JPH0563406B2 - - Google Patents

Info

Publication number
JPH0563406B2
JPH0563406B2 JP63130425A JP13042588A JPH0563406B2 JP H0563406 B2 JPH0563406 B2 JP H0563406B2 JP 63130425 A JP63130425 A JP 63130425A JP 13042588 A JP13042588 A JP 13042588A JP H0563406 B2 JPH0563406 B2 JP H0563406B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
powder
average particle
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63130425A
Other languages
Japanese (ja)
Other versions
JPH01301505A (en
Inventor
Hitofumi Taniguchi
Itsupei Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP13042588A priority Critical patent/JPH01301505A/en
Publication of JPH01301505A publication Critical patent/JPH01301505A/en
Publication of JPH0563406B2 publication Critical patent/JPH0563406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、䞀次粒子の凝集の皋床が小さい窒化
アルミニりム粉末及びその補造方法に関する。 埓来の技術 最近、窒化アルミニりム粉末は、熱䌝導率が高
く、゚レクトロニクス材料ずしお極めお有甚な窒
化アルミニりム焌結䜓の原料ずしお脚光を济びお
いる。窒化アルミニりム粉末は、䟋えば、特開昭
59−50008号公報により公知である。䞊蚘の公報
に蚘茉ざれた窒化アルミニりム粉末は、高玔床䞔
぀埮粒子であり、高熱䌝導率及び透光性等の優れ
た性質を有する窒化アルミニりム焌結䜓の原料ず
しお䜿甚されおいる。即ち、䞊蚘公報には、平均
粒子埄が2Ό以䞋の粉末で、酞玠含有量が1.5重
量以䞋、䞔぀窒化アルミニりム組成をAlNず
するずき含有する陜むオン䞍玔物が0.3重量以
䞋である窒化アルミニりム粉末が瀺されおいる。 発明が解決しようずする課題 䞊蚘の窒化アルミニりム粉末は、高玔床䞔぀埮
粒子であるために優れた性質を有する窒化アルミ
ニりム焌結䜓の原料ずなる。しかしながら、䞊蚘
の窒化アルミニりム粉末は、シヌト等に成圢した
埌に焌結した堎合、焌結による収瞮率が倧きく、
寞法安定性の点で十分に満足できるものではなか
぀た。 課題を解決するための手段 そこで、本発明者らは、焌結時の収瞮率が比范
的小さく、寞法安定性が良奜な窒化アルミニりム
粉末を埗るこずを目的ずしお研究を重ねおきた。
その結果、比衚面積から換算した平均粒埄ず、沈
降法で枬定した平均粒埄ずが特定の関係を有する
窒化アルミニりム粉末が、䞊蚘の目的を達成する
こずを芋い出し、本発明を完成させるに至぀た。 即ち、本発明は、比衚面積から算出した平均粒
埄D1ず沈降法で枬定した平均粒埄D2ず
が䞋蚘匏 0.2Ό≊D1≩1.5Ό D2D1≩2.60 を共に満足するこずを特城ずする窒化アルミニり
ム粉末である。 本発明に斌ける比衚面積は、BET法による窒
玠ガス吞着で埗られたものである。この比衚面積
から真球換算により平均粒埄D1を求めるこ
ずができる。この方法で求めた平均粒埄D1
は、窒化アルミニりム粉末の䞀次粒埄を衚わす。 䞀方、沈降法、䟋えば、堀堎補䜜補所自動粒床
分垃枬定噚CAPA−500を甚いお枬定した平均粒
埄D2は、䞀次粒子が凝集しお圢成された凝
集粒子の平均粒埄を衚わす。 本発明に斌いおは、䞊蚘の比衚面積から算出し
た平均粒埄D1は、0.2Ό≊D1≩1.5Όの範囲
でなければならない。D1が0.2Ό未満の窒化アル
ミニりム粉末は、比衚面積が倧きくなり、それに
぀れお酞玠含有量も倧きくなり過ぎるために優れ
た物性の焌結䜓が埗られなくなる。D1が1.5Όを
越える窒化アルミニりム粉末は、焌結が十分に進
たないために緻密な焌結䜓を埗るこずができな
い。䞊蚘の平均粒埄D1は0.3Ό≊D1≩1.0Ό
の範囲であるこずが奜たしく、さらに0.3Ό≊D1
≩0.7Όの範囲であるこずがより奜たしい。 次に、前蚘の比衚面積から算出した平均粒埄
D1ず沈降法で枬定した平均粒埄D2ずは、
D2D1≩2.60でなければならない。D2D1の倀
が2.60を越えた堎合には、焌結時の収瞮率が十分
に小さい窒化アルミニりム粉末を埗るこずができ
ない。D2D1は、2.50以䞋であるこずが奜たし
く、さらに2.40以䞋であるこずが寞法安定性の点
からより奜たしい。埌述する方法により窒化アル
ミニりム粉末を補造した堎合には、䞀般に2.00≩
D2D1≩2.60の範囲の粉末を埗るこずができる。 因に、前蚘した特開昭59−50008号公報に蚘茉
された窒化アルミニりム粉末は、比衚面積4.2
m2から算出した平均粒埄D1が0.44Ό
であり、沈降法により枬定した平均粒埄D2
が1.22Όであり、D2D12.77である。 本発明の窒化アルミニりム粉末は、D2D1≩
2.60であるこずから、䞀次粒子の凝集の皋床が比
范的小さい粉末であるずいえる。 本発明の窒化アルミニりム粉末は、䞊蚘の条件
を満足しおおれば良いが、さらに熱䌝導率等に優
れた窒化アルミニりム焌結䜓を埗るためには、酞
玠含有量や陜むオン䞍玔物の少ないこずが奜たし
い。即ち、AlNを窒化アルミニりム組成ずする
ずき、䞍玔物ずなる酞玠含有量が1.5重量以䞋、
陜むオン䞍玔物が0.3重量以䞋である窒化アル
ミニりム粉末が奜適である。さらに、酞玠含有量
が0.4〜1.3重量、陜むオン䞍玔物が0.2重量以
䞋である窒化アルミニりム粉末がより奜適であ
る。 尚、本発明に斌ける窒化アルミニりムはアルミ
ニりムず窒玠の化合物であり、これ以倖の
ものをすべお䞍玔物ずお扱う。ただし窒化アルミ
ニりム粉末の衚面は空気䞭で䞍可避的に酞化され
Al−結合がAl−結合に眮き倉぀おいるが、
この結合Alは陜むオン䞍玔物ずはみなさない。
埓぀お、Al−、Al−の結合をしおいない金
属アルミニりムは陜むオン䞍玔物である。 本発明に斌ける䞊蚘窒化アルミニりム粉末はど
のような方法によ぀お埗られたものであ぀おも良
い。 䞋蚘に䞀般に奜適に採甚されおいる代衚的な窒
化アルミニりム粉末の補造法に぀いお説明する。
本発明に斌いお原料ずなるカヌボンは、特定の比
衚面積ず吞油量ずを有する。即ち、比衚面積は60
m2以䞊、奜たしくは100〜300m2である。
たた、吞油量は、80c.c.以䞊、奜たしくは100
〜200c.c.である。比衚面積ず吞油量ずが䞊蚘
の範囲をはずれた堎合には、前蚘した本発明の窒
化アルミニりム粉末は埗られない。さらに、カヌ
ボンの芋掛密床は、埗られる窒化アルミニりム粉
末の䞀次粒子の凝集の皋床に圱響を及がす堎合が
倚い。前蚘した本発明の窒化アルミニりム粉末の
䞭でも特にD2D1≩2.50であるものを埗る堎合
には、カヌボンの芋掛密床は1.90〜2.10c.c.で
あるこずが奜たしい。 䞀方の原料であるアルミナは、Al2O3で衚わさ
れるものが䜕ら制限なく採甚される。埌述する焌
成によりアルミナになり埗るアルミニりム化合
物、䟋えば、塩化アルミニりム、硫酞アルミニり
ム、硝酞アルミニりム、ミペりバン、氎酞化アル
ミニりム等を焌成するこずにより埗たアルミナで
あ぀おも良い。即ち、焌成によりアルミナになり
埗るアルミニりム化合物ずカヌボンずを混合し、
埌述する条件により焌成しお該アルミニりム化合
物を分解しおアルミナずし、さらに焌成しお窒化
反応を行なう方法も本発明で採甚するこずができ
る。アルミナの平均粒埄は、窒化反応の進行し易
さの点から、沈降法により枬定した倀で2Ό以
䞋、奜たしくは1Ό以䞋であるこずが奜適であ
る。 䞊蚘した原料のカヌボンずアルミナに含たれる
䞍玔物は、殆んどそのたた窒化アルミニりム粉末
䞭に残存しお䞍玔物ずなる。埓぀お、高玔床の窒
化アルミニりム粉末を埗るためには、カヌボンの
灰分は、0.3重量以䞋、奜たしくは0.2重量以
䞋であり、アルミナの玔床は99.0重量以䞊、奜
たしくは99.5重量以䞊であるこずが奜適であ
る。 アルミナずカヌボンの混合比は䞀般に0.4
〜の範囲、奜たしくはカヌボン灰分から混
入する䞍玔物量を䜎枛する意味で0.4〜
0.7の範囲が奜適である。混合は也匏あるいは湿
匏のどちらでも良いが、通垞、十分な混合を達成
するめには、湿匏混合が奜たしい。通垞、混合手
段はボヌルミルによる混合が奜適であるが、この
際䜿甚する容噚、ボヌル等は高玔床アルミナ質あ
るいはプラスチツク質などを甚い、䞍玔物の混入
を極力防止するのが奜たしい。ボヌルミルずしお
は、公知のもの、䟋えば回転匏ボヌルミル、バむ
ブロボヌルミル等が挙げられる。たた、アトラむ
タヌによる混合も採甚し埗る。たた反応率を䞊げ
未反応アルミナ分の量を極小ずするため十分均䞀
な混合を行うのが奜たしい。混合粉末は焌成炉に
よ぀お1300〜1700℃、奜たしくは1450〜1650℃の
枩床で通垞〜10時間焌成するこずにより本発明
の窒化アルミニりム粉末が埗られる。焌成枩床が
䞊蚘の䞋限枩床より䜎い枩床では窒化反応が十分
進行せず、目的の窒化アルミニりム粉末が埗られ
ない堎合があるので奜たしくない。たた、焌成枩
床が前蚘の䞊限枩床を越える高い枩床では窒化反
応は十分進行するが、しばしば生成する窒化アル
ミニりム粉末の粒子埄が倧きくなるか、あるいは
凝集が著しくなり、本発明の埮粉末を埗るこずが
できない堎合があるので奜たしくない。 前蚘焌成の際には焌成炉の炉材や焌成ボヌトな
どの材質に぀いお䞍玔物の原因ずならないように
配慮するのが奜たしい。たた焌成の雰囲気は窒玠
を含む雰囲気、通垞は高玔床の窒玠ガスかあるい
はそれにアンモニアガスなどを加えたガスが奜適
であり、通垞これらの反応ガスを窒化反応が十分
進行するだけの量、連続的又は間欠的に䟛絊し぀
぀焌成するずよい。 䞊蚘焌成埌の混合物は窒化アルミニりム粉末の
他に未反応のカヌボンを含有するので䞀般には混
合物を650〜750℃の枩床で空気䞭あるいは酞玠䞭
で焌成し、残存するカヌボンを酞化陀去するず奜
たしい。酞化枩床が高すぎるず窒化アルミニりム
粉末の衚面が過剰に酞化され目的ずする粉末が埗
られ難い傟向があるので適圓な酞化枩床ず時間を
遞択するのが奜たしい。 効果 本発明の窒化アルミニりム粉末は、䞀次粒子の
凝集の皋床が小さい。このため、本発明の窒化ア
ルミニりム粉末を甚いお焌結を行な぀た堎合、線
収瞮率を20以䞋、さらには18以䞋ずするこず
ができる。このように、本発明の窒化アルミニり
ム粉末は、寞法安定性が良奜であり、特に高融点
金属のペヌストを衚面に印刷しお焌成する同時焌
成法に斌いお、金属ずの収瞮率の差を小さくする
こずができるために奜適に䜿甚される。 さらに、酞玠含有量及び陜むオン䞍玔物の少な
い窒化アルミニりム粉末を原料ずしお甚いた堎合
には、䞊蚘の効果に加えお、高熱䌝導性、さらに
は透光性を有する窒化アルミニりム焌結䜓を埗る
こずができる。 実斜䟋 本発明をさらに具䜓的に説明するために以䞋に
実斜䟋及び比范䟋を掲げるが、本発明はこれらの
実斜䟋に限定されるものではない。 尚、以䞋の実斜䟋及び比范䟋に斌ける各皮の物
性の枬定は次の方法により行な぀た。 (1) カヌボンの灰分量JIS −6221−1970に埓
い、750℃の灰化埌の重量から求めた。 (2) カヌボンの吞油量JIS −6221−1970に埓
い、ゞブチルフタレヌトの滎䞋量から求めた。 (3) 比衚面積N2吞着によるBET法で求めた。
島接補䜜所補「フロヌ゜ヌブ2300」を䜿
甚 (4) みかけ密床ヘリりム眮換匏圧力比范法で求
めた。島接補䜜所補「オヌトピクノメヌタ
ヌ1320」を䜿甚 (5) AlN粉末の平均䞀次粒埄D1 D1Ό×3.26 AlN粉末比衚面積m2 3.26AlN粉末真密床 定数 (6) AlN粉末の平均凝集粒埄D2遠心沈降法
にお求めた。堀堎補䜜所補「CAPA 500」
を䜿甚 (7) AIN粉末䞭の䞍玔物量 陜むオン䞍玔物粉末をアルカリ溶融埌、酞
で䞭和し、溶液のICP発光分光分析により定量
した。島接補䜜所補「ICPS−1000」を䜿
甚 䞍玔物カヌボン量粉末を酞玠気流䞭で燃焌
させ、発生したCO、CO2ガス量から定量した。
堀堎補䜜所補「EMIA−110」を䜿甚 䞍玔物酞玠量グラフアむトる぀が䞭での粉
末の高枩の熱分解法により発生したCOガス量
から求めた。堀堎補䜜所補「EMGA
2800」を䜿甚 (8) シヌト成圢䜓密床AlN粉末ず分
散剀ずを有機溶媒䞭に分散させおスラリヌず
し、これをドクタヌブレヌド法により成圢しお
埗た成圢䜓の寞法ず重量ずから生密床を求め、
この倀からAlN粉末だけの成圢密床を蚈算し
お求めた。 成圢䜓生密床×スラリ
ヌ䞭のAIN重量スラリヌ重量−有料溶媒重量
 (9) AlN焌結䜓密床(s)アルキメデス法に
より求めた。東掋粟機補「高粟床比重蚈
−」を䜿甚 (10) AlN焌結䜓熱䌝導率レヌザヌフラツシナ
法により求め、怜量線による厚さ補正を行぀
た。理孊電機補「熱定数枬定装眮PS−」
を䜿甚 (11) 焌結時の収瞮率焌結前埌の寞法枬定により
求めた。 収瞮率−焌結䜓寞法焌結前の成圢䜓寞法×
100 実斜䟋  玔床99.99、沈降法により枬定した平均粒子
埄0.52Ό、比衚面積8.1m2のAl2O3500ず、
衚に瀺した各皮カヌボン500ずをナむロン補
ポツトずボヌルを甚い混合した。混合粉末を高玔
床黒鉛補る぀がに入れ、N2ガス流䞋で1600℃
時間加熱した。反応混合物は空気䞭で700℃、10
時間加熱し、未反応のカヌボンを酞化陀去した。
埗られた粉末の線回折パタヌンは、実隓No.を
陀くすべおの実隓䟋に斌おAlNのピヌクのみを
瀺し、α−Al2O3の回折線は認められなか぀た。
実隓No.ではα−Al2O3のピヌクがわずかに認め
られた。 次に埗られた各粉末400ずCa3Al2O624、゜
ルビタントリオレヌト、トル゚ン132、゚
タノヌル108ずを内容積4.8のナむロン補ポツ
トに仕蟌みナむロン被芆ボヌルを甚いお24時間混
合した。混合スラリヌに、ポリビニルブチラヌル
28、ベンゞルブチルフタレヌト28、トル゚ン
44、゚タノヌル36を加え、曎に24時間ボヌル
ミル混合した。埗られたスラリヌを粘床が
20000cpsat 25℃になるたで真空脱泡を行぀
た。脱泡埌のスラリヌをドクタヌブレヌドシヌト
成圢法で成圢し、厚さmmの成圢䜓を埗た。この
成圢䜓を34mm□の金型で打ちぬき焌結テスト甚サ
ンプルずした。打ちぬいた成圢䜓をマツフル炉䞭
で空気䞭、600℃時間脱脂凊理した。぀いでこ
の成圢䜓を、内壁にBNスラリヌを塗垃した黒鉛
補る぀がに入れ、焌結テストを行぀た。焌結は
N2気流䞭で、宀枩から1800℃たでの昇枩速床を
℃minずし、1800℃で時間保持埌、自然冷
华の条件で行぀た。埗られた焌結䜓は熱䌝導率、
寞法および密床の枬定に䟛した。結果を衚にた
ずめた。尚、衚䞭、実隓No.及びNo.10は比范䟋
である。
(Industrial Application Field) The present invention relates to an aluminum nitride powder in which the degree of agglomeration of primary particles is small, and a method for producing the same. (Prior Art) Aluminum nitride powder has recently been in the spotlight as a raw material for aluminum nitride sintered bodies, which have high thermal conductivity and are extremely useful as electronic materials. Aluminum nitride powder is, for example,
It is known from the publication No. 59-50008. The aluminum nitride powder described in the above publication has high purity and fine particles, and is used as a raw material for an aluminum nitride sintered body having excellent properties such as high thermal conductivity and translucency. That is, the above publication describes an aluminum nitride powder that has an average particle size of 2 ÎŒm or less, has an oxygen content of 1.5% by weight or less, and contains cationic impurities of 0.3% by weight or less when the aluminum nitride composition is AlN. It is shown. (Problems to be Solved by the Invention) The above-mentioned aluminum nitride powder has high purity and fine particles, and thus serves as a raw material for an aluminum nitride sintered body having excellent properties. However, when the above aluminum nitride powder is sintered after being formed into a sheet etc., the shrinkage rate due to sintering is large.
The dimensional stability was not fully satisfactory. (Means for Solving the Problems) Therefore, the present inventors have conducted research with the aim of obtaining aluminum nitride powder that has a relatively small shrinkage rate during sintering and has good dimensional stability.
As a result, it was discovered that an aluminum nitride powder having a specific relationship between the average particle size calculated from the specific surface area and the average particle size measured by the sedimentation method achieves the above object, and the present invention was completed. Ivy. That is, in the present invention, the average particle diameter (D 1 ) calculated from the specific surface area and the average particle diameter (D 2 ) measured by the sedimentation method are determined by the following formula: 0.2 ÎŒm≩D 1 ≩1.5 ÎŒm D 2 /D 1 ≩2.60 This is an aluminum nitride powder that satisfies both of the following. The specific surface area in the present invention is obtained by nitrogen gas adsorption using the BET method. The average particle diameter (D 1 ) can be determined from this specific surface area by converting it into a true sphere. Average particle diameter (D 1 ) determined using this method
represents the primary particle size of aluminum nitride powder. On the other hand, the average particle size (D 2 ) measured using a sedimentation method, for example, Horiba's automatic particle size distribution analyzer CAPA-500, represents the average particle size of aggregated particles formed by agglomeration of primary particles. . In the present invention, the average particle diameter (D 1 ) calculated from the above specific surface area must be in the range of 0.2 ÎŒm≩D 1 ≩1.5 ÎŒm. Aluminum nitride powder with a D 1 of less than 0.2 ÎŒm has a large specific surface area and accordingly an excessively large oxygen content, making it impossible to obtain a sintered body with excellent physical properties. Aluminum nitride powder with D 1 exceeding 1.5 ÎŒm cannot be sintered to a sufficient degree, making it impossible to obtain a dense sintered body. The above average particle size (D 1 ) is 0.3 ÎŒm≩D 1 ≩1.0 ÎŒm
The range is preferably 0.3 ÎŒm≩D 1
More preferably, the range is ≩0.7 ÎŒm. Next, the average particle size (D 1 ) calculated from the specific surface area and the average particle size (D 2 ) measured by the sedimentation method are as follows:
D 2 /D 1 must be 2.60. If the value of D 2 /D 1 exceeds 2.60, aluminum nitride powder with a sufficiently small shrinkage rate during sintering cannot be obtained. D 2 /D 1 is preferably 2.50 or less, and more preferably 2.40 or less from the viewpoint of dimensional stability. When aluminum nitride powder is produced by the method described below, generally 2.00≩
Powders in the range D 2 /D 1 ≩2.60 can be obtained. Incidentally, the aluminum nitride powder described in JP-A-59-50008 mentioned above has a specific surface area (4.2
The average particle diameter (D 1 ) calculated from m 2 /g) is 0.44 ÎŒm.
and the average particle size (D 2 ) measured by the sedimentation method.
is 1.22 ÎŒm, and D 2 /D 1 =2.77. The aluminum nitride powder of the present invention has D 2 /D 1 ≩
2.60, it can be said that the powder has a relatively small degree of aggregation of primary particles. The aluminum nitride powder of the present invention only needs to satisfy the above conditions, but in order to obtain an aluminum nitride sintered body with further excellent thermal conductivity, it is necessary to have a low oxygen content and cationic impurities. preferable. That is, when AlN has an aluminum nitride composition, the oxygen content as an impurity is 1.5% by weight or less,
Aluminum nitride powder containing 0.3% by weight or less of cationic impurities is preferred. Furthermore, aluminum nitride powder having an oxygen content of 0.4 to 1.3% by weight and a cationic impurity of 0.2% by weight or less is more suitable. Note that aluminum nitride in the present invention is a 1:1 compound of aluminum and nitrogen, and anything other than this is treated as an impurity. However, the surface of aluminum nitride powder is inevitably oxidized in the air.
Al-N bonds are replaced by Al-O bonds,
This bonded Al is not considered a cationic impurity.
Therefore, metal aluminum that does not have Al--N or Al--O bonds is a cationic impurity. The aluminum nitride powder in the present invention may be obtained by any method. A typical method for producing aluminum nitride powder that is generally suitably employed will be described below.
Carbon, which is a raw material in the present invention, has a specific specific surface area and oil absorption amount. That is, the specific surface area is 60
m 2 /g or more, preferably 100 to 300 m 2 /g.
In addition, the oil absorption amount is 80c.c./g or more, preferably 100c.c./g or more.
~200c.c./g. If the specific surface area and oil absorption amount are out of the above range, the aluminum nitride powder of the present invention described above cannot be obtained. Furthermore, the apparent density of carbon often affects the degree of aggregation of the resulting primary particles of aluminum nitride powder. Among the above-mentioned aluminum nitride powders of the present invention, in particular when obtaining one in which D 2 /D 1 ≩2.50, the apparent density of carbon is preferably 1.90 to 2.10 g/cc. As for the alumina which is one of the raw materials, one represented by Al 2 O 3 can be used without any restriction. It may also be alumina obtained by firing an aluminum compound that can be turned into alumina by firing as described below, such as aluminum chloride, aluminum sulfate, aluminum nitrate, alum, or aluminum hydroxide. That is, an aluminum compound that can be turned into alumina by firing is mixed with carbon,
The present invention can also adopt a method in which the aluminum compound is decomposed into alumina by firing under the conditions described below, and then the aluminum compound is further fired to perform a nitriding reaction. The average particle diameter of alumina is preferably 2 ÎŒm or less, preferably 1 ÎŒm or less, as measured by a sedimentation method, in view of the ease with which the nitriding reaction progresses. Most of the impurities contained in the raw materials carbon and alumina described above remain in the aluminum nitride powder as impurities. Therefore, in order to obtain high purity aluminum nitride powder, the ash content of carbon should be 0.3% by weight or less, preferably 0.2% by weight or less, and the purity of alumina should be 99.0% by weight or more, preferably 99.5% by weight or more. It is preferable that there be. The mixing ratio of alumina and carbon is generally 1:0.4
~1:3 range, preferably 1:0.4~1: to reduce the amount of impurities mixed in from carbon ash.
A range of 0.7 is preferred. Mixing may be done either dry or wet, but wet mixing is usually preferred in order to achieve sufficient mixing. Generally, it is preferable to use a ball mill as the mixing means, but it is preferable that the containers, balls, etc. used in this case be made of high-purity alumina or plastic to prevent contamination with impurities as much as possible. Examples of the ball mill include known ones, such as a rotary ball mill and a vibroball mill. Mixing by an attritor may also be employed. Further, in order to increase the reaction rate and minimize the amount of unreacted alumina, it is preferable to perform sufficiently uniform mixing. The mixed powder is fired in a firing furnace at a temperature of 1300 to 1700°C, preferably 1450 to 1650°C, for usually 3 to 10 hours to obtain the aluminum nitride powder of the present invention. If the firing temperature is lower than the above lower limit temperature, the nitriding reaction will not proceed sufficiently and the desired aluminum nitride powder may not be obtained, which is not preferable. In addition, when the firing temperature is higher than the above-mentioned upper limit temperature, the nitriding reaction proceeds sufficiently, but the particle size of the aluminum nitride powder that is produced often becomes large or the agglomeration becomes significant, making it difficult to obtain the fine powder of the present invention. This is not preferable because it may not be possible. During the firing, it is preferable to take care to ensure that the materials of the firing furnace and the firing boat do not cause impurities. In addition, the firing atmosphere is preferably an atmosphere containing nitrogen, usually high-purity nitrogen gas or a gas in which ammonia gas is added to it.Usually, these reaction gases are continuously supplied in sufficient quantities to allow the nitriding reaction to proceed. Alternatively, baking may be performed while feeding intermittently. Since the above-fired mixture contains unreacted carbon in addition to the aluminum nitride powder, it is generally preferable to sinter the mixture at a temperature of 650 to 750°C in air or oxygen to oxidize and remove the remaining carbon. If the oxidation temperature is too high, the surface of the aluminum nitride powder will be excessively oxidized, making it difficult to obtain the desired powder, so it is preferable to select an appropriate oxidation temperature and time. (Effects) The aluminum nitride powder of the present invention has a small degree of aggregation of primary particles. Therefore, when sintering is performed using the aluminum nitride powder of the present invention, the linear shrinkage rate can be reduced to 20% or less, and further to 18% or less. As described above, the aluminum nitride powder of the present invention has good dimensional stability, and can reduce the difference in shrinkage rate with metal, especially in the simultaneous firing method in which a high-melting point metal paste is printed on the surface and fired. It is preferably used because it can. Furthermore, when aluminum nitride powder with low oxygen content and cationic impurities is used as a raw material, in addition to the above effects, it is possible to obtain an aluminum nitride sintered body that has high thermal conductivity and even translucency. can. (Examples) In order to explain the present invention more specifically, Examples and Comparative Examples are listed below, but the present invention is not limited to these Examples. In addition, measurements of various physical properties in the following Examples and Comparative Examples were performed by the following methods. (1) Carbon ash content: Calculated from the weight after ashing at 750°C according to JIS K-6221-1970. (2) Oil absorption amount of carbon: determined from the amount of dibutyl phthalate dropped according to JIS K-6221-1970. (3) Specific surface area: Determined by the BET method using N 2 adsorption.
(Using "Flowsorb 2300" manufactured by Shimadzu Corporation) (4) Apparent density: Determined by helium displacement pressure comparison method. (Using “Autopycnometer 1320” manufactured by Shimadzu Corporation) (5) Average primary particle diameter of AlN powder (D 1 ) D 1 (ÎŒm) = 6/S×3.26 S: Specific surface area of AlN powder (m 2 / g) 3.26: AlN powder true density 6: Constant (6) Average agglomerated particle size (D 2 ) of AlN powder: Determined by centrifugal sedimentation method. (Manufactured by Horiba, Ltd. "CAPA 500"
(7) Amount of impurities in AIN powder Cation impurities: The powder was melted in alkali, neutralized with acid, and quantified by ICP emission spectrometry analysis of the solution. (Using "ICPS-1000" manufactured by Shimadzu Corporation) Amount of impurity carbon: Powder was burned in an oxygen stream and determined from the amount of CO and CO 2 gas generated.
(Using ``EMIA-110'' manufactured by Horiba, Ltd.) Impurity oxygen content: Determined from the amount of CO gas generated by high-temperature pyrolysis of powder in a graphite crucible. (Manufactured by Horiba, Ltd.) “EMGA
2800") (8) Sheet compact density (d (g)): Disperse AlN powder and dispersant in an organic solvent to form a slurry, and mold this using the doctor blade method. Calculate the green density from the dimensions and weight,
From this value, the compacted density of only the AlN powder was calculated. d(g) = (Green density of green body) x (AIN weight in slurry) / (Slurry weight) - (Paid solvent weight) (9) AlN sintered body density (d(s)): Obtained by Archimedes method . (Manufactured by Toyo Seiki Co., Ltd.) “High precision hydrometer D
-H") (10) Thermal conductivity of AlN sintered body: Determined by the laser flash method, and thickness correction was performed using a calibration curve. (manufactured by Rigaku Denki Co., Ltd. "Thermal constant measuring device PS-7"
(11) Shrinkage rate during sintering: Determined by measuring dimensions before and after sintering. Shrinkage rate = (1 - sintered body size / molded body size before sintering) x
100 Example 1 500 g of Al 2 O 3 with a purity of 99.99%, an average particle diameter of 0.52 ÎŒm measured by a sedimentation method, and a specific surface area of 8.1 m 2 /g,
500 g of each type of carbon shown in Table 1 was mixed using a nylon pot and a ball. The mixed powder was placed in a high-purity graphite crucible and heated at 1600℃6 under a flow of N2 gas.
heated for an hour. The reaction mixture was heated in air at 700 °C for 10
The mixture was heated for a period of time to oxidize and remove unreacted carbon.
The X-ray diffraction pattern of the obtained powder showed only the AlN peak in all experimental examples except Experiment No. 9, and no α-Al 2 O 3 diffraction line was observed.
In Experiment No. 9, a slight α-Al 2 O 3 peak was observed. Next, 400 g of each of the obtained powders, 24 g of Ca 3 Al 2 O 6 , 4 g of sorbitan triolate, 132 g of toluene, and 108 g of ethanol were charged into a nylon pot with an internal volume of 4.8 g, and mixed for 24 hours using a nylon-coated ball. Add polyvinyl butyral to the mixed slurry
28g, benzyl butyl phthalate 28g, toluene
44 g and 36 g of ethanol were added, and the mixture was further mixed in a ball mill for 24 hours. The resulting slurry has a viscosity of
Vacuum defoaming was carried out until the pressure reached 20,000 cps (at 25°C). The defoamed slurry was molded using a doctor blade sheet molding method to obtain a molded product with a thickness of 1 mm. This molded body was punched out using a 34 mm□ mold to be used as a sample for a sintering test. The punched compact was degreased in air at 600°C for 3 hours in a Matsufuru furnace. This molded body was then placed in a graphite crucible whose inner wall was coated with BN slurry, and a sintering test was performed. Sintering is
The heating rate was 5°C/min from room temperature to 1800°C in a N 2 stream, and the temperature was maintained at 1800°C for 7 hours, followed by natural cooling. The obtained sintered body has thermal conductivity,
It was subjected to measurements of dimensions and density. The results are summarized in Table 1. In Table 1, Experiments No. 9 and No. 10 are comparative examples.

【衚】 実斜䟋  実斜䟋ず同様の方法で䞻ずしお粒子埄の異な
るAlN粉末を合成し、次いでシヌト成圢、脱脂、
焌結を行い、各皮評䟡を行぀た。結果を衚に瀺
す。尚、衚䞭、実隓No.、、は比范䟋であ
る。
[Table] Example 2 AlN powders with mainly different particle sizes were synthesized in the same manner as in Example 1, and then sheet molded, degreased, and
Sintering was performed and various evaluations were performed. The results are shown in Table 2. In the table, Experiment Nos. 6, 7, and 8 are comparative examples.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  比衚面積から算出した平均粒埄D1ず沈
降法で枬定した平均粒埄D2ずが䞋蚘匏 0.2Ό≊D1≩1.5Ό D2D1≩2.60 を共に満足するこずを特城ずする窒化アルミニり
ム粉末。  比衚面積が60m2以䞊であり、䞔぀吞油量
が80c.c.以䞊のカヌボンずアルミナずの混合粉
末を窒玠を含む雰囲気䞋に1300〜1700℃で焌成す
るこずを特城ずする特蚱請求の範囲第項蚘茉の
窒化アルミニりム粉末の補造方法。
[Claims] 1. The average particle diameter (D 1 ) calculated from the specific surface area and the average particle diameter (D 2 ) measured by the sedimentation method are expressed by the following formula: 0.2 ÎŒm≩D 1 ≩1.5 ÎŒm D 2 /D 1 ≩ 2.60 Aluminum nitride powder. 2. A mixed powder of carbon and alumina having a specific surface area of 60 m 2 /g or more and an oil absorption of 80 c.c. / g or more is fired at 1300 to 1700°C in an atmosphere containing nitrogen. A method for producing aluminum nitride powder according to claim 1.
JP13042588A 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof Granted JPH01301505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13042588A JPH01301505A (en) 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13042588A JPH01301505A (en) 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof

Publications (2)

Publication Number Publication Date
JPH01301505A JPH01301505A (en) 1989-12-05
JPH0563406B2 true JPH0563406B2 (en) 1993-09-10

Family

ID=15033939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13042588A Granted JPH01301505A (en) 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof

Country Status (1)

Country Link
JP (1) JPH01301505A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483707A (en) * 1990-07-26 1992-03-17 Tokyo Tungsten Co Ltd Aluminum nitride power and production thereof
JP2723411B2 (en) * 1992-01-14 1998-03-09 株匏䌚瀟トクダマ Aluminum nitride powder
JP7027196B2 (en) * 2018-02-27 2022-03-01 株匏䌚瀟トクダマ Manufacturing method of aluminum nitride powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311506A (en) * 1986-07-01 1988-01-19 Murata Mfg Co Ltd Production of aluminum nitride powder
JPS63225506A (en) * 1987-03-13 1988-09-20 Sumitomo Chem Co Ltd Production of aluminum nitride powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311506A (en) * 1986-07-01 1988-01-19 Murata Mfg Co Ltd Production of aluminum nitride powder
JPS63225506A (en) * 1987-03-13 1988-09-20 Sumitomo Chem Co Ltd Production of aluminum nitride powder

Also Published As

Publication number Publication date
JPH01301505A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
US4778778A (en) Process for the production of sintered aluminum nitrides
JPH0244787B2 (en)
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
JP2516295B2 (en) Aluminum nitride powder
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JP4743387B2 (en) Method for producing aluminum nitride powder
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH0563406B2 (en)
JPS6278103A (en) Production of aluminum nitride powder
JP2525077B2 (en) Method for producing aluminum nitride powder
JPH0251841B2 (en)
JP2680681B2 (en) Method for producing aluminum nitride powder
JPH05147910A (en) Aluminum nitride-based powder and its production
JP2723411B2 (en) Aluminum nitride powder
JPH05117039A (en) Aluminum nitride-based powder and its production
JPH0840773A (en) Aluminum nitride ceramic and its production
JPH0512299B2 (en)
JP2528300B2 (en) Aluminum nitride sintered body
JPH04317402A (en) Aluminum nitride power and its production
JPS62153171A (en) Manufacture of composite sintered body
JPH02160610A (en) Production of aluminum nitride powder
JP3449641B2 (en) Aluminum nitride powder
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
Chiang Synthesis of ultrafine aluminum nitride powder using a new carbothermal reduction process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees