JPH0640772A - Production of aluminum nitride sintered compact and aluminum nitride sintered compact - Google Patents

Production of aluminum nitride sintered compact and aluminum nitride sintered compact

Info

Publication number
JPH0640772A
JPH0640772A JP4260901A JP26090192A JPH0640772A JP H0640772 A JPH0640772 A JP H0640772A JP 4260901 A JP4260901 A JP 4260901A JP 26090192 A JP26090192 A JP 26090192A JP H0640772 A JPH0640772 A JP H0640772A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintering
sintered body
nitride sintered
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4260901A
Other languages
Japanese (ja)
Inventor
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4260901A priority Critical patent/JPH0640772A/en
Publication of JPH0640772A publication Critical patent/JPH0640772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide an aluminum nitride sintered compact excellent in heat conductivity and insulating property and low thermal expansion coefficient free from a layer different from the other part and having uniform characteristics. CONSTITUTION:When an aluminum nitride sintered compact is produced by sintering, operation for destroying the equilibrium state of a reaction on the surface of a compact to be sintered is carried out during sintering so as to prevent the stop of progress of sintering due to an apparent equilibrium state attained by the confrontation between the partial pressure of gaseous N2 in the sintering atmosphere and that of gaseous CO generated by reduction. Since the reaction can be allowed to proceed further, the compact to be sintered reacts sufficiently and difference in characteristics between the interior and surface part of the compact is not produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化アルミニウム焼結体
の製造方法および窒化アルミニウム焼結体に関するもの
であり、特に半導体の放熱性基板等に用いられる主成分
が窒化アルミニウムからなり均一な高熱伝導率を有する
窒化アルミニウム焼結体の製造方法および窒化アルミニ
ウム焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum nitride sintered body and an aluminum nitride sintered body, and in particular, aluminum nitride is a main component used for a semiconductor heat-radiating substrate and the like, and has a uniform high thermal conductivity. The present invention relates to a method for producing an aluminum nitride sintered body having a specific ratio and an aluminum nitride sintered body.

【0002】[0002]

【従来の技術】窒化アルミニウム(AlN)は、その材
料がもつ高い電気絶縁性、Siに近い熱膨張係数、高熱
伝導性等の特性により放熱性基板としての利用が検討さ
れている。特に、AlN原料粉末や焼結方法を検討する
ことにより、AlNの特性として非常に重要である熱伝
導率を向上させる研究が各方面で盛んに行われている。
2. Description of the Related Art Utilization of aluminum nitride (AlN) as a heat-radiating substrate is being considered due to its properties such as high electrical insulation, thermal expansion coefficient close to that of Si, and high thermal conductivity. In particular, by studying the AlN raw material powder and the sintering method, researches for improving the thermal conductivity, which is very important as the characteristics of AlN, are actively conducted in various fields.

【0003】一般に、AlN焼結体はAlN粉末とアル
カリ土類や希土類元素の化合物等の焼結助剤とを配合、
混合、造粒、成形し、常圧焼結により焼結体を得るとい
う方法によって製作されている。これらのアルカリ土類
や希土類元素の化合物等の焼結助剤は、焼結時にAlN
粉末中に不可避的に混入されている酸素と反応し、アル
ミナと焼結助剤との複合酸化物からなる液相を生成する
ことにより焼結過程における緻密化を可能にしている。
また、この複合酸化物の生成は、結果的に不純物酸素を
粒界に固定し、粒内への酸素の固溶を抑制しているた
め、熱伝導率を向上させることにも寄与している。しか
し、最終的に、その複合酸化物が焼結体中に残存した場
合、得られるAlN焼結体の熱伝導率には限界があり、
その熱伝導率は170W/m・K以下であった。
Generally, an AlN sintered body contains AlN powder and a sintering aid such as a compound of alkaline earth or rare earth element,
It is manufactured by a method of mixing, granulating, molding and obtaining a sintered body by pressureless sintering. These sintering aids such as compounds of alkaline earth or rare earth elements are
By reacting with oxygen that is inevitably mixed in the powder to generate a liquid phase composed of a composite oxide of alumina and a sintering aid, densification in the sintering process is possible.
In addition, the formation of this composite oxide eventually fixes the impurity oxygen at the grain boundary and suppresses the solid solution of oxygen in the grain, thus contributing to the improvement of the thermal conductivity. . However, finally, when the complex oxide remains in the sintered body, the thermal conductivity of the obtained AlN sintered body is limited,
Its thermal conductivity was 170 W / mK or less.

【0004】現在、半導体の高容量化が進められる中
で、半導体搭載用の回路基板、放熱基板等にはより高い
熱伝導率を有する材料が必要とされており、かかるニー
ズに応えるために窒化アルミニウムを適用するにあたっ
ては、酸素その他の不純物の存在、焼結助剤添加の結果
として粒界に生成する粒界相の存在等の問題を解消する
必要がある。
At present, as the capacity of semiconductors is being increased, materials having higher thermal conductivity are required for circuit boards for mounting semiconductors, heat dissipation boards, etc. In order to meet such needs, nitriding is required. When aluminum is applied, it is necessary to solve the problems such as the presence of oxygen and other impurities and the presence of a grain boundary phase formed at grain boundaries as a result of the addition of a sintering aid.

【0005】この様な観点から特開昭63-277573には熱
伝導性により優れた窒化アルミニウム焼結体を提供する
ことを目的として焼結助剤としてイットリウムおよび
/またはカルシウム化合物をAlN粉末に添加し、こ
れを窒素ガスを含む還元性雰囲気中で焼成することによ
って、YーAlーO系化合物および/またはCa-Al-O
系化合物相等の粒界相の存在量を従来の窒化アルミニウ
ム焼結体に比べて減少させると共に、低温と高温の2
段階で焼結する多段階のプログラムからなる焼結を行う
ことによって、高い熱伝導率を有する窒化アルミニウム
焼結体を得るための最適条件を種々検討し、かかる検討
に基づく窒化アルミニウムの製造方法が提案されてい
る。この特開昭63-277573に記載された窒化アルミニウ
ムの製造方法における焼結過程の反応のメカニズムは、
最表面の複合酸化物が還元窒化反応により除去されると
複合酸化物の濃度勾配が生じ、それが駆動力となり、内
部の複合酸化物が表面へ移動する、という繰り返しによ
り高熱伝導性AlN焼結体が作製されるというものであ
る。
From this point of view, Japanese Patent Laid-Open No. 63-277573 discloses adding an yttrium and / or calcium compound as a sintering aid to an AlN powder for the purpose of providing an aluminum nitride sintered body having excellent thermal conductivity. And is baked in a reducing atmosphere containing nitrogen gas to obtain a Y-Al-O compound and / or Ca-Al-O.
Compared with the conventional aluminum nitride sintered body, the amount of the grain boundary phase such as a system compound phase is reduced, and
By carrying out sintering consisting of a multi-step program of sintering in multiple stages, various optimum conditions for obtaining an aluminum nitride sintered body having a high thermal conductivity are studied, and an aluminum nitride manufacturing method based on such a study is performed. Proposed. The reaction mechanism of the sintering process in the method for producing aluminum nitride described in JP-A-63-277573 is as follows.
When the complex oxide on the outermost surface is removed by the reduction nitriding reaction, a concentration gradient of the complex oxide is generated, which acts as a driving force, and the complex oxide inside moves to the surface. The body is made.

【0006】[0006]

【発明が解決しようとする課題】しかし、以上の特開昭
63-277573に記載された窒化アルミニウムの製造方法に
ついてもさらに次のような問題がある。すなわち特開昭
63-277573に記載された窒化アルミニウムの製造方法に
よって得られる焼結体は、これを薄片に切断したものの
断面を詳細に観察すると周辺に内部と異なる色の額縁状
の層が形成されており、かかる異色層は焼結過程におけ
る還元の不均一を示すものであって特性の均一性に疑義
が生じ、特に中心部の特性が低いという問題が生じる。
そのため従来から特に色の違いがはっきりしている場合
には、現実に製品検査において不合格とされことから、
かかる異色層を取り除く処理が行われており窒化アルミ
ニウムの生産性を損なう一要因となっていた。またその
ように異色層を取り除くための加工コストの問題もあっ
た。また、現在半導体の高容量化が進められる中で、よ
り一層高い熱伝導性、絶縁性と、低い熱膨張係数を達成
する必要があった。
However, the above-mentioned Japanese Patent Laid-Open No.
The method for manufacturing aluminum nitride described in 63-277573 has the following problems. That is,
The sintered body obtained by the method for producing aluminum nitride described in 63-277573 has a frame-shaped layer of a color different from the inside when the cross section of a thin piece obtained by observing it in detail is observed, Such a different color layer shows non-uniform reduction in the sintering process, which causes doubt about the uniformity of the characteristics and causes a problem that the characteristics of the central portion are particularly low.
Therefore, in the past, when the difference in color was particularly clear, it was actually rejected in product inspection.
The treatment for removing such a different color layer is performed, which is one of the factors that impair the productivity of aluminum nitride. There is also a problem of processing cost for removing the different color layer. Further, as the capacity of semiconductors has been increased at present, it has been necessary to achieve higher thermal conductivity and insulation and a lower thermal expansion coefficient.

【0007】本発明は、以上の従来技術における問題に
鑑みてなされたものであり、熱伝導性・絶縁性に優れ、
熱膨張係数が低く、特に部分的な異色層が形成されるこ
とがなく特性が均一な窒化アルミニウム焼結体の製造方
法およびその装置さらには窒化アルミニウム焼結体を提
供することを目的とする。
The present invention has been made in view of the above problems in the prior art, and is excellent in thermal conductivity and insulation.
It is an object of the present invention to provide a method for manufacturing an aluminum nitride sintered body having a low coefficient of thermal expansion, which does not form a partially different color layer, and which has uniform properties, and an apparatus therefor, and an aluminum nitride sintered body.

【0008】[0008]

【課題を解決するための手段】本発明者は本発明の目的
を達成するために種々実験・検討を重ね、窒化アルミニ
ウム焼結体を製造する焼結過程ではその焼結雰囲気と還
元反応によって生じたガスとが局所的に拮抗しあいみか
け上平衡状態に達し、そうすると焼結が進行しなくなる
という事実に鑑み、かかる平衡状態を破る手段により本
発明の目的が達成されることを見出し本発明を創出する
に至った。
The present inventor has conducted various experiments and studies in order to achieve the object of the present invention. In the sintering process for producing an aluminum nitride sintered body, the sintering atmosphere and the reduction reaction cause it. In view of the fact that the gas and the gas locally antagonize and apparently reach an equilibrium state, and then sintering does not proceed, it was found that the object of the present invention is achieved by means of breaking such an equilibrium state, and the present invention is created. Came to do.

【0009】すなわち本発明の窒化アルミニウム焼結体
の製造方法は窒化アルミニウムと希土類および/または
アルカリ土類化合物とカーボン、有機系バインダー炭化
物等の還元剤とを混合・成形し、焼結する窒化アルミニ
ウム焼結体の製造方法において、被焼結体表面反応の平
衡状態を破る操作を焼結過程で行うことを特徴とする。
That is, the method for producing an aluminum nitride sintered body of the present invention is an aluminum nitride in which aluminum nitride, a rare earth and / or alkaline earth compound and a reducing agent such as carbon or an organic binder carbide are mixed and molded and sintered. In the method for producing a sintered body, the operation of breaking the equilibrium state of the surface reaction of the body to be sintered is performed in the sintering process.

【0010】本発明にいう被焼結体表面の平衡状態を打
ち破る操作としては、焼結過程で昇温・降温を反復する
という操作がある。そのように昇温・降温を反復するこ
とにより被焼結体表面部における平衡ガス分圧が変化
し、被焼結体表面部における平衡状態を破り、焼結を進
行することができる。したがってそのようにして得られ
た焼結体は表面部まで特性が均一で、その切断面に額縁
状の異色層が形成されることはない。その他に被焼結体
表面部の平衡状態を打ち破る操作としては焼結雰囲気ガ
スの圧力を加減する操作がある。すなわち焼結過程にお
いて焼結雰囲気を一時的に減圧する手段や、焼結雰囲気
を一時的に真空とする手段により、やはり被焼結体表面
部における平衡ガス分圧が変化し、被焼結体表面部にお
ける平衡状態を破り、焼結を進行することができる。
As an operation of breaking the equilibrium state of the surface of the sintered body according to the present invention, there is an operation of repeatedly raising and lowering the temperature during the sintering process. By repeating the temperature increase / decrease in this way, the equilibrium gas partial pressure on the surface of the body to be sintered changes, the equilibrium state on the surface of the body to be sintered is broken, and sintering can proceed. Therefore, the properties of the thus obtained sintered body are uniform up to the surface portion, and no frame-shaped different color layer is formed on the cut surface. In addition, as an operation of breaking the equilibrium state of the surface portion of the body to be sintered, there is an operation of adjusting the pressure of the sintering atmosphere gas. That is, the equilibrium gas partial pressure on the surface of the body to be sintered is also changed by means of temporarily reducing the pressure of the sintering atmosphere during the sintering process or means of temporarily reducing the temperature of the sintering atmosphere. It is possible to break the equilibrium state in the surface portion and proceed with the sintering.

【0011】本発明において用いられる窒化アルミニウ
ム原料粉末は酸素を1.5重量%以下、実用上は0.01
〜1.0重量%含有するものとするのが好ましい。またそ
の平均粒径は焼結性、熱伝導性を考慮した場合、0.5
〜5μm程度であるのが好ましい。本発明において焼結
助剤として添加される添加物は、希土類元素化合物およ
び/またはアルカリ土類元素化合物であり、また、高熱
伝導化剤として添加される添加物はカーボン、有機系バ
インダー、炭化物等の還元剤である。
The aluminum nitride raw material powder used in the present invention contains 1.5% by weight or less of oxygen, and practically 0.01%.
It is preferable that the content is from about 1.0% by weight. The average particle size is 0.5 when considering sinterability and thermal conductivity.
It is preferably about 5 μm. The additive added as a sintering aid in the present invention is a rare earth element compound and / or an alkaline earth element compound, and the additive added as a high thermal conductivity agent is carbon, an organic binder, a carbide or the like. Is a reducing agent.

【0012】希土類元素およびアルカリ土類元素の化合
物としては、希土類元素およびアルカリ土類元素の酸化
物、窒化物、フッ化物、酸フッ化物、酸窒化物、焼成に
よりこれらの化合物となる物質が挙げられる。例えば、
焼成によってこれらの酸化物となる物質には希土類元素
およびアルカリ土類元素の炭酸塩、硝酸塩、シュウ酸
塩、水酸化物等がある。
Examples of compounds of rare earth elements and alkaline earth elements include oxides, nitrides, fluorides, oxyfluorides, oxynitrides of rare earth elements and alkaline earth elements, and substances which become these compounds by firing. To be For example,
Substances which become these oxides by firing include carbonates, nitrates, oxalates, hydroxides of rare earth elements and alkaline earth elements.

【0013】また希土類および/またはアルカリ土類元
素化合物の添加量は、0.5〜15重量%とするのが良
い。0.5重量%未満では添加物の効果が充分に発揮され
ず、焼結体の緻密化が不十分となり、AlN結晶中に酸
素が固溶して高熱伝導焼結体が得られない。一方、15
重量%を超える場合は粒界相が焼結体中に多量に残存し
て、熱処理過程で除去される粒界相の体積が大きくなる
という問題が生じる。この希土類および/またはアルカ
リ土類元素化合物の添加量は、好ましくは4.0〜12
重量%とするのが良く、より好ましくは5〜10重量%と
するのが良い。
The amount of the rare earth and / or alkaline earth element compound added is preferably 0.5 to 15% by weight. If it is less than 0.5% by weight, the effect of the additive is not sufficiently exerted, the densification of the sintered body becomes insufficient, and oxygen is solid-dissolved in the AlN crystal, so that a high heat conductive sintered body cannot be obtained. On the other hand, 15
If it exceeds 5% by weight, a large amount of the grain boundary phase remains in the sintered body, which causes a problem that the volume of the grain boundary phase removed in the heat treatment process increases. The amount of the rare earth and / or alkaline earth element compound added is preferably 4.0 to 12
It is preferable to set it as a weight%, and it is more preferable to set it as 5 to 10% by weight.

【0014】本発明では焼結過程における焼成雰囲気
は、定常的には窒素ガスを含む非酸化性雰囲気とするの
が好ましい。
In the present invention, the firing atmosphere in the sintering process is preferably a non-oxidizing atmosphere containing nitrogen gas constantly.

【0015】以上の本発明の窒化アルミニウム焼結体の
製造方法により得られたAlN焼結体の特性及び組織に
ついて測定・分析した結果、 多結晶体としては非常に高い170w/mK以上の熱伝
導率 構成相はAlN結晶粒のみあるいはAlN結晶粒と希
土類およびアルカリ土類酸化物である。 熱伝導率は表面部と中心部でほとんど差がなく均一で
ある。 ことが判明した。本発明の製造方法により得られる窒化
アルミニウム焼結体の最終的な不純物酸素は2.0wt%以
下とするのが好ましい。それを超えて不純物酸素が含有
される場合には、均一な熱伝導率及び高熱伝導率という
本発明の目的に対する悪影響が生じる。
As a result of measuring and analyzing the characteristics and structure of the AlN sintered body obtained by the above-described method for producing an aluminum nitride sintered body of the present invention, the heat conduction of 170 w / mK or more, which is extremely high as a polycrystalline body. The constituent phase is only AlN crystal grains or AlN crystal grains and rare earth and alkaline earth oxides. The thermal conductivity is uniform with almost no difference between the surface part and the central part. It has been found. The final impurity oxygen of the aluminum nitride sintered body obtained by the manufacturing method of the present invention is preferably 2.0 wt% or less. If the impurity oxygen is contained in excess, the adverse effects on the object of the present invention of uniform thermal conductivity and high thermal conductivity will occur.

【0016】[0016]

【作用】次に本発明の窒化アルミニウムの製造方法によ
り得られる窒化アルミニウム焼結体につき均一な特性の
達成される要因につき説明する。焼結過程の初期に、例
えば希土類元素としてYを選んだ場合3Y2O3、5Al
2O3、Y2O3・Al2O3、2Y2O3・Al2O3等の化合物
が、アルカリ土類元素としてCaを選んだ場合、CaO
・6Al2O3、CaO・2Al2O3、CaO・Al2O3等
の化合物が生成する。次いでそれ以降の焼結過程で、被
焼結体中あるいは雰囲気中の炭素(C)が被焼結体の内
部から粒界相を還元し、粒界相が徐々に除去される。そ
の結果、粒界相は焼結体の系外へと移動し、焼結体はA
lN単相へと向かい、かつAlNが高純度化され均一に
熱伝導率が上昇する。その場合、焼結過程において焼結
雰囲気中のN2ガス分圧と還元により発生するCOガス
分圧が拮抗し、みかけ上の平衡状態に達し、焼結が進行
しなくなる。そこで本発明ではかかる被焼結体表面部の
反応の平衡状態を打ち破る操作を行うことにより、反応
をさらに進行することが可能となる。言い換えれば、被
焼結体が充分に反応せず内部と被焼結体表面部との特性
の差が形成されるようなことは、本発明では生じず、本
発明によれば被焼結体表面部の反応が平衡状態になった
場合にはかかる平衡状態が打ち破られて非平衡状態とさ
れ、停滞なく反応が進行し、充分な焼結が行われる。
Next, the factors for achieving uniform characteristics of the aluminum nitride sintered body obtained by the method for producing aluminum nitride of the present invention will be described. In the early stage of the sintering process, for example, when Y is selected as a rare earth element, 3Y2O3, 5Al
Compounds such as 2O3, Y2O3 ・ Al2O3, 2Y2O3 ・ Al2O3 are CaO when Ca is selected as the alkaline earth element.
Compounds such as 6Al2O3, CaO.2Al2O3, CaO.Al2O3 are produced. Next, in the subsequent sintering process, carbon (C) in the body to be sintered or in the atmosphere reduces the grain boundary phase from the inside of the body to be sintered, and the grain boundary phase is gradually removed. As a result, the grain boundary phase moves out of the system of the sintered body, and
The thermal conductivity increases uniformly toward the 1N single phase and AlN is highly purified. In that case, in the sintering process, the partial pressure of N2 gas in the sintering atmosphere and the partial pressure of CO gas generated by the reduction counteract each other, reaching an apparent equilibrium state, and the sintering does not proceed. Therefore, in the present invention, the reaction can be further advanced by performing an operation of breaking the equilibrium state of the reaction on the surface portion of the sintered body. In other words, it does not occur in the present invention that the sintered body does not sufficiently react and a difference in characteristics between the inside and the surface portion of the sintered body is formed. When the reaction on the surface portion reaches an equilibrium state, the equilibrium state is broken to a non-equilibrium state, the reaction proceeds without stagnation, and sufficient sintering is performed.

【0017】[0017]

【実施例】次に実施例並びに比較例によって本発明を具
体的に説明する。 実施例1 不純物としての酸素を1.2重量%含有し、平均粒径が
0.5μmの窒化アルミニウム粉末に焼結助剤として、
酸化イットリウム(Y2O3)を5.7重量%、高熱伝導化
のためカーボンを0.5%添加した。この混合粉末をボ
ールミルで混合、造粒した後、100×100×15mm
の圧粉体に成形した。さらにこの成形体からバインダー
を除去して得た被焼結体をBN製容器に収容し、次の条
件で常圧焼結した。
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples. Example 1 An aluminum nitride powder containing 1.2% by weight of oxygen as an impurity and having an average particle size of 0.5 μm was used as a sintering aid.
Yttrium oxide (Y2O3) was added at 5.7% by weight, and carbon was added at 0.5% for high thermal conductivity. After mixing and granulating this mixed powder with a ball mill, 100 × 100 × 15 mm
Was molded into a green compact. Further, the sintered body obtained by removing the binder from this molded body was placed in a BN container and sintered under normal pressure under the following conditions.

【0018】(1)焼結温度・昇温速度・焼結時間 第1段階焼結 1200℃から1600℃まで昇温速度5℃/minで昇
温し、1600℃において10min保持した後、120
0℃まで5℃/minで降温し、1200℃にて10min保
持した。 第2段階焼結 1200℃から1700℃まで昇温速度5℃/minで昇
温し、1700℃において10min保持した後、130
0℃まで5℃/minで降温し、1300℃にて10min保
持した。
(1) Sintering temperature / heating rate / sintering time First stage sintering From 1200 ° C. to 1600 ° C., the temperature was raised at a heating rate of 5 ° C./min, and after holding at 1600 ° C. for 10 min, 120
The temperature was lowered to 0 ° C. at 5 ° C./min, and the temperature was kept at 1200 ° C. for 10 min. Second-stage sintering The temperature was raised from 1200 ° C. to 1700 ° C. at a heating rate of 5 ° C./min, and held at 1700 ° C. for 10 minutes, then 130
The temperature was lowered to 0 ° C at 5 ° C / min, and the temperature was kept at 1300 ° C for 10 min.

【0019】 第3段階焼結 1300℃から1800℃まで昇温速度5℃/minで昇
温し、1800℃において10min保持した後、140
0℃まで5℃/minで降温し、1400℃にて10min保
持した。 第4段階焼結 1400から2000℃まで昇温速度5℃/minで昇温
し、2000℃において10min保持した後、降温し
た。
Third Stage Sintering: The temperature was raised from 1300 ° C. to 1800 ° C. at a heating rate of 5 ° C./min, and the temperature was maintained at 1800 ° C. for 10 min.
The temperature was lowered to 0 ° C at 5 ° C / min, and the temperature was kept at 1400 ° C for 10 min. Fourth Stage Sintering The temperature was raised from 1400 to 2000 ° C. at a heating rate of 5 ° C./min, held at 2000 ° C. for 10 minutes, and then lowered.

【0020】(2)焼結雰囲気 COガス 分圧−0.2×105Pa中 窒素ガス 分圧−1.8×105Pa中 以上の焼結により最終的な炭素量を0.05wt%以下、酸
素量を2.0wt%以下まで減少した焼結体を得た。得られ
た焼結体を分析し、炭素含有量、酸素含有量、熱伝導率
を測定した。
(2) Sintering atmosphere CO gas partial pressure -0.2 x 10 5 Pa Nitrogen gas partial pressure -1.8 x 10 5 Pa In the above sintering, the final carbon content is 0.05 wt% or less and oxygen content is 0%. To obtain a sintered body having a content of 2.0 wt% or less. The obtained sintered body was analyzed to measure the carbon content, oxygen content, and thermal conductivity.

【0021】実施例2 焼結助剤として 酸化ジスプロシウム(Dy2O3)7.0
重量%(ジスプロシウム元素の重量換算)を添加した他
は実施例1と同様にして焼結体を得、実施例1と同様に
して焼結体の特性を評価した。その結果を表1に示す。
Example 2 Dysprosium oxide (Dy2O3) 7.0 as a sintering aid
A sintered body was obtained in the same manner as in Example 1 except that the weight% (weight conversion of dysprosium element) was added, and the characteristics of the sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0022】実施例3 第1段階焼結における昇温速度を3℃/minとした他は
実施例1と同様にして焼結体を得、実施例1と同様にし
て焼結体の特性を評価した。その結果を表1に示す。
Example 3 A sintered body was obtained in the same manner as in Example 1 except that the temperature rising rate in the first stage sintering was 3 ° C./min. evaluated. The results are shown in Table 1.

【0023】実施例4 焼結助剤としてScを添加し、他は実施例1と同様にし
て焼結体を製造した。その焼結体につき実施例1と同様
にして特性を評価した。その結果を表1に示す。
Example 4 Sc was added in the same manner as in Example 1 except that Sc was added as a sintering aid, and a sintered body was manufactured. The characteristics of the sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0024】実施例5 焼結助剤としてSrを添加し、他は実施例1と同様にし
て焼結体を製造した。その焼結体につき実施例1と同様
にして特性を評価した。その結果を表1に示す。
Example 5 A sintered body was manufactured in the same manner as in Example 1 except that Sr was added as a sintering aid. The characteristics of the sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0025】実施例6 焼結助剤としてCaを添加し、他は実施例1と同様にし
て焼結体を製造した。その焼結体につき実施例1と同様
にして特性を評価した。その結果を表1に示す。
Example 6 A sintered body was produced in the same manner as in Example 1 except that Ca was added as a sintering aid. The characteristics of the sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0026】実施例7 焼結助剤としてCeを添加し、他は実施例1と同様にし
て焼結体を製造した。その焼結体につき実施例1と同様
にして特性を評価した。その結果を表1に示す。
Example 7 A sintered body was produced in the same manner as in Example 1 except that Ce was added as a sintering aid. The characteristics of the sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0027】実施例8 焼結助剤としてBaを添加し、他は実施例1と同様にし
て焼結体を製造した。その焼結体につき実施例1と同様
にして特性を評価した。その結果を表1に示す。
Example 8 A sintered body was manufactured in the same manner as in Example 1 except that Ba was added as a sintering aid. The characteristics of the sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0028】実施例9 焼結助剤としてErを添加し、他は実施例1と同様にし
て焼結体を製造した。その焼結体につき実施例1と同様
にして特性を評価した。その結果を表1に示す。
Example 9 A sintered body was manufactured in the same manner as in Example 1 except that Er was added as a sintering aid. The characteristics of the sintered body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0029】実施例10 不純物としての酸素を1.2重量%含有し、平均粒径が
0.5μmの窒化アルミニウム粉末に焼結助剤として、
酸化ジスプロシウム(Dy2O3)5.7重量%添加(ジス
プロシウム元素の重量換算)した。この混合粉末をボー
ルミルで混合、造粒した後、成形した。成形にあたって
は炭素含有有機樹脂系バインダーを炭素分量に換算して
0.8重量%添加して造粒し、さらにプレス成形(100
0kg/cm2)することによって100×100×15mm
の直方形状の圧粉体に成形した。さらにこの成形体から
炭素以外のバインダーをN2中にて除去して得た被焼結
体をカーボン製容器に収容し、次の条件で常圧焼結し
た。
Example 10 Aluminum nitride powder containing 1.2% by weight of oxygen as an impurity and having an average particle size of 0.5 μm was used as a sintering aid.
5.7% by weight of dysprosium oxide (Dy2O3) was added (in terms of weight of dysprosium element). This mixed powder was mixed by a ball mill, granulated, and then molded. In molding, 0.8% by weight of carbon-containing organic resin binder is added in terms of carbon content to granulate, and press molding (100
0kg / cm2) 100 × 100 × 15mm
Was molded into a rectangular shaped green compact. Furthermore, the sintered body obtained by removing the binder other than carbon from this molded body in N2 was placed in a carbon container and sintered under normal pressure under the following conditions.

【0030】(1)焼結温度・昇温速度・焼結時間 第1段階焼結 1200℃から1600℃まで昇温速度5℃/minで昇
温し、1600℃において10min保持した後、120
0℃まで5℃/minで降温し、1200℃にて10min保
持した。 第2段階焼結 1200℃から1700℃まで昇温速度5℃/minで昇
温し、1700℃において10min保持した後、130
0℃まで5℃/minで降温し、1300℃にて10min保
持した。
(1) Sintering temperature / heating rate / sintering time First stage sintering The temperature was raised from 1200 ° C. to 1600 ° C. at a heating rate of 5 ° C./min and held at 1600 ° C. for 10 minutes, then 120
The temperature was lowered to 0 ° C. at 5 ° C./min, and the temperature was kept at 1200 ° C. for 10 min. Second-stage sintering The temperature was raised from 1200 ° C. to 1700 ° C. at a heating rate of 5 ° C./min, and held at 1700 ° C. for 10 minutes, then 130
The temperature was lowered to 0 ° C at 5 ° C / min, and the temperature was kept at 1300 ° C for 10 min.

【0031】 第3段階焼結 1300℃から1800℃まで昇温速度5℃/minで昇
温し、1800℃において10min保持した後、140
0℃まで5℃/minで降温し、1400℃にて10min保
持した。 第4段階焼結 1400から1900℃まで昇温速度5℃/minで昇温
し、1900℃において10min保持した後、降温し
た。
Third Stage Sintering: The temperature was raised from 1300 ° C. to 1800 ° C. at a heating rate of 5 ° C./min, and the temperature was maintained at 1800 ° C. for 10 min.
The temperature was lowered to 0 ° C at 5 ° C / min, and the temperature was kept at 1400 ° C for 10 min. Fourth Stage Sintering The temperature was raised from 1400 to 1900 ° C. at a heating rate of 5 ° C./min, held at 1900 ° C. for 10 minutes, and then lowered.

【0032】(2)焼結雰囲気 窒素ガス−1気圧中 以上の焼結により最終的な炭素量を0.05wt%以下、酸
素量を2.0wt%以下まで減少した焼結体を得た。得られ
た焼結体を分析し、酸素含有量、密度、粒径、熱伝導率
を測定した。
(2) Sintering atmosphere Nitrogen gas -1 atm At last, a sintered body having a final carbon content of 0.05 wt% or less and an oxygen content of 2.0 wt% or less was obtained. The obtained sintered body was analyzed and the oxygen content, density, particle size and thermal conductivity were measured.

【0033】実施例11 不純物としての酸素を1.2重量%含有し、平均粒径が
0.5μmの窒化アルミニウム粉末に焼結助剤として、
酸化イットリウム(Y2O3)を5.7重量%、高熱伝導化
のためカーボンを0.5%添加した。この混合粉末をボ
ールミルで混合、造粒した後、100×100×15mm
の圧粉体に成形した。さらにこの成形体からバインダー
を除去して得た被焼結体をBN製容器に収容し、次の条
件で焼結した。
Example 11 An aluminum nitride powder containing 1.2% by weight of oxygen as an impurity and having an average particle size of 0.5 μm was used as a sintering aid.
Yttrium oxide (Y2O3) was added at 5.7% by weight, and carbon was added at 0.5% for high thermal conductivity. After mixing and granulating this mixed powder with a ball mill, 100 × 100 × 15 mm
Was molded into a green compact. Further, the sintered body obtained by removing the binder from this molded body was placed in a BN container and sintered under the following conditions.

【0034】(1)焼結雰囲気 定常状態 窒素ガス 分圧−2.0×105Paの保持 非定常状態(焼結過程における被焼結体表面反応の
平衡状態を打ち破るための操作) 1600℃及び1800℃においてそれぞれ10分間真
空状態(0.04torr)に保持した。
(1) Sintering atmosphere Steady state Nitrogen gas partial pressure-Maintenance of 2.0 × 10 5 Pa Unsteady state (operation for breaking the equilibrium state of the surface reaction of the sintered body in the sintering process) 1600 ° C. and 1800 A vacuum state (0.04 torr) was maintained for 10 minutes each at 0 ° C.

【0035】(2)焼結温度・昇温速度・焼結時間 第1段階焼結 1200℃から1600℃まで昇温速度5℃/minで昇
温し、1600℃にお いて10min保持した。
(2) Sintering temperature / heating rate / sintering time First stage sintering The temperature was raised from 1200 ° C to 1600 ° C at a heating rate of 5 ° C / min and held at 1600 ° C for 10 minutes.

【0036】 第2段階焼結 1600℃から1800℃まで昇温速度5℃/minで昇
温し、1800℃において10min保持した。 以上の焼結により最終的な炭素量を0.05wt%以下、酸
素量を2.0wt%以下まで減少した焼結体を得た。得られ
た焼結体を分析し、炭素含有量、酸素含有量、熱伝導率
を測定した。
Second Stage Sintering The temperature was raised from 1600 ° C. to 1800 ° C. at a heating rate of 5 ° C./min, and the temperature was maintained at 1800 ° C. for 10 min. By the above-mentioned sintering, a sintered body having a final carbon content of 0.05 wt% or less and an oxygen content of 2.0 wt% or less was obtained. The obtained sintered body was analyzed to measure the carbon content, oxygen content, and thermal conductivity.

【0037】実施例12 他は実施例11と同様にして、焼結過程における被焼結
体表面反応の平衡状態を打ち破る操作として、1600
℃及び1800℃においてそれぞれ30分間減圧状態
(0.01×105Pa)に保持する操作を行った。
Example 12 In the same manner as in Example 11 except for the above, as an operation for breaking the equilibrium state of the surface reaction of the object to be sintered in the sintering process, 1600
An operation of maintaining a reduced pressure state (0.01 × 10 5 Pa) at 30 ° C. and 1800 ° C. for 30 minutes was performed.

【0038】比較例1 焼結温度範囲を0〜2000℃とすると共に、昇温速度
を5℃/minとして1段階で焼結した他は実施例1と同
様にして窒化アルミニウム焼結体を製造した。得られた
焼結体につき実施例1と同様にして特性を調査した結果
を表1に示す。
Comparative Example 1 An aluminum nitride sintered body was produced in the same manner as in Example 1 except that the sintering temperature range was set to 0 to 2000 ° C. and the temperature rising rate was 5 ° C./min to perform the sintering in one step. did. The results of examining the characteristics of the obtained sintered body in the same manner as in Example 1 are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】以上の各実施例および比較例により得られ
た焼結体の特性を示す表1からわかるように、実施例の
焼結体はいずれも熱伝導率が170以上であり、またS
iに匹敵する熱膨張係数を有する。一方、比較例1の焼
結体は焼結体各部における熱伝導率が不均一であること
が確認され、特にその切断面を観察すると、焼結体内部
の色調が不均一であることが確認された。
As can be seen from Table 1 which shows the characteristics of the sintered bodies obtained in the respective examples and comparative examples, the sintered bodies of the examples all have a thermal conductivity of 170 or more, and S
It has a coefficient of thermal expansion comparable to i. On the other hand, it was confirmed that the sintered body of Comparative Example 1 had non-uniform thermal conductivity in each part of the sintered body, and in particular, when the cut surface was observed, it was confirmed that the color tone inside the sintered body was non-uniform. Was done.

【0041】[0041]

【発明の効果】以上説明したように、本発明の窒化アル
ミニウム焼結体の製造方法によれば、得られる焼結体の
焼結体内部と表面部とも特性が均一でかつ高熱伝導性
で、Siに匹敵する熱膨張係数を有すると共に製品検査
時に問題となる色調の差が少ない窒化アルミニウム焼結
体が得られる。
As described above, according to the method for producing an aluminum nitride sintered body of the present invention, the inside of the sintered body and the surface of the obtained sintered body have uniform properties and high thermal conductivity. It is possible to obtain an aluminum nitride sintered body having a thermal expansion coefficient comparable to that of Si and having less difference in color tone which is a problem during product inspection.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウムと希土類および/また
はアルカリ土類化合物とを混合・成形し、焼結する窒化
アルミニウム焼結体の製造方法において、被焼結体表面
反応の平衡状態を破る操作を焼結過程で行うことを特徴
とする窒化アルミニウム焼結体の製造方法。
1. In a method for producing an aluminum nitride sintered body, which comprises mixing and shaping aluminum nitride and a rare earth and / or alkaline earth compound, and sintering the mixture, an operation of breaking the equilibrium state of the surface reaction of the sintered body is burned. A method for manufacturing an aluminum nitride sintered body, which is characterized in that it is carried out in a binding process.
【請求項2】 窒化アルミニウムと希土類および/また
はアルカリ土類化合物と還元剤とを混合・成形し、焼結
する窒化アルミニウム焼結体の製造方法において、焼結
過程で昇温・降温を反復することを特徴とする窒化アル
ミニウム焼結体の製造方法。
2. In a method for producing an aluminum nitride sintered body, which comprises mixing and molding aluminum nitride, a rare earth and / or alkaline earth compound and a reducing agent, and sintering the mixture, heating and cooling are repeated during the sintering process. A method for manufacturing an aluminum nitride sintered body, comprising:
【請求項3】 窒化アルミニウムと希土類および/また
はアルカリ土類化合物と還元剤とを混合・成形し、焼結
してなる窒化アルミニウム焼結体において、焼結過程で
昇温・降温を反復して得られることを特徴とする窒化ア
ルミニウム焼結体。
3. An aluminum nitride sintered body obtained by mixing and molding aluminum nitride, a rare earth and / or alkaline earth compound and a reducing agent, and sintering the mixture, by repeatedly raising and lowering the temperature during the sintering process. An aluminum nitride sintered body characterized by being obtained.
【請求項4】 窒化アルミニウムと希土類および/また
はアルカリ土類化合物と還元剤とを混合・成形し、焼結
する窒化アルミニウム焼結体の製造方法において、焼結
過程で焼結雰囲気を減圧することを特徴とする窒化アル
ミニウム焼結体の製造方法。
4. In a method for producing an aluminum nitride sintered body, which comprises mixing and molding aluminum nitride, a rare earth and / or alkaline earth compound and a reducing agent, and sintering the mixture, reducing the sintering atmosphere in the sintering process. A method for producing an aluminum nitride sintered body, comprising:
【請求項5】 窒化アルミニウムと希土類および/また
はアルカリ土類化合物と還元剤とを混合・成形し、焼結
してなる窒化アルミニウム焼結体において、焼結過程で
焼結雰囲気を減圧して得られることを特徴とする窒化ア
ルミニウム焼結体。
5. An aluminum nitride sintered body obtained by mixing and molding aluminum nitride, a rare earth and / or alkaline earth compound and a reducing agent, and sintering the mixture, which is obtained by reducing the sintering atmosphere during the sintering process. An aluminum nitride sintered body characterized by being obtained.
【請求項6】 窒化アルミニウムと希土類および/また
はアルカリ土類化合物と還元剤とを混合・成形し、焼結
する窒化アルミニウム焼結体の製造方法において、焼結
過程で焼結雰囲気を真空とすることを特徴とする窒化ア
ルミニウム焼結体の製造方法。
6. In a method for producing an aluminum nitride sintered body, which comprises mixing and molding aluminum nitride, a rare earth and / or alkaline earth compound and a reducing agent, and sintering the mixture, a sintering atmosphere is a vacuum in the sintering process. A method for manufacturing an aluminum nitride sintered body, comprising:
【請求項7】 窒化アルミニウムと希土類および/また
はアルカリ土類化合物と還元剤とを混合・成形し、焼結
してなる窒化アルミニウム焼結体において、焼結過程で
焼結雰囲気を真空として得られることを特徴とする窒化
アルミニウム焼結体。
7. An aluminum nitride sintered body obtained by mixing and molding aluminum nitride, a rare earth and / or alkaline earth compound and a reducing agent, and sintering the mixture, which can be obtained in a sintering atmosphere in a vacuum atmosphere. An aluminum nitride sintered body characterized by the above.
JP4260901A 1992-05-22 1992-09-02 Production of aluminum nitride sintered compact and aluminum nitride sintered compact Pending JPH0640772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4260901A JPH0640772A (en) 1992-05-22 1992-09-02 Production of aluminum nitride sintered compact and aluminum nitride sintered compact

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-156085 1992-05-22
JP15608592 1992-05-22
JP4260901A JPH0640772A (en) 1992-05-22 1992-09-02 Production of aluminum nitride sintered compact and aluminum nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH0640772A true JPH0640772A (en) 1994-02-15

Family

ID=26483916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4260901A Pending JPH0640772A (en) 1992-05-22 1992-09-02 Production of aluminum nitride sintered compact and aluminum nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH0640772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109960A1 (en) * 2009-03-26 2010-09-30 株式会社東芝 Aluminum nitride substrate, aluminum nitride circuit board, semiconductor device, and method for manufacturing aluminum nitride substrate
CN112962071A (en) * 2021-02-02 2021-06-15 长沙淮石新材料科技有限公司 Doped aluminum scandium nitride target material and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109960A1 (en) * 2009-03-26 2010-09-30 株式会社東芝 Aluminum nitride substrate, aluminum nitride circuit board, semiconductor device, and method for manufacturing aluminum nitride substrate
US8791566B2 (en) 2009-03-26 2014-07-29 Kabushiki Kaisha Toshiba Aluminum nitride substrate, aluminum nitride circuit board, semiconductor apparatus, and method for manufacturing aluminum nitride substrate
JP5667045B2 (en) * 2009-03-26 2015-02-12 株式会社東芝 Aluminum nitride substrate, aluminum nitride circuit substrate, and semiconductor device
CN112962071A (en) * 2021-02-02 2021-06-15 长沙淮石新材料科技有限公司 Doped aluminum scandium nitride target material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0219933B1 (en) Sintered silicon carbide ceramic body of high electrical resistivity
CN110520398B (en) Sintered body, substrate, circuit board, and method for producing sintered body
JP4493264B2 (en) Aluminum nitride ceramics, semiconductor manufacturing members and corrosion resistant members
JP2547767B2 (en) High thermal conductivity aluminum nitride sintered body
JPH05117038A (en) Aluminum nitride sintered compact, its production and jig for burning using the same
JPH0640772A (en) Production of aluminum nitride sintered compact and aluminum nitride sintered compact
Kume et al. Annealing effect on dielectric property of AlN ceramics
JP3756345B2 (en) Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same
JP4533994B2 (en) Plasma corrosion resistant material, manufacturing method thereof and member thereof
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
KR102641152B1 (en) Synthesis method of sillicon nitride powder and sintered body
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
RU2032642C1 (en) Mixture for articles of aluminium nitride having high heat conductivity and method for their production
JP3111656B2 (en) Method and apparatus for producing silicon nitride sintered body
KR20230037070A (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JP2004083292A (en) Aluminum nitride sintered compact, its producing method, and electrode built-in susceptor using the aluminum nitride sintered compact
JP2001270779A (en) Method for producing aluminum nitride sintered compact
JPH0627032B2 (en) Method for manufacturing aluminum nitride sintered body
JP2004083291A (en) Aluminum nitride sintered compact, its producing method, and electrode built-in susceptor using the aluminum nitride sintered compact
JPH01242468A (en) Production of sintered body of aluminum nitride
JPH01192768A (en) Production of ceramic sintered compact