JPS6311506A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPS6311506A
JPS6311506A JP15573586A JP15573586A JPS6311506A JP S6311506 A JPS6311506 A JP S6311506A JP 15573586 A JP15573586 A JP 15573586A JP 15573586 A JP15573586 A JP 15573586A JP S6311506 A JPS6311506 A JP S6311506A
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
alumina
boehmite
nitrogen atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15573586A
Other languages
Japanese (ja)
Inventor
Yasunobu Yoneda
康信 米田
Harufumi Bandai
治文 万代
Mitsuhiro Murata
充弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP15573586A priority Critical patent/JPS6311506A/en
Publication of JPS6311506A publication Critical patent/JPS6311506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title AlN powder having a large specific surface, a small mean particle diameter and a uniform particle diameter by using boehmite as a starting material, mixing the material with carbon powder, and nitriding the mixture. CONSTITUTION:Boehmite is used as the starting material, the material is mixed with carbon powder, and the mixed powder is heat-treated at 500-1,000 deg.C in a nitrogen atmosphere. The obtained powder is then nitrided at 1,450-1,700 deg.C in a nitrogen atmosphere. Uniform powder having a large specific surface and a smaller mean particle diameter than the conventional AlN powder obtained by treating alpha-alumina or gamma-alumina as the raw material can be obtained. Accordingly, when the AlN powder is sintered, a sintered body having high density can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高熱伝導性を有する窒化アルミニウム焼結
体を得るための窒化アルミニウム粉末の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing aluminum nitride powder for obtaining an aluminum nitride sintered body having high thermal conductivity.

(従来の技術) ICSLSIなどの基板、サイリスタの放熱板として窒
化アルミニウム焼結体からなる基板が注目されている。
(Prior Art) Substrates made of aluminum nitride sintered bodies are attracting attention as substrates for ICSLSIs and heat sinks for thyristors.

窒化アルミニウム粉末そのものを製造する方法としては
、従来法として次のようなものが知られている。
The following conventional methods are known as methods for producing aluminum nitride powder itself.

1、アルミニウムを窒素雰囲気中、1300〜1500
℃で熱処理する直接窒化法。
1. Aluminum in nitrogen atmosphere, 1300-1500
Direct nitriding method with heat treatment at ℃.

2、Al2O3に炭素粉末を混合し、これを窒素雰囲気
中1400〜1700℃で熱処理する還元窒化法。
2. Reductive nitriding method in which carbon powder is mixed with Al2O3 and heat treated at 1400 to 1700°C in a nitrogen atmosphere.

3、アルミニウムのアルコキシドを窒素中で熱処理する
CVD法。
3. CVD method in which aluminum alkoxide is heat treated in nitrogen.

(発明が解決しようとする問題) 第1の方法では、安価な製造方法ではあるが、この方法
により得られた粉末には不純物が多く含まれるという問
題がある。
(Problems to be Solved by the Invention) Although the first method is an inexpensive manufacturing method, there is a problem in that the powder obtained by this method contains many impurities.

また、第2の方法では、不純物が多く含有されるという
品質上の問題はみられないが、量産性に乏しく、工業上
の利用価値が低い。
In addition, in the second method, there is no quality problem such as high content of impurities, but it is poor in mass productivity and has low industrial utility value.

さらに、第3の方法では、原料として高価なアルコキシ
ドを用いるために、コストが高くなる。
Furthermore, the third method uses an expensive alkoxide as a raw material, which increases the cost.

(発明の目的) したがって、この発明は高純度で、粉末の粒径が細かく
、かつ均一な窒化アルミニウム粉末の製造方法を提供す
ることを目的とする。
(Objective of the Invention) Therefore, an object of the present invention is to provide a method for producing aluminum nitride powder with high purity, fine powder particle size, and uniformity.

(発明の構成) この発明によれば、まず、出発材料としてベーマイト(
AIOOH)を用いる。そして、 このベーマイトにカ
ーボン粉末を混合し、この混合粉末を窒素雰囲気中で5
00〜I Coo″C温度で熱処理する。
(Structure of the Invention) According to the present invention, first, boehmite (
AIOOH) is used. Then, carbon powder is mixed with this boehmite, and this mixed powder is heated for 50 minutes in a nitrogen atmosphere.
Heat treatment at a temperature of 00 to I Coo''C.

次に、前記工程で得られた粉末を窒素雰囲気中で145
0〜1700℃の温度で窒化合成する工程からなる。
Next, the powder obtained in the above step was heated to 145% in a nitrogen atmosphere.
It consists of a step of nitriding synthesis at a temperature of 0 to 1700°C.

ベーマイトとカーボン粉末との混合割合は、ベーマイト
をAl2O3に換葦し、重量比でAl2O3を基準とし
てカーボン粉末が0.35〜1.5の範囲が好ましい。
The mixing ratio of boehmite and carbon powder is preferably such that boehmite is replaced with Al2O3, and the weight ratio of carbon powder is 0.35 to 1.5 based on Al2O3.

これは、カーボン粉末が0.35未満ではα−A120
3が残存し、1.5を想えるとカーボン粉末に含まれる
不純物が悪影響を与えることになる。
This means that if the carbon powder is less than 0.35, α-A120
If 3 remains and 1.5 is considered, the impurities contained in the carbon powder will have an adverse effect.

また、第1次の熱処理はベーマイトの水和した水を除去
するための工程であり、第2次の熱処理は窒化合成のた
めの工程である。
Further, the first heat treatment is a process for removing water in which boehmite is hydrated, and the second heat treatment is a process for nitriding synthesis.

(効果) この発明方法によれば、出発材料として、a−アルミナ
、7−アルミナを用いて窒化アルミニウム粉末を製造す
る方法に比べて、比表面積が大きく、平均粒径が小きく
、粒径も均一である。したがって、この窒化アルミニウ
ム粉末を用いて焼結体としたとき、焼結密度の高いもの
が得られる。
(Effects) According to the method of this invention, compared to the method of producing aluminum nitride powder using a-alumina and 7-alumina as starting materials, the specific surface area is larger, the average particle size is smaller, and the particle size is also smaller. Uniform. Therefore, when this aluminum nitride powder is used to form a sintered body, a sintered body with high density can be obtained.

(実施例) 以下に、この発明を実施例に従フて詳細に説明する。(Example) The present invention will be described in detail below with reference to examples.

実施例 ベーマイト(AIOOH)とカーボン粉末を重量比1:
0.4となるように調合し、アルミナボットにアルミナ
ポールとともに投入した。このアルミナボットを第1図
に示すような熱処理炉に設置した。
Example boehmite (AIOOH) and carbon powder in a weight ratio of 1:
It was mixed to a concentration of 0.4 and put into the Alumina Bot together with the Alumina Pole. This alumina bot was placed in a heat treatment furnace as shown in FIG.

第1図に示した熱処理炉について説明すると、1は炉の
本体、この炉1の内壁側にはヒーター2が配置されてお
り、炉1の内部に設置されたアルミナボット3を加熱す
る。アルミナボット3はそれ自体が回転可能にローラー
4.5で支承されている。6は炉の内部にガスを投入す
るためのパイプ、7は炉の内部温度を測定するための熱
電対、8は炉の内部のガスを排気するためのパイプであ
る。
To explain the heat treatment furnace shown in FIG. 1, reference numeral 1 denotes a main body of the furnace, and a heater 2 is arranged on the inner wall side of the furnace 1, and heats an alumina bot 3 installed inside the furnace 1. The alumina bot 3 is itself rotatably supported on rollers 4.5. 6 is a pipe for introducing gas into the inside of the furnace, 7 is a thermocouple for measuring the internal temperature of the furnace, and 8 is a pipe for exhausting the gas inside the furnace.

上記したように、第1図の熱処理炉に設置きれたアルミ
ナボット3は、ローラー4.5により回転されるととも
に、ヒーター2により、500℃〜1000℃の温度で
加熱される。
As described above, the alumina bot 3 installed in the heat treatment furnace shown in FIG. 1 is rotated by the rollers 4.5 and heated by the heater 2 at a temperature of 500°C to 1000°C.

次に、熱処理済の混合粉末を別の雰囲気熱処理炉を用い
て1600℃の温度で5時間、窒素雰囲気中で熱処理し
た。さらに、熱処理された粉末に残存する過剰のカーボ
ンを除去するために、6゜0〜700℃の温度で2時間
、空気中で熱処理した。
Next, the heat-treated mixed powder was heat-treated in a nitrogen atmosphere at a temperature of 1600° C. for 5 hours using another atmospheric heat treatment furnace. Furthermore, in order to remove excess carbon remaining in the heat-treated powder, it was heat-treated in air at a temperature of 6.0 to 700.degree. C. for 2 hours.

このようにして得られた窒化アルミニウム粉末は、a−
アルミナ、7−アルミナ粉末を原料として処理した窒化
アルミニウム粉末よりも、比表面積がおおきく、平均粒
径が小きく、均一であるという特i歇を有している。
The aluminum nitride powder thus obtained is a-
It has the characteristics of a larger specific surface area, smaller average particle size, and more uniformity than aluminum nitride powder processed using alumina or 7-alumina powder as a raw material.

第1表は、この発明の実施例で得られた窒化アルミニウ
ム粉末と、従来例のうち7−アルミナを窒素雰囲気中で
熱処理して得られたによる窒化アルミニウム粉末との比
表面積、平均粒径の各特性を示したものである。
Table 1 shows the specific surface area and average particle size of the aluminum nitride powder obtained in the example of the present invention and the aluminum nitride powder obtained by heat-treating 7-alumina in a nitrogen atmosphere among the conventional examples. This shows each characteristic.

第  1  表 この発明の実施例により得られた窒化アルミニウム粉末
を用い、この粉末にY2O3を1.0重量%添加し、こ
れを成形して焼結したところ、上の表に示すような焼結
密度の値を示した。なお、#考として従来例で得られた
窒化アルミニウム粉末を用い、同様に焼結体を得たとこ
ろ上の表から明らかなように焼結密度は97.5χであ
った。
Table 1 Using aluminum nitride powder obtained in accordance with an example of the present invention, 1.0% by weight of Y2O3 was added to the powder, which was then molded and sintered. Density values are shown. As a #consideration, a sintered body was similarly obtained using the aluminum nitride powder obtained in the conventional example, and as is clear from the above table, the sintered density was 97.5χ.

【図面の簡単な説明】 第1図はこの発明方法を実施するときに使用する熱処理
炉の概略断面図である。 1は炉の本体、2はヒーター、3はアルミナポット、4
.5はローラー、6.8はバイブ、7は熱電対。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a heat treatment furnace used in carrying out the method of the present invention. 1 is the main body of the furnace, 2 is the heater, 3 is the alumina pot, 4
.. 5 is a roller, 6.8 is a vibrator, and 7 is a thermocouple.

Claims (1)

【特許請求の範囲】[Claims] (1)出発材料としてベーマイト(AIOOH)を用い
、このベーマイトにカーボン粉末を混合し、この混合粉
末を窒素雰囲気中で500〜1000℃の温度で熱処理
し、前記工程で得られた粉末を窒素雰囲気中で1450
〜1700℃の温度で窒化合成することを特徴とする窒
化アルミニウム粉末の製造方法。
(1) Boehmite (AIOOH) is used as a starting material, carbon powder is mixed with this boehmite, this mixed powder is heat-treated at a temperature of 500 to 1000°C in a nitrogen atmosphere, and the powder obtained in the above step is heated in a nitrogen atmosphere. Inside 1450
A method for producing aluminum nitride powder, characterized by nitriding synthesis at a temperature of ~1700°C.
JP15573586A 1986-07-01 1986-07-01 Production of aluminum nitride powder Pending JPS6311506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15573586A JPS6311506A (en) 1986-07-01 1986-07-01 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15573586A JPS6311506A (en) 1986-07-01 1986-07-01 Production of aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPS6311506A true JPS6311506A (en) 1988-01-19

Family

ID=15612302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15573586A Pending JPS6311506A (en) 1986-07-01 1986-07-01 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS6311506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272493A2 (en) * 1986-11-28 1988-06-29 Kawasaki Steel Corporation Method for producing aluminium nitride powder
JPH01301505A (en) * 1988-05-30 1989-12-05 Tokuyama Soda Co Ltd Aluminum nitride powder and production thereof
JPH0353066A (en) * 1989-07-20 1991-03-07 Sekiyu Kodan Sputtering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272493A2 (en) * 1986-11-28 1988-06-29 Kawasaki Steel Corporation Method for producing aluminium nitride powder
JPH01301505A (en) * 1988-05-30 1989-12-05 Tokuyama Soda Co Ltd Aluminum nitride powder and production thereof
JPH0563406B2 (en) * 1988-05-30 1993-09-10 Tokuyama Soda Kk
JPH0353066A (en) * 1989-07-20 1991-03-07 Sekiyu Kodan Sputtering device

Similar Documents

Publication Publication Date Title
CN106882773B (en) A method of preparing aluminium nitride
CN110156474A (en) Porous tantalum-based oxynitride ceramic and preparation method thereof
JPH1179846A (en) Silicon carbide formed product
JP2002047066A (en) FORMED SiC AND ITS MANUFACTURING METHOD
JPS6311506A (en) Production of aluminum nitride powder
CN112062108B (en) Aluminum nitride powder purification method
CN112979318B (en) Method for improving growth rate of silicon carbide ceramic by using boron nitride
JP2020040840A (en) Method for manufacturing lithium tantalate substrate
CN110791810A (en) Preparation method of silicon carbide crystal
KR102377938B1 (en) Manufacturing method of aluminum nitride using porous carbon crucible
KR100278397B1 (en) High resistance and high thermal conductivity recrystallized SIC sintered body and its manufacturing method
JPH01230779A (en) Production of aluminum nitride
JP2831411B2 (en) Method for producing aluminum nitride powder
JPH0925168A (en) High strength silicon nitride sintered compact
CN115417695B (en) Preparation method of silicon nitride suspension
KR900004489B1 (en) Process for producing aluminium nitride powder
US20020071803A1 (en) Method of producing silicon carbide power
JP4123319B2 (en) Method for producing p-type cubic silicon carbide single crystal thin film
JP5351426B2 (en) Processing method of aluminum nitride powder
JPH0640772A (en) Production of aluminum nitride sintered compact and aluminum nitride sintered compact
JPS6048446B2 (en) Method for manufacturing silicon nitride powder
CN112830786A (en) Preparation method of silicon carbide thin-wall structural member
JPS589788B2 (en) Manufacturing method of silicon nitride sintered body
JPH10287472A (en) Highly pure silicon carbide heat generator and its production
JPS6236067A (en) Manufacture of high purity recrystallized silicon carbide base sintered body