, alumina, glass, calcium silicate, magnesite, clay, talc, mica, magnesia, barium sulfate, etc., but particularly amorphous silica, Crystalline silica and barium sulfate are preferable. Further, when it is desired to increase the blending amount of the filler while maintaining excellent moldability, it is preferable to use a spherical filler having a wide particle size distribution that enables fine filling.

カップリング剤の例としては、メルカプトシラン系、ビニルシラン系、アミノシラン系、エポキシシラン系などのシランカップリング剤やチタンカップリング剤を、離型剤の例としてはカルナバワックス、パラフィンワックスなど、また着色剤としてはカーボンブラックなどをそれぞれ例示することができる。難燃剤の例としては、リン化合物、金属水酸化物など、低応力剤の例としては、シリコンゴム、変性ニトリルゴム、変性ブタジエンゴム、変性シリコンオイルなどを挙げることができる。 Examples of coupling agents include silane coupling agents and titanium coupling agents such as mercaptosilane type, vinylsilane type, aminosilane type and epoxysilane type, and examples of mold release agents include carnauba wax and paraffin wax. Examples of the agent include carbon black and the like. Examples of flame retardants include phosphorus compounds and metal hydroxides, and examples of low stress agents include silicone rubber, modified nitrile rubber, modified butadiene rubber, and modified silicone oil.

本発明の一実施形態に係るエポキシ樹脂硬化剤とエポキシ樹脂との配合比は、耐熱性、機械的特性などを考慮すると、エポキシ基/水酸基の当量比が0.5〜1.5、特に0.8〜1.2の範囲にあることが好ましい。また他の硬化剤と併用する場合においてもエポキシ基/水酸基の当量比が上記割合となるようにすることが好ましい。硬化促進剤は、硬化特性や諸物性を考慮すると、エポキシ樹脂100重量部に対して0.1〜10重量部の範囲で使用することが好ましい。複数種類の硬化促進剤を併用する場合においても、エポキシ100重量部に対する質量部が上記の範囲となるようにすることが好ましい。無機充填剤の配合率については、その種類によっても異なるが、半田耐熱性、成形性(溶融粘度、流動性)、低応力性、低吸水性などを考慮すると、無機充填剤を組成物全体の60〜93重量%を占めるような割合で配合することが好ましい。 The compounding ratio of the epoxy resin curing agent and the epoxy resin according to the embodiment of the present invention has an epoxy group / hydroxyl group equivalent ratio of 0.5 to 1.5, particularly 0, in consideration of heat resistance, mechanical properties, and the like. It is preferably in the range of .8 to 1.2. Further, it is preferable that the epoxy group / hydroxyl group equivalent ratio is the above ratio even when used in combination with another curing agent. The curing accelerator is preferably used in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin in consideration of curing characteristics and various physical properties. Even when a plurality of types of curing accelerators are used in combination, it is preferable that the mass part with respect to 100 parts by weight of the epoxy is in the above range. The mixing ratio of the inorganic filler varies depending on the type, but considering solder heat resistance, moldability (melt viscosity, fluidity), low stress, low water absorption, etc., the inorganic filler is used in the entire composition. It is preferable to blend in a proportion that occupies 60 to 93% by weight.

本発明の一実施形態に係る熱硬化性組成物は、本組成物を含む。本組成物は、上記のように硬化剤として使用できるばかりでなく、自ら硬化性物質として機能することができる。この場合には、本発明の一実施形態に係る熱硬化性組成物に含まれる本組成物を自己重合させることにより硬化物を得てもよい。この場合において、本発明の一実施形態に係る熱硬化性組成物は、本組成物に加えて他の硬化性物質を含有していてもよい。 The thermosetting composition according to one embodiment of the present invention includes the present composition. Not only can this composition be used as a curing agent as described above, but it can also function as a curing substance by itself. In this case, a cured product may be obtained by self-polymerizing the present composition contained in the thermosetting composition according to the embodiment of the present invention. In this case, the thermosetting composition according to the embodiment of the present invention may contain other curable substances in addition to the present composition.

本発明の一実施形態に係る熱硬化性組成物には、必要に応じて無機充填剤、カップリング剤、離型剤、着色剤、難燃剤、低応力剤などを添加または予め反応して用いることができる。 Inorganic fillers, coupling agents, mold release agents, colorants, flame retardants, low stress agents and the like are added or reacted in advance to the thermosetting composition according to the embodiment of the present invention, if necessary. be able to.

無機充填剤の例として、非晶性シリカ、結晶性シリカ、アルミナ、ガラス、珪酸カルシウム、マグネサイト、クレー、タルク、マイカ、マグネシア、硫酸バリウムなどを挙げることができるが、特に非晶性シリカ、結晶性シリカ、硫酸バリウムが好ましい。また優れた成形性を維持しつつ充填剤の配合量を高めたい場合は、細密充填を可能とするような粒度分布の広い球形の充填剤を使用することが好ましい。 Examples of the inorganic filler include amorphous silica, crystalline silica, alumina, glass, calcium silicate, magnesite, clay, talc, mica, magnesia, barium sulfate, etc., but particularly amorphous silica, Crystalline silica and barium sulfate are preferable. Further, when it is desired to increase the blending amount of the filler while maintaining excellent moldability, it is preferable to use a spherical filler having a wide particle size distribution that enables fine filling.

本発明の一実施形態に係るエポキシ樹脂組成物や本発明の一実施形態に係る熱硬化性組成物を成形材料として調製する場合の一般的な方法としては、所定の割合の各原料を、例えばミキサーによって充分混合後、熱ロールやニーダーなどによって混練処理を加え、さらに冷却固化後適当な大きさに粉砕し、必要に応じタブレット化するなどの方法を挙げることができる。このようにして得た成形材料は、例えば低圧トランスファー成形などにより半導体を封止し、半導体装置を製造することができる。 As a general method for preparing an epoxy resin composition according to an embodiment of the present invention or a thermosetting composition according to an embodiment of the present invention as a molding material, for example, each raw material in a predetermined ratio is used. Examples thereof include a method in which the mixture is sufficiently mixed with a mixer, kneaded with a heat roll or a kneader, cooled and solidified, crushed to an appropriate size, and made into a tablet if necessary. With the molding material thus obtained, a semiconductor can be sealed by, for example, low-voltage transfer molding, and a semiconductor device can be manufactured.

本発明の一実施形態に係るエポキシ樹脂組成物や本発明の一実施形態に係る熱硬化性組成物を絶縁層材料として調製する場合の一般的な方法としては、所定の割合の各原料を溶剤に溶解させ、これを回路基板に塗布するための層間絶縁用ワニスとすることができ、これをガラス繊維に含浸させて加熱処理を行うことにより該用途のプリプレグとすることができ、またはこれを支持フィルム上で加熱処理してフィルム状とした該用途の接着シートとすることができる。これらはいずれの形態で使用しても層間絶縁層とすることができる。 As a general method for preparing an epoxy resin composition according to an embodiment of the present invention or a thermosetting composition according to an embodiment of the present invention as an insulating layer material, a predetermined ratio of each raw material is used as a solvent. It can be used as an interlayer insulation varnish for dissolving it in a circuit board, and by impregnating it with glass fiber and performing heat treatment, it can be used as a prepreg for the purpose, or it can be used as a prepreg. An adhesive sheet for this purpose can be obtained by heat-treating it on a support film to form a film. These can be used as an interlayer insulating layer in any form.

本発明の一実施形態に係る組成物、ならびに当該組成物を含むエポキシ樹脂硬化剤、エポキシ樹脂組成物、および熱硬化性組成物は、15℃以下の保存条件であれば、反応がほとんど進行しない状態を維持することができる。通常、本発明の一実施形態に係る組成物のような熱硬化性を有する組成物は、保存環境が高温であるほど反応が進み流動性が低下するが、本発明の一実施形態に係る組成物はそのような流動性の低下が生じにくい。具体例を示せば、35℃の環境に1週間置かれた後の150℃溶融粘度の変化率(粘度上昇の割合)を100%以下とすることが可能であり、好ましい一例では50%以下とすることが可能である。本発明の一実施形態に係る組成物はこのように優れた保存安定性を有するとともに、当該組成物を含むエポキシ樹脂硬化剤、エポキシ樹脂組成物、および熱硬化性組成物は適切な温度で硬化反応を進行させることができ、例えば100〜250℃の温度範囲で行うことができる。 The composition according to the embodiment of the present invention, and the epoxy resin curing agent, the epoxy resin composition, and the thermosetting composition containing the composition hardly proceed with the reaction under the storage conditions of 15 ° C. or lower. The state can be maintained. Generally, a thermosetting composition such as the composition according to one embodiment of the present invention undergoes a reaction and its fluidity decreases as the storage environment becomes higher in temperature, but the composition according to one embodiment of the present invention. Goods are less likely to have such a decrease in liquidity. To give a specific example, the rate of change in melt viscosity at 150 ° C. (rate of increase in viscosity) after being placed in an environment of 35 ° C. for one week can be 100% or less, and in a preferable example, it is 50% or less. It is possible to do. The composition according to one embodiment of the present invention has such excellent storage stability, and the epoxy resin curing agent, the epoxy resin composition, and the thermosetting composition containing the composition are cured at an appropriate temperature. The reaction can proceed, for example in the temperature range of 100-250 ° C.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

以下に実施例および比較例によって本発明をより具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.

[実施例1]
4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]30.8g(0.10モル)(大和化成工業(株)製、DABPA、水酸基当量159g/eq)、4-アミノ−m−クレゾール12.3g(0.1モル)、および4,4’−ジフェニルメタンビスマレイミド143.2g(0.40モル)を150℃で20分間攪拌した後、常温まで冷却することより、混合生成物として均質な赤褐色のガラス状溶融物189.9g(混合生成物1)が得られた。
[Example 1]
4,4'-(Dimethylmethylene) bis [2- (2-propenyl) phenol] 30.8 g (0.10 mol) (manufactured by Daiwa Kasei Kogyo Co., Ltd., DABPA, hydroxyl group equivalent 159 g / eq), 4-amino Mix 12.3 g (0.1 mol) of −m-cresol and 143.2 g (0.40 mol) of 4,4′-diphenylmethanebismaleimide by stirring at 150 ° C. for 20 minutes and then cooling to room temperature. As a product, 189.9 g (mixed product 1) of a homogeneous reddish-brown glassy melt was obtained.

ICI溶融粘度計により測定した150℃における混合生成物1の溶融粘度は60mPa・sであった。また混合生成物1の水酸基当量は、4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]の水酸基当量とその成分濃度に基づき、621g/eqと算出された。以下の説明では、本実施例1で得られた混合生成物1からなる組成物を「硬化剤1」と称する場合もある。 The melt viscosity of the mixed product 1 at 150 ° C. measured by an ICI melt viscometer was 60 mPa · s. The hydroxyl group equivalent of the mixed product 1 was calculated to be 621 g / eq based on the hydroxyl group equivalent of 4,4'-(dimethylmethylene) bis [2- (2-propenyl) phenol] and its component concentration. In the following description, the composition composed of the mixed product 1 obtained in Example 1 may be referred to as "curing agent 1".

[実施例2]
下記一般式(6)で示されるエポキシ樹脂(日本化薬社製「NC3000」フェノールビフェニルアラルキル型、エポキシ当量275g/eq)、実施例1で得られた硬化剤1、溶融シリカ、およびウレア系硬化促進剤(サンアプロ社製「U−CAT 3513N」)からなる硬化促進剤を表2に示す割合(表2中の数値は質量部、以下同じ。)で配合し、充分に混合した後、85±3℃の2本ロールで3分間混練し、冷却、粉砕することにより成形用組成物をエポキシ樹脂組成物として得た。トランスファー成形機でこのエポキシ樹脂組成物を圧力100kgf/cmで175℃2分間成形した後、230℃6時間のポストキュアを行い、ガラス転移温度測定用、250℃重量減少率測定用、および難燃性試験用のテストピースを調製し、その評価を行った。その結果を表2に示した。
[Example 2]
Epoxy resin represented by the following general formula (6) (Nippon Kayaku Co., Ltd. "NC3000" phenol biphenyl aralkyl type, epoxy equivalent 275 g / eq), curing agent 1, fused silica, and urea-based curing obtained in Example 1. A curing accelerator composed of an accelerator (“U-CAT 3513N” manufactured by San-Apro Co., Ltd.) is blended in the ratio shown in Table 2 (the numerical values in Table 2 are parts by mass, the same applies hereinafter), and after sufficiently mixing, 85 ± The molding composition was obtained as an epoxy resin composition by kneading with two rolls at 3 ° C. for 3 minutes, cooling and pulverizing. This epoxy resin composition is molded at a pressure of 100 kgf / cm 2 at 175 ° C. for 2 minutes with a transfer molding machine, and then post-cured at 230 ° C. for 6 hours for glass transition temperature measurement, 250 ° C. weight loss rate measurement, and difficulty. A test piece for a flammability test was prepared and evaluated. The results are shown in Table 2.

Figure 0006867894
(式中、Gはグリシジル基、nは1〜10の自然数)
Figure 0006867894
(In the formula, G is a glycidyl group and n is a natural number of 1 to 10)

[実施例3]
表2に示される配合割合で、実施例1と同様にして成形用組成物を調製し、硬化剤1を主たる硬化成分とする熱硬化性組成物として得た。その評価を行った結果を表2に示す。なお、表2では、実施例3により製造された熱硬化性組成物は、表示の都合上、エポキシ樹脂組成物のように示されているが、エポキシ基を有する成分を含有していない。
[Example 3]
A molding composition was prepared in the same manner as in Example 1 at the blending ratios shown in Table 2, and obtained as a thermosetting composition containing the curing agent 1 as a main curing component. The results of the evaluation are shown in Table 2. In Table 2, the thermosetting composition produced according to Example 3 is shown as an epoxy resin composition for convenience of display, but does not contain a component having an epoxy group.

[比較例1]
実施例1で得た混合生成物1に代えて、公知の硬化剤である4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール](DABPA)と4,4’−ジアミンジフェニルメタン、および4,4’−ジフェニルメタンビスマレイミドを150℃で20分間攪拌した後、常温まで冷却することより、均質な赤褐色のガラス状溶融物(混合生成物2)を得た。ICI溶融粘度計により測定した150℃における混合生成物2の溶融粘度は34mPa・sであった。また混合生成物2の水酸基当量は、4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]の水酸基当量とその成分濃度に基づき、969g/eqと算出された。比較例1で得られた混合生成物2からなる組成物を「硬化剤2」と称する場合もある。
[Comparative Example 1]
Instead of the mixed product 1 obtained in Example 1, known curing agents 4,4'-(dimethylmethylene) bis [2- (2-propenyl) phenol] (DABPA) and 4,4'-diamine Diphenylmethane and 4,4'-diphenylmethane bismaleimide were stirred at 150 ° C. for 20 minutes and then cooled to room temperature to obtain a homogeneous reddish brown glassy melt (mixed product 2). The melt viscosity of the mixed product 2 at 150 ° C. measured by an ICI melt viscometer was 34 mPa · s. The hydroxyl group equivalent of the mixed product 2 was calculated to be 969 g / eq based on the hydroxyl group equivalent of 4,4'-(dimethylmethylene) bis [2- (2-propenyl) phenol] and its component concentration. The composition composed of the mixed product 2 obtained in Comparative Example 1 may be referred to as "curing agent 2".

実施例1により作製した硬化剤1および比較例1により作製した硬化剤2の物性を表1に示した。 Table 1 shows the physical characteristics of the curing agent 1 prepared according to Example 1 and the curing agent 2 prepared according to Comparative Example 1.

Figure 0006867894
Figure 0006867894

[比較例2]
上記一般式(6)で示されるエポキシ樹脂、比較例1で得られた硬化剤2、溶融シリカ、およびウレア系硬化促進剤(サンアプロ社製「U−CAT 3513N」)を表2に示される割合で配合し、以下、実施例2と同様にして成形用組成物を調製しエポキシ樹脂組成物として得た。その評価を行った結果を表2に示す。
[Comparative Example 2]
Table 2 shows the ratios of the epoxy resin represented by the general formula (6), the curing agent 2 obtained in Comparative Example 1, the fused silica, and the urea-based curing accelerator (“U-CAT 3513N” manufactured by San-Apro Co., Ltd.). A molding composition was prepared in the same manner as in Example 2 and obtained as an epoxy resin composition. The results of the evaluation are shown in Table 2.

実施例および比較例により作製したエポキシ樹脂組成物および熱硬化性組成物(以下、これらを「エポキシ樹脂組成物等」と総称する。)の物性ならびに硬化剤1および硬化剤2の保存安定性を次の方法により測定した。
(1)ガラス転移温度
TMA(熱機械分析装置)を用いて、エポキシ樹脂組成物等のテストピースの線膨張係数を昇温速度10℃/分で測定し、線膨張係数の変曲点をガラス転移温度(単位:℃)とした。測定結果を表2に示す。
The physical characteristics of the epoxy resin composition and the thermosetting composition (hereinafter, these are collectively referred to as "epoxy resin composition and the like") prepared by Examples and Comparative Examples, and the storage stability of the curing agent 1 and the curing agent 2. It was measured by the following method.
(1) Glass transition temperature Using a TMA (thermomechanical analyzer), the linear expansion coefficient of a test piece such as an epoxy resin composition is measured at a heating rate of 10 ° C./min, and the variation point of the linear expansion coefficient is determined by glass. The transition temperature (unit: ° C.) was used. The measurement results are shown in Table 2.

(2)250℃長期耐熱性(250℃重量減少率)
250℃オーブン内に硬化物を入れ360hr後の重量減少率(単位:wt%)を測定した。この重量減少率が低いほど、高温下低分解特性に優れるといえる。測定結果を表2に示す。
(2) 250 ° C long-term heat resistance (250 ° C weight loss rate)
The cured product was placed in an oven at 250 ° C., and the weight loss rate (unit: wt%) after 360 hours was measured. It can be said that the lower the weight reduction rate, the better the low decomposition characteristics under high temperature. The measurement results are shown in Table 2.

(3)難燃性
厚み1.6mm×幅10mm×長さ135mmのエポキシ樹脂組成物等のサンプル(1例あたり5枚)を用い、UL−94Vに準拠して残炎時間を測定し評価した。各サンプルに対して2回の接炎を行って測定された残炎時間のうち、最長の時間をFmax(単位:秒間)とし、5枚のサンプルに対する試験による残炎時間の合計をFtotal(単位:秒間)とした。評価結果を表2に示す。
(3) Flame Retardant Using a sample (5 sheets per example) of an epoxy resin composition having a thickness of 1.6 mm, a width of 10 mm, and a length of 135 mm, the residual flame time was measured and evaluated according to UL-94V. .. Of the residual flame time measured by contacting each sample twice, the longest time is Fmax (unit: second), and the total residual flame time in the test for 5 samples is Ftotal (unit: unit). : Second). The evaluation results are shown in Table 2.

(4)保存安定性
35℃オーブン内に各硬化剤を7日間保管し、保管前後の各硬化剤についてICI粘度計で150℃における粘度測定を行い、粘度が上昇する程度を粘度変化率(単位:%)として評価した。この粘度変化率が低いほど、保存安定性に優れるといえる。評価結果を表2に示す。
(4) Storage stability Each curing agent is stored in an oven at 35 ° C. for 7 days, and the viscosity of each curing agent before and after storage is measured at 150 ° C. with an ICI viscometer. :%). It can be said that the lower the viscosity change rate, the better the storage stability. The evaluation results are shown in Table 2.

Figure 0006867894
Figure 0006867894

本発明の硬化剤1を含むエポキシ樹脂組成物は、公知の硬化剤(硬化剤2)を用いたエポキシ樹脂組成物と同様にガラス転移温度が高く、高温下低分解特性にも優れ、耐熱性に優れた硬化物を与えること、およびその硬化物の難燃性についても公知の硬化剤(硬化剤2)を用いたエポキシ樹脂組成物から作製した硬化物と同等であることが、表2から理解される。加えて、実施例3に示されるように、本組成物は、エポキシ基を有する物質を含有しない場合であっても、熱硬化性組成物として硬化物を得ることができること、およびかかる硬化物はエポキシ基を有する物質に由来する成分を含有しないことから、耐熱性および難燃性に特に優れることが確認された。また、本発明の硬化剤1は、保存安定性の観点からも、公知の硬化剤2よりも優れていることが確認された。 The epoxy resin composition containing the curing agent 1 of the present invention has a high glass transition temperature, excellent low decomposition characteristics under high temperature, and heat resistance, like the epoxy resin composition using a known curing agent (curing agent 2). From Table 2, it is shown that an excellent cured product is provided and the flame retardancy of the cured product is equivalent to that of a cured product prepared from an epoxy resin composition using a known curing agent (curing agent 2). Understood. In addition, as shown in Example 3, the composition can obtain a cured product as a thermosetting composition even when it does not contain a substance having an epoxy group, and such a cured product is Since it does not contain a component derived from a substance having an epoxy group, it was confirmed that it is particularly excellent in heat resistance and flame retardancy. Further, it was confirmed that the curing agent 1 of the present invention is superior to the known curing agent 2 from the viewpoint of storage stability.

本発明により提供される保存安定性に優れる組成物は、高難燃性、高耐熱性、および高温下低熱分解特性を満たす、エポキシ樹脂硬化剤や、熱硬化性組成物の硬化性成分として好適に使用されうる。
また本発明により、高難燃性、高耐熱性、および高温下での低熱分解性を満たす新規の、エポキシ樹脂硬化剤を用いたエポキシ樹脂組成物およびその硬化物、ならびに熱硬化性組成物およびその硬化物が提供される。
本発明により、特にエポキシ樹脂硬化剤として有用であり、とりわけ半導体・パワーデバイス封止用、層間絶縁材料として用いた場合に、難燃性、硬化性、より高耐熱性に優れた、エポキシ樹脂組成物を形成することができる組成物およびそのエポキシ樹脂組成物、ならびに熱硬化性組成物を形成することができる組成物およびその熱硬化性組成物が提供される。
The composition provided by the present invention having excellent storage stability is suitable as an epoxy resin curing agent or a curable component of a thermosetting composition, which satisfies high flame retardancy, high heat resistance, and low thermal decomposition characteristics under high temperature. Can be used for.
Further, according to the present invention, a novel epoxy resin composition using an epoxy resin curing agent and a cured product thereof, which satisfy high flame retardancy, high heat resistance, and low thermal decomposition property at high temperature, and a thermosetting composition and a thermosetting composition and the like. The cured product is provided.
According to the present invention, an epoxy resin composition which is particularly useful as an epoxy resin curing agent and has excellent flame retardancy, curability, and higher heat resistance, especially when used as an interlayer insulating material for encapsulating semiconductors and power devices. A composition capable of forming an object and an epoxy resin composition thereof, and a composition capable of forming a thermosetting composition and a thermosetting composition thereof are provided.

Claims (16)

下記一般式(1)で表されるマレイミド化合物(A)、下記一般式(2)で表されるアミノフェノール化合物(B)、および下記一般式(4)で表されるビスフェノール化合物(C1)を含有し、
150℃溶融粘度が20mPa・s以上750mPa・s以下であり、かつ水酸基当量が300g/eq以上1500g/eq以下であり、35℃の環境に1週間保管した後の150℃溶融粘度の変化率が100%以下である、
エポキシ樹脂硬化剤。
Figure 0006867894
(式(1)中、Ar1は置換基が存在してよい炭素数6〜12のアリーレン基であり、X1は直接結合、炭素数1〜6の2価の炭化水素基、O、S、またはSO2であり、pは0〜2の整数である。)
Figure 0006867894
(式(2)中、Ar2は水酸基を0〜2個の範囲で含み、炭化水素の置換基が存在してよい炭素数6〜12のアリーレン基であり、X2は直接結合、炭素数1〜6の2価の炭化水素基、O、S、またはSO2であり、qは0〜2の整数である。)
Figure 0006867894
(式(4)中、R4およびR5はそれぞれ独立に炭素数1〜4の炭化水素基であり、R6およびR7はそれぞれ独立に水素原子、メチル基、フェニル基であり、cおよびdはそれぞれ独立に0〜3の整数である。)
Maleimide compound (A) represented by the following general formula (1), aminophenol compound (B) represented by the following general formula (2), and bisphenol compound (C1) represented by the following general formula (4). Contains,
The melt viscosity at 150 ° C. is 20 mPa · s or more and 750 mPa · s or less, the hydroxyl group equivalent is 300 g / eq or more and 1500 g / eq or less, and the rate of change of the melt viscosity at 150 ° C. after storage in an environment of 35 ° C. for 1 week is 100% or less,
Epoxy resin hardener.
Figure 0006867894
(In the formula (1), Ar 1 is an arylene group having 6 to 12 carbon atoms in which a substituent may be present, X 1 is a direct bond, a divalent hydrocarbon group having 1 to 6 carbon atoms, O, S. , Or SO 2 , where p is an integer from 0 to 2.)
Figure 0006867894
(In the formula (2), Ar 2 is an arylene group having a hydroxyl group in the range of 0 to 2 and having a hydrocarbon substituent of 6 to 12 carbon atoms, and X 2 is a direct bond and has a carbon number of carbon atoms. It is a divalent hydrocarbon group of 1 to 6, O, S, or SO 2 , and q is an integer of 0 to 2.)
Figure 0006867894
(In formula (4), R 4 and R 5 are independently hydrocarbon groups having 1 to 4 carbon atoms, and R 6 and R 7 are independently hydrogen atoms, methyl groups, and phenyl groups, respectively, and c and d is an integer of 0 to 3 independently.)
前記マレイミド化合物(A)と前記アミノフェノール化合物(B)との反応生成物をさらに含有する、請求項1に記載のエポキシ樹脂硬化剤。 The epoxy resin curing agent according to claim 1, further comprising a reaction product of the maleimide compound (A) and the aminophenol compound (B). 前記反応生成物は、前記マレイミド化合物(A)と前記アミノフェノール化合物(B)とのマイケル付加物である、請求項2に記載のエポキシ樹脂硬化剤。 The epoxy resin curing agent according to claim 2, wherein the reaction product is a Michael adduct of the maleimide compound (A) and the aminophenol compound (B). 前記マレイミド化合物(A)、前記アミノフェノール化合物(B)、および前記ビスフェノール化合物(C1)を含む組成物の溶融混合体である、請求項1から3のいずれか一項に記載のエポキシ樹脂硬化剤。 The epoxy resin curing agent according to any one of claims 1 to 3, which is a melt mixture of a composition containing the maleimide compound (A), the aminophenol compound (B), and the bisphenol compound (C1). .. 前記マレイミド化合物(A)は、前記一般式(1)におけるpが0または1である、請求項1から4のいずれか一項に記載のエポキシ樹脂硬化剤。 The epoxy resin curing agent according to any one of claims 1 to 4, wherein the maleimide compound (A) has p of 0 or 1 in the general formula (1). 請求項1に記載されるエポキシ樹脂硬化剤とエポキシ樹脂とを含むエポキシ樹脂組成物。 An epoxy resin composition containing the epoxy resin curing agent according to claim 1 and an epoxy resin. さらに硬化促進剤を含む、請求項6に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 6 , further comprising a curing accelerator. 前記硬化促進剤が、イミダゾール系化合物、ウレア系化合物、およびホスホニウム塩からなる群から選ばれる一種または二種以上を含む、請求項7に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 7 , wherein the curing accelerator contains one or more selected from the group consisting of an imidazole compound, a urea compound, and a phosphonium salt. 前記硬化促進剤が、イミダゾール系化合物およびウレア系化合物を含む、請求項8に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 8 , wherein the curing accelerator contains an imidazole-based compound and a urea-based compound. さらに無機充填材を含む、請求項6から9のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 6 to 9 , further comprising an inorganic filler. 請求項6から10のいずれかに記載されるエポキシ樹脂組成物の硬化物。 A cured product of the epoxy resin composition according to any one of claims 6 to 10. 請求項1から5のいずれかに記載されるエポキシ樹脂硬化剤を含む熱硬化性組成物。 A thermosetting composition containing the epoxy resin curing agent according to any one of claims 1 to 5. さらに無機充填材を含む、請求項12に記載の熱硬化性組成物。 The thermosetting composition according to claim 12 , further comprising an inorganic filler. 請求項12または13に記載される熱硬化性組成物の硬化物。 A cured product of the thermosetting composition according to claim 12 or 13. 請求項6から10のいずれかに記載されるエポキシ樹脂組成物または請求項12または13に記載される熱硬化性組成物で封止された半導体装置。 A semiconductor device sealed with the epoxy resin composition according to any one of claims 6 to 10 or the thermosetting composition according to claim 12 or 13. 請求項6から10のいずれかに記載されるエポキシ樹脂組成物または請求項12または13に記載される熱硬化性組成物を含有する層間絶縁材料。 An interlayer insulating material containing the epoxy resin composition according to any one of claims 6 to 10 or the thermosetting composition according to claim 12 or 13.
JP2017122033A 2017-06-22 2017-06-22 Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials Active JP6867894B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017122033A JP6867894B2 (en) 2017-06-22 2017-06-22 Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials
KR1020197035565A KR102570300B1 (en) 2017-06-22 2018-06-15 Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
PCT/JP2018/023027 WO2018235751A1 (en) 2017-06-22 2018-06-15 Composition, epoxy resin-curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
CN201880040937.8A CN110770276A (en) 2017-06-22 2018-06-15 Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017122033A JP6867894B2 (en) 2017-06-22 2017-06-22 Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials

Publications (2)

Publication Number Publication Date
JP2019006867A JP2019006867A (en) 2019-01-17
JP6867894B2 true JP6867894B2 (en) 2021-05-12

Family

ID=64735655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122033A Active JP6867894B2 (en) 2017-06-22 2017-06-22 Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials

Country Status (4)

Country Link
JP (1) JP6867894B2 (en)
KR (1) KR102570300B1 (en)
CN (1) CN110770276A (en)
WO (1) WO2018235751A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828096A1 (en) * 1988-08-18 1990-02-22 Technochemie Gmbh ALKENYLPHENOL MODIFIED POLYIMIDE
JPH02132114A (en) * 1988-11-11 1990-05-21 Hitachi Ltd Phenolic resin having unsaturated imide group, its composition and use thereof
DE3924867A1 (en) * 1989-07-27 1991-01-31 Basf Ag BISMALEINIMID RESIN
JP2823704B2 (en) * 1990-12-14 1998-11-11 住友ベークライト株式会社 Resin composition for semiconductor encapsulation
JP3349963B2 (en) 1998-10-21 2002-11-25 日本電気株式会社 Flame-retardant epoxy resin composition and semiconductor device using the same
JP4202509B2 (en) * 1999-02-03 2008-12-24 株式会社巴川製紙所 Laminate for circuit
JP6192523B2 (en) * 2013-03-05 2017-09-06 エア・ウォーター株式会社 Epoxy resin curing agent, production method, and use thereof
CN105073836B (en) * 2013-03-28 2017-06-27 赢创德固赛有限公司 Curable mixtures based on xyxylene BMI
JP2015030733A (en) * 2013-07-31 2015-02-16 エア・ウォーター株式会社 Hardening agent of epoxy resin, composition using the same and hardened product thereof
JP6385884B2 (en) * 2014-08-27 2018-09-05 エア・ウォーター株式会社 Allyloxysilane oligomer, epoxy resin curing agent, and use thereof
JP6546527B2 (en) * 2015-04-27 2019-07-17 エア・ウォーター株式会社 Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material

Also Published As

Publication number Publication date
WO2018235751A1 (en) 2018-12-27
KR20200022379A (en) 2020-03-03
KR102570300B1 (en) 2023-08-24
CN110770276A (en) 2020-02-07
JP2019006867A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
TWI693250B (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
JP5209556B2 (en) Epoxy resin composition and molded article
JP6192523B2 (en) Epoxy resin curing agent, production method, and use thereof
JP5079721B2 (en) Epoxy resin composition and molded article
JP6052868B2 (en) Epoxy resin curing agent, production method, and use thereof
JP4404302B2 (en) Epoxy resin curing agent, composition and use thereof
JP2010047728A (en) Epoxy resin composition and molding
JP2003213081A (en) Epoxy resin composition and semiconductor device
JP6867894B2 (en) Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials
JPH09241483A (en) Epoxy resin composition
JP5302147B2 (en) Epoxy resin composition for sealing and cured product
JP5946329B2 (en) Phenol oligomer, its production method and use
JP6765252B2 (en) Compositions, semiconductor encapsulation compositions, and cured products of these compositions
JP2005232384A (en) Epoxy resin composition and semiconductor device using the same
JP7295826B2 (en) epoxy resin composition
JPH0292918A (en) Resin composition for sealing semiconductor
JP7168157B2 (en) COMPOSITION FOR HIGHLY HEAT RESISTANT RESIN CURED MATERIAL, ELECTRONIC COMPONENTS AND SEMICONDUCTOR DEVICE USING THE SAME
JP2006117881A (en) Additive for epoxy resin, its composition and its use
JP2013142136A (en) Flame-retardant liquid epoxy resin composition for encapsulating semiconductor and semiconductor device
JP6915586B2 (en) Thermosetting resin composition
JP2010132766A (en) Epoxy resin composition and molded product
JP2825572B2 (en) Resin composition for semiconductor encapsulation
JP2003041118A (en) Resin composition for semiconductor-sealing material
JP2006131653A (en) Flame-retardant for epoxy resin and epoxy resin composition obtained using the same
JP2023066807A (en) Epoxy resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210409

R150 Certificate of patent or registration of utility model

Ref document number: 6867894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250