JPH01301505A - Aluminum nitride powder and production thereof - Google Patents

Aluminum nitride powder and production thereof

Info

Publication number
JPH01301505A
JPH01301505A JP13042588A JP13042588A JPH01301505A JP H01301505 A JPH01301505 A JP H01301505A JP 13042588 A JP13042588 A JP 13042588A JP 13042588 A JP13042588 A JP 13042588A JP H01301505 A JPH01301505 A JP H01301505A
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
nitride powder
carbon
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13042588A
Other languages
Japanese (ja)
Other versions
JPH0563406B2 (en
Inventor
Hitofumi Taniguchi
谷口 人文
Ippei Yamamoto
一平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP13042588A priority Critical patent/JPH01301505A/en
Publication of JPH01301505A publication Critical patent/JPH01301505A/en
Publication of JPH0563406B2 publication Critical patent/JPH0563406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title powder relatively small in shrinkage when calcined with good dimensional stability, by calcination of mixed powder comprising carbon of each specified specific surface area and oil absorption and alumina under an atmosphere containing nitrogen. CONSTITUTION:Mixed powder comprising alumina and carbon >=60m<2>/g in specific surface area and >=80cc/g in oil absorption is calcined under an atmosphere containing nitrogen at 1,300-1,700 deg.C, thus obtaining the objective aluminum nitride powder satisfying the relationships: 0.2mu<=D1<=1.5mu and D2/D1<=2.60 (where D1 is mean granular size calculated from specific surface area; D2 is mean granular size determined by sedimentation method). The apparent specific gravity of the carbon will often affect the degree of aggregation of the primary granules of the aluminum nitride powder obtained; in particular, when the powder satisfying the relationship: D2/D1<=2.50 is to be obtained, the apparent density of the carbon is pref. 1.90-2.10g/cc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、−欠粒子の凝集の程度が小さい窒化アルミニ
ウム粉末及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aluminum nitride powder in which the degree of agglomeration of missing particles is small and a method for producing the same.

(従来の技術) 最近、窒化アルミニウム粉末は、熱伝導率が高く、エレ
クトロニクス材料として極めて有用な窒化アルミニウム
焼結体の原料として脚光を浴びている。窒化アルミニウ
ム粉末は、例えば、特開昭59−50008号公報によ
り公知である。上記の公報に記載され交電化アルミニウ
ム粉末は、高純度且つ微粒子であり、高熱伝導率及び透
光性等の優れ良性質を有する窒化アルミニウム焼結体の
原料として使用されている。即ち、上記公報には。
(Prior Art) Aluminum nitride powder has recently been in the spotlight as a raw material for aluminum nitride sintered bodies, which have high thermal conductivity and are extremely useful as electronic materials. Aluminum nitride powder is known, for example, from JP-A-59-50008. The electrifying aluminum powder described in the above publication is of high purity and fine particles, and is used as a raw material for aluminum nitride sintered bodies having excellent properties such as high thermal conductivity and translucency. That is, in the above publication.

平均粒子径が2μm以下の粉末で、酸素含有量が1.5
重量嘩以下、且つ窒化アルミニウム組成をAtNとする
とき含有する陽イオン不純物が0.3重量−以下である
窒化アルミニウム粉末が示されている。
Powder with an average particle size of 2 μm or less and an oxygen content of 1.5
The aluminum nitride powder contains cationic impurities of 0.3 weight or less when the aluminum nitride composition is AtN.

(発明が解決しようとする課題) 上記の窒化アルミニウム粉末は、高純度且つ微粒子であ
る友めに優れ良性質を有する窒化アルミニウム焼結体の
原料となる。しかしながら、上記の窒化アルミニウム粉
末は、シート等に成形し友後に焼結した場合、焼結によ
る収縮率が大きく、寸法安定性の点で十分に満足できる
ものではなかつ九〇 (課題を解決するための手段) そこで、本発明者らは、焼結時の収縮率が比較的小さく
、寸法安定性が良好な窒化アルミニウム粉末を得ること
を目的として研究を重ねてき念。
(Problems to be Solved by the Invention) The above-mentioned aluminum nitride powder is a raw material for an aluminum nitride sintered body having high purity, fine particles, and excellent properties. However, when the above-mentioned aluminum nitride powder is formed into a sheet etc. and then sintered, the shrinkage rate due to sintering is large, and the dimensional stability is not fully satisfactory. Therefore, the present inventors have conducted extensive research with the aim of obtaining aluminum nitride powder that has a relatively small shrinkage rate during sintering and has good dimensional stability.

その結果、比表面積から換算した平均粒径と、沈降法で
測定し次平均粒径とが特定の関係を有する窒化アルミニ
ウム粉末が、上記の目的を達成することを見い出し1本
発明を完成させるに至った。
As a result, it was discovered that aluminum nitride powder, which has a specific relationship between the average particle size calculated from the specific surface area and the next average particle size measured by the sedimentation method, achieves the above object. 1. To complete the present invention. It's arrived.

即ち、本発明は、比表面積から算出した平均粒径(D1
)と沈降法で測定し次平均粒径(D2)とが下記式 %式% を共に満足することを特徴とする窒化アルミニウム粉末
である。
That is, in the present invention, the average particle diameter (D1
) and the next average particle diameter (D2) measured by a sedimentation method both satisfy the following formula % formula %.

本発明に於ける比表WJ槓は、BET法による窒素ガス
吸着で得らnたものである。この比表面積から真球換算
により平均粒径(D1)を求めることができる。この方
法で求めた平均粒径(D1)は、窒化アルミニウム粉末
の一次粒径t−i+わす。
The ratio table WJ in the present invention is obtained by nitrogen gas adsorption using the BET method. The average particle diameter (D1) can be determined from this specific surface area by converting it into a perfect sphere. The average particle diameter (D1) determined by this method is the primary particle diameter ti+was of the aluminum nitride powder.

一方、沈降法、例えば、堀場裏作所製自動粒度分布測定
器CAPA −500を用いて測定し念平均粒径(D2
)は、−次粒子が凝集して形成され次疑集粒子の平均粒
径を表わす。
On the other hand, the mean particle diameter (D2
) represents the average particle size of aggregated particles formed by agglomeration of -order particles.

本発明に於いては、上記の比表面積から算出し次平均粒
径(Dl ) n、0.2μm≦D1≦1.5μmの範
囲でなければならない。Dlが0.2μm未満の窒化ア
ルミニウム粉末は、比表面積が大きくなり、それにつれ
て酸素含有量も大きくなり過ぎるために優nfc物性の
焼結体が得られなくなる。D、が1,5μmを越える窒
化アルミニウム粉末は、焼結が十分に進まない九めに緻
密な焼結体を得ることができない。上記の平均粒径(D
1)は、0.3μm≦D、≦1.0μmの範囲であるこ
とが好ましく、さらに0,3tun ≦D、 ≦O17
μmの範囲であることがより好ましい。
In the present invention, the next average particle diameter (Dl) n calculated from the above specific surface area must be in the range of 0.2 μm≦D1≦1.5 μm. Aluminum nitride powder with a Dl of less than 0.2 μm has a large specific surface area and accordingly an excessively large oxygen content, making it impossible to obtain a sintered body with excellent NFC physical properties. If the aluminum nitride powder has D exceeding 1.5 μm, sintering will not progress sufficiently and a dense sintered body cannot be obtained. The above average particle size (D
1) is preferably in the range of 0.3μm≦D, ≦1.0μm, and furthermore, 0.3tun≦D, ≦O17
More preferably, it is in the μm range.

次に、前記の比表面積から算出し友干均粒径(D1)と
沈降法で測定した平均粒径(D2)とは。
Next, what is the average particle diameter (D1) calculated from the above-mentioned specific surface area and the average particle diameter (D2) measured by the sedimentation method?

D /D≦2.60でなければならない。D2/D、の
値が2.60’に越えた場合には、焼結時の収縮率が十
分に小さい窒化アルミニウム粉末を得ることができない
。D2/D、は、2.50以下であることが好ましく、
さらに2640以下であることが寸法安定性の点からよ
り好ましい。後述する方法により窒化アルミニウム粉末
を製造し几場合には、一般に2.00≦D2/D、≦2
.60の範囲の粉末を得ることができる。
D/D≦2.60. If the value of D2/D exceeds 2.60', it is impossible to obtain aluminum nitride powder with a sufficiently small shrinkage rate during sintering. D2/D is preferably 2.50 or less,
Further, it is more preferably 2640 or less from the viewpoint of dimensional stability. When aluminum nitride powder is produced by the method described below, generally 2.00≦D2/D, ≦2
.. 60 range of powders can be obtained.

因に、前記した特開昭59−50008号公報に記載さ
れた窒化アルミニウム粉末は、比表面積(4,2m2/
、’7 )から算出した平均粒径(D1)が0.44μ
mであり、沈降法により測定し次平均粒径(D2)が1
.22 μmであり、 D2/D、≦2.77である。
Incidentally, the aluminum nitride powder described in the above-mentioned Japanese Patent Application Laid-open No. 59-50008 has a specific surface area (4.2 m2/
The average particle diameter (D1) calculated from ,'7) is 0.44μ
m, and the average particle diameter (D2) measured by the sedimentation method is 1
.. 22 μm, and D2/D, ≦2.77.

本発明の窒化アルミニウム粉末は、D2/D、≦2.6
0であることから、−次粒子の凝集の程度が比較的小さ
い粉末であるといえる。
The aluminum nitride powder of the present invention has D2/D, ≦2.6
Since it is 0, it can be said that the powder has a relatively small degree of aggregation of secondary particles.

本発明の窒化アルミニウム粉末は、上記の条件を満足し
ておれば良いが、さらに熱伝導率等に優九次窒化アルミ
ニウム焼結体を得る逢めには、酸素含有量や陽イオン不
純物の少ないことが好ましい。即ち、A/、N ’i窒
化アルミニウム組成とするとき、不純物となる酸素含有
量が1.5重t%以下、陽イオン不純物が0.3M量チ
以下である窒化アルミニウム粉末が好適である。さらに
、酸素含有量が0.4〜1.3重量%、陽イオン不純物
が0.2重量%以下である窒化アルミニウム粉末がより
好適である。
The aluminum nitride powder of the present invention only needs to satisfy the above conditions, but in order to obtain a 9th order aluminum nitride sintered body with excellent thermal conductivity, etc., it is necessary to have a low oxygen content and a low cationic impurity. It is preferable. That is, when the aluminum nitride composition is A/, N'i, it is preferable to use an aluminum nitride powder having an oxygen impurity content of 1.5% by weight or less and a cationic impurity content of 0.3M or less. Furthermore, aluminum nitride powder having an oxygen content of 0.4 to 1.3% by weight and a cationic impurity of 0.2% by weight or less is more suitable.

尚、本発明に於ける窒化アルミニウムはアルミニウムと
窒素の1:l化合物であり、これ以外のものをすべて不
純物として扱う。ただし窒化アルミニウム粉末の表面は
空気中で不可避的に酸化されkl−N結合がA/、−0
結合に置き変っているが、この結合AAは隣イオン不純
物とはみなさない。従って、 At−N 、 AA−0
の結合をしていない金属アルミニウムは陽イオン不純物
である。
Note that aluminum nitride in the present invention is a 1:1 compound of aluminum and nitrogen, and anything other than this is treated as an impurity. However, the surface of aluminum nitride powder is inevitably oxidized in the air, and the kl-N bond is A/, -0.
Although it is replaced by a bond, this bond AA is not considered as an adjacent ion impurity. Therefore, At-N, AA-0
Metallic aluminum that has no bond is a cationic impurity.

本発明に於ける上記窒化アルミニウム粉末はどのような
方法によって得られたものであっても艮い。
The aluminum nitride powder in the present invention may be obtained by any method.

下記に一般に好適に採用される代表的な窒化アルミニウ
ム粉末の製造法について説明する。本発明に於いて原料
となるカーゲンは、特定の比表面積と吸油量とを有する
。即ち、比表面積は60d/I以上、好ましくは100
〜300 m /、!i’である。
A typical method for producing aluminum nitride powder that is generally suitably employed will be described below. Cargen, which is a raw material in the present invention, has a specific specific surface area and oil absorption amount. That is, the specific surface area is 60 d/I or more, preferably 100
~300m/,! It is i'.

また、吸油量は、80cc/g以上、好ましくは100
〜200 cc/9である。比表面積と吸油量とが上記
の範囲をはずれた場合には、前記した本発明の窒化アル
ミニウム粉末は得ら7′Lない。さらに、カーボンの見
掛密度は、得られる窒化アルミニウム粉末の一次粒子の
凝集の程度に影Wt及ぼす場合が多い。前記した本発明
の窒化アルミニウム粉末の中でも特にD2/D、≦2.
50であるもの全得る場合は、カーデンの見掛密度は1
.90〜2.lO、q / c cであることが好まし
い。
In addition, the oil absorption amount is 80 cc/g or more, preferably 100 cc/g or more.
~200 cc/9. If the specific surface area and oil absorption amount are out of the above range, the aluminum nitride powder of the present invention described above cannot be obtained. Furthermore, the apparent density of carbon often affects the degree of aggregation of the primary particles of the aluminum nitride powder obtained. Among the aluminum nitride powders of the present invention described above, D2/D, ≦2.
50, the apparent density of carden is 1
.. 90-2. Preferably, lO, q/cc.

一方の原料であるアルミナは、At20.で表わされる
ものが何ら制限なく採用される。後述する焼成によりア
ルミナになり得るアルミ;ラム化合物、例えば、塩fヒ
アルミニラム、硫酸アルミニウム、硝酸アルミニウム、
ミョウバン、水酸化アルミニウム等を焼成することによ
り得たアルミナであっても良い。即ち、焼成によりアル
ミナになり得るアルミニウム化合物とカーゲンとを混合
し、後述する条件により焼成して該アルミニウム化合物
を分解してアルミナとし、さらに焼成して窒化反応全行
なう方法も本発明で採用することができる。
Alumina, one of the raw materials, was At20. Those expressed in are accepted without any restrictions. Aluminum that can be turned into alumina by firing as described below; ram compounds, such as salt f hyaluminum, aluminum sulfate, aluminum nitrate,
Alumina obtained by firing alum, aluminum hydroxide, etc. may also be used. That is, the present invention also adopts a method in which an aluminum compound that can be turned into alumina by firing is mixed with Kagen, fired under the conditions described below to decompose the aluminum compound to form alumina, and further fired to carry out the entire nitriding reaction. I can do it.

アルミナの平均粒径は、窒化反応の進行し易さの点から
、沈降法により測定した値で2μm以下、好ましくは1
μm以下であることが好適である。
The average particle size of alumina is 2 μm or less, preferably 1 μm or less, as measured by a sedimentation method, in order to facilitate the progress of the nitriding reaction.
It is preferable that the thickness is less than μm.

上記した原料のカーボンとアルミナに含まれる不純物は
、殆んどそのまま窒化アルミニウム粉末中に残存して不
純物となる。従って、高純度の窒化アルミニウム粉末を
得る九めには、カーダンの灰分は、0.3重t%以下、
好ましく F′s、0.2重量%以下であり、アルミナ
の純度は99.0重量%以上、好ましくは99.5重t
%以上であることが好適である。
Most of the impurities contained in the raw materials carbon and alumina described above remain in the aluminum nitride powder as impurities. Therefore, in order to obtain high-purity aluminum nitride powder, the ash content of cardan should be 0.3% by weight or less,
Preferably F's is 0.2% by weight or less, and the purity of alumina is 99.0% by weight or more, preferably 99.5% by weight.
% or more.

アルミナとカーボンの混合比は一般に1:0.4〜l:
3の範囲、好ましくはカーMン灰分から混入する不純物
量を低減する意味で1:0.4〜1:0.7の範囲が好
適である。混合は乾式あるいは湿式のどちらでも良いが
、通常、十分な混合を達成する定めには、湿式混合が好
ましい。通常、混合手段nd?−ルミルによる混合が好
適であるが、この際使用する容器、ゴール等は高純度ア
ルミナ質あるいはプラスチック質などを用い、不純物の
混入を極力防止するのが好ましい。ゼールミルとしては
、公知のもの、例えば回転式♂−ルミル、パイグロポー
ルミル等が挙げられる。また、アトライターによる混合
も採用し得る。また反応率を上げ未反応アルミナ分の量
全極小とするため十分均一な混合を行うのが好ましい。
The mixing ratio of alumina and carbon is generally 1:0.4~l:
3, preferably 1:0.4 to 1:0.7 in order to reduce the amount of impurities mixed in from the carbon ash. Mixing may be dry or wet, but wet mixing is usually preferred to achieve sufficient mixing. Usually, the mixing means nd? - Mixing by Lumil is preferred, but it is preferable to use high-purity alumina or plastic for the containers, goals, etc. used at this time to prevent contamination with impurities as much as possible. Examples of the Zeel mill include known ones, such as a rotary male mill and a pygropol mill. Mixing by an attritor may also be employed. Further, in order to increase the reaction rate and minimize the total amount of unreacted alumina, it is preferable to perform sufficiently uniform mixing.

混合粉末は焼成炉によって1300〜1700℃、好1
しくけ1450〜1650℃の温度で通常3〜10時間
焼成することにより本発明の窒化アルミニウム粉末が得
られる。焼成温度が上記の下限温度より低い温度では窒
化反応が十分進行せず、目的の窒化アルミニウム粉末が
得られない場合があるので好ましくない。また、焼成温
度が前記の上限温度を越える高い温度では窒化反応は十
分進行′するが、しばしば生成する窒化アルミニウム粉
末の粒子径が大きくなるか、あるいは凝集が著しくなり
、本発明の微粉末を得ることができなh場合があるので
好ましくない。
The mixed powder is heated to 1,300 to 1,700℃ using a firing furnace.
The aluminum nitride powder of the present invention can be obtained by firing at a temperature of 1,450 to 1,650°C for usually 3 to 10 hours. If the firing temperature is lower than the above lower limit temperature, the nitriding reaction will not proceed sufficiently and the desired aluminum nitride powder may not be obtained, which is not preferable. In addition, when the firing temperature is higher than the above-mentioned upper limit temperature, the nitriding reaction progresses sufficiently, but the particle size of the aluminum nitride powder often becomes large or the agglomeration becomes significant, resulting in the production of the fine powder of the present invention. This is not preferable because it may not be possible.

前記焼成の際には焼成炉の炉材や焼成ボートなどの材質
について不純物の原因とならないように配慮するのが好
ましい。また焼成の雰囲気は窒素を含む雰囲気、通常は
高純度の窒素ガスかあるいはそれにアンモニアガスなど
を加えたがスが好適であり、通常これらの反応がスを窒
化反応が十分進行するだけの量、連続的又は間欠的に供
給しつつ焼成するとよい。
During the firing, it is preferable to take care to ensure that the materials of the firing furnace and the firing boat do not cause impurities. In addition, the firing atmosphere is preferably an atmosphere containing nitrogen, usually high-purity nitrogen gas or ammonia gas added to it. It is preferable to perform firing while supplying continuously or intermittently.

上記焼成後の混合物は窒化アルミニウム粉末の他に未反
応のカーボン金含有するので一般には混合物を650〜
750℃の温度で空気中あるいは酸素中で焼成し、残存
するカーノンを酸化除去すると好ましい。酸化温度が高
すぎると窒化アルミニウム粉末の表面が過剰に酸化され
目的とする粉末が得られ雌い傾向があるので適当な酸化
温度と時間を選択するのが好ましい。
The above-mentioned fired mixture contains unreacted carbon gold in addition to the aluminum nitride powder, so the mixture is generally heated to 650~
It is preferable to oxidize and remove residual carnon by firing in air or oxygen at a temperature of 750°C. If the oxidation temperature is too high, the surface of the aluminum nitride powder will be excessively oxidized and the desired powder will tend to be poor, so it is preferable to select an appropriate oxidation temperature and time.

(効果) 本発明の窒化アルミニウム粉末は、−次粒子の凝集の程
度が小さい。このため、本発明の窒化アルミニウム粉末
を用いて焼結を行なった場合、線収縮率を20%以下、
さらには18%以下とすることができる。このように、
本発明の窒化アルミニウム粉末は、寸法安定性が良好で
あり、特に高融点金属のペーストを表面に印刷して焼成
する同時焼放法に於いて、金属との収縮率の差を小さく
することができる次めに好適に使用される。
(Effects) The aluminum nitride powder of the present invention has a small degree of aggregation of secondary particles. Therefore, when sintering is performed using the aluminum nitride powder of the present invention, the linear shrinkage rate is 20% or less,
Furthermore, it can be made 18% or less. in this way,
The aluminum nitride powder of the present invention has good dimensional stability, and can reduce the difference in shrinkage rate with metal, especially in the simultaneous firing method in which a high melting point metal paste is printed on the surface and fired. It is preferably used next.

さらに、酸素含有量及び陽イオン不純物の少ない窒化ア
ルミニウム粉末を原料として用いた場合には、上記の効
果に茄えて、高熱伝導性、さらには透光性を有する窒化
アルミニウム焼結体を得ることができる。
Furthermore, when aluminum nitride powder with low oxygen content and cationic impurities is used as a raw material, it is possible to obtain an aluminum nitride sintered body with high thermal conductivity and even translucency, in addition to the above-mentioned effects. can.

(実施例) 本発明をさらに具体的に説明するために以下に実施例及
び比較例を掲げるが、本発明はこれらの実施例に限定さ
れるものではない。
(Examples) In order to explain the present invention more specifically, Examples and Comparative Examples are listed below, but the present invention is not limited to these Examples.

尚、以下の実施例及び比較例に於ける各種の物性の測定
は次の方法により行なった。
In addition, measurements of various physical properties in the following Examples and Comparative Examples were performed by the following methods.

l)カーボンの灰分量: JISK−6221−197
0に従い、750℃の灰化後の重量から求め次。
l) Ash content of carbon: JISK-6221-197
According to 0, the following was determined from the weight after incineration at 750°C.

2)カーパ?ノの吸油t : JIS K−6221−
1970に従い、ジブチルフタレートの滴下量から求め
た。
2) Carpa? Oil absorption: JIS K-6221-
It was determined from the amount of dibutyl phthalate dropped in accordance with 1970.

3)比表面積:N2吸着によるBET法で求めた。3) Specific surface area: Determined by the BET method using N2 adsorption.

(島津裏作所(喪)「フローソープ2300Jを使用) 4) みかけ密度:ヘリウム置換式圧力比較法で求めた
。(島津鯛作所(製)「オートビクツメーター1320
 Jを使用) 5)  AtN粉末の平均−欠粒径(D1)6)  A
tN粉末の平均凝集粒径(D2) :遠心沈降法にて求
め友。(堀場製作所(裂) r CAPA500」を使
用) 7)  AtN粉末中の不純物量 陽イオン不純物量:粉末をアルカリ溶融後、酸で中和し
、溶液のICP発光分光分析により定量し7’?、 (
島津製作所(襲) r ICPS −1000Jを使用
) 不純物カーMン量:粉末を酸素気流中で燃焼させ、発生
したco、co2が重量から定量し友。(堀場製作所(
裂)rEMIA−110Jを使用)不純物酸素量:グラ
ファイトるつぼ中での粉末の高温の熱分解法により発生
し几COガス量から求めた。(堀場製作所(II)rE
MGA2800Jを使用) 8)シート成形体密度(d(g)) : AtN粉末と
分散剤とを有機溶媒中に分散させてスラリーとし、これ
をドクターブレード法により成形して得た成形体の寸法
と重量とから生密度を求め、この値からAtN粉末だけ
の成形密度を計算して求めた。
(Using Flow Soap 2300J manufactured by Shimadzu Urasakusho Co., Ltd.) 4) Apparent density: Determined using the helium displacement pressure comparison method.
J) 5) Average missing particle diameter (D1) of AtN powder 6) A
Average aggregate particle size (D2) of tN powder: Determined by centrifugal sedimentation method. (Using Horiba, Ltd. CAPA500) 7) Amount of impurities in AtN powder Amount of cationic impurities: After melting the powder with an alkali, neutralize it with an acid and quantify it by ICP emission spectrometry of the solution. , (
(Using Shimadzu Corporation's ICPS-1000J) Amount of impurity carbon: Powder is burned in an oxygen stream, and the generated CO and CO2 are determined from the weight. (Horiba, Ltd.)
(REMIA-110J was used) Impurity oxygen content: Determined from the amount of CO gas generated by high-temperature pyrolysis of powder in a graphite crucible. (Horiba (II) rE
(Using MGA2800J) 8) Sheet molded body density (d (g)): AtN powder and dispersant are dispersed in an organic solvent to form a slurry, and this is molded by the doctor blade method. The green density was determined from the weight, and the compacted density of the AtN powder alone was calculated from this value.

9)  ktN焼結体密度(d(ll)) : ’アル
キメデス法により求めた。(東洋精機(裂)[高精度比
重計D−HJを便用) 10) AtN焼結体熱伝導率ニレ−デーフラッシュ法
により求め、検量線による厚さ補正を行つ九。(理学電
機(製)[熱定数測定装置PS−7Jを使用) 11)焼結時の収縮率:焼結前後の寸法測定により求め
た。
9) ktN sintered body density (d(ll)): 'Determined by the Archimedes method. (Toyo Seiki Co., Ltd. [Using a high-precision hydrometer D-HJ for convenience) 10) Thermal conductivity of AtN sintered body Determined by the Niley-day flash method, and the thickness is corrected using a calibration curve.9. (manufactured by Rigaku Denki [using thermal constant measuring device PS-7J]) 11) Shrinkage rate during sintering: Determined by dimensional measurements before and after sintering.

実施例1 純度99.99%、沈降法によ? 11m+1定した平
均粒子径0.524m、比表面積8.1 m /gのA
/!、20.500Iと、表1に示し几各種カーボン5
00gとをナイロン!$1?ットと?−ルを用い混合し
念。混合粉末を高純度黒鉛馬るつぼに入れ、N2がス流
下で1600℃6時間加熱した。反応混合物は空気中で
700℃、10時間加熱し、未反応のカーがンを酸化除
去した。得られ友粉末のX線回折パターンは、実験A9
を除くすべての実験例に於てAtNのビークのみを示し
、α−At203の回折線は認められなかった。実験墓
9ではα−At20.のビークがわずかに認められ比。
Example 1 Purity 99.99%, by sedimentation method? 11m+1 A with a constant average particle diameter of 0.524m and a specific surface area of 8.1 m/g
/! , 20.500I and various carbon 5 shown in Table 1.
00g and nylon! $1? And? - Be sure to mix using a holder. The mixed powder was placed in a high-purity graphite crucible and heated at 1600°C for 6 hours under a stream of N2. The reaction mixture was heated in air at 700° C. for 10 hours to oxidize and remove unreacted carbon. The X-ray diffraction pattern of the obtained tomo powder is that of Experiment A9.
In all experimental examples except for , only the peak of AtN was shown, and the diffraction line of α-At203 was not observed. In experimental grave 9, α-At20. A slight peak was observed in the ratio.

次に得られ友各粉末400gとCa 5ht2ob 2
4 g。
Next, 400 g of each powder obtained and Ca 5ht2ob 2
4g.

ソルビタントリオレート4g1)ルエン132Lエタノ
ール108gとを内容積4.81のナイロン梨ポットに
仕込みナイロン被覆が一ルを用いて24時間混合した。
4 g of sorbitan triolate (1) 132 L of luene and 108 g of ethanol were placed in a nylon pear pot with an internal volume of 4.81 kg and mixed for 24 hours using a nylon-coated pot.

混合スラリーに、ポリビニルブチラール28g、ぺ/ジ
ルブチルフタレート28.9.)ルエン44g、エタノ
ール36Iを加え、更に24時間ゼールミル混合した。
To the mixed slurry, 28 g of polyvinyl butyral and 28.9 g of per/dylbutyl phthalate were added. ) 44 g of toluene and 36 I of ethanol were added, and the mixture was further mixed in a Zeel mill for 24 hours.

得られたスラリーを粘度が20000 cps (at
 25℃]になるまで真空脱泡を行った。脱泡後のスラ
リーをドクターブレードシート成形法で成形し、厚さ1
■の成形体を得た。この成形体を34−口の金型で打ち
ぬき焼結テスト用サンゾルとした。打ちぬい友成形体を
マツフル炉中で空気中、600℃3時間脱脂処理した。
The resulting slurry was heated to a viscosity of 20,000 cps (at
Vacuum defoaming was performed until the temperature reached 25°C]. The defoamed slurry is molded using the doctor blade sheet molding method to a thickness of 1.
A molded article (2) was obtained. This molded body was punched out using a 34-hole mold to form a Sunsol for sintering tests. The molded product was degreased in a Matsufuru furnace at 600° C. for 3 hours.

ついでこの成形体を、内壁にBNスラリーtm布し次点
鉛製るつぼに入れ、焼結テストを行った。焼結はN2気
流中で、室温から1800℃までの昇温速度全5℃/m
inとし、1800℃で7時間保持後、自然冷却の条件
下で行った。得られた焼結体は熱伝導率、寸法および密
度の測定に供した。結果を表1にまとめた。尚、表1中
、実験ム9及び410は比較例である。
Next, this molded body was coated with BN slurry tm on its inner wall, placed in a runner-up lead crucible, and subjected to a sintering test. Sintering was performed in a N2 stream at a temperature increase rate of 5°C/m from room temperature to 1800°C.
After holding at 1800° C. for 7 hours, the test was carried out under the condition of natural cooling. The obtained sintered body was subjected to measurements of thermal conductivity, dimensions, and density. The results are summarized in Table 1. In Table 1, Experiments 9 and 410 are comparative examples.

実施例2 実施例1と同様の方法で主として粒子径の異なるktN
粉末を合成し、次いでシート成形、脱脂、焼結を行い、
各種評価全行った。結果を表2に示す。尚、表中、実験
扁6.7.8は比較例である。
Example 2 Using the same method as in Example 1, mainly ktN with different particle sizes
Synthesize the powder, then perform sheet forming, degreasing, and sintering.
All various evaluations were conducted. The results are shown in Table 2. In addition, in the table, experimental plates 6.7.8 are comparative examples.

Claims (2)

【特許請求の範囲】[Claims] (1)比表面積から算出した平均粒径(D_1)と沈降
法で測定した平均粒径(D_2)とが下記式 0.2μm≦D_1≦1.5μm D_2/D_1≦2.60 を共に満足することを特徴とする窒化アルミニウム粉末
(1) The average particle diameter (D_1) calculated from the specific surface area and the average particle diameter (D_2) measured by the sedimentation method both satisfy the following formula: 0.2 μm≦D_1≦1.5 μm D_2/D_1≦2.60 An aluminum nitride powder characterized by:
(2)比表面積が60m^2/g以上であり、且つ吸油
量が80cc/g以上のカーボンとアルミナとの混合粉
末を窒素を含む雰囲気下に1300〜1700℃で焼成
することを特徴とする特許請求の範囲第(1)項記載の
窒化アルミニウム粉末の製造方法。
(2) A mixed powder of carbon and alumina having a specific surface area of 60 m^2/g or more and an oil absorption of 80 cc/g or more is fired at 1300 to 1700°C in an atmosphere containing nitrogen. A method for producing aluminum nitride powder according to claim (1).
JP13042588A 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof Granted JPH01301505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13042588A JPH01301505A (en) 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13042588A JPH01301505A (en) 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof

Publications (2)

Publication Number Publication Date
JPH01301505A true JPH01301505A (en) 1989-12-05
JPH0563406B2 JPH0563406B2 (en) 1993-09-10

Family

ID=15033939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13042588A Granted JPH01301505A (en) 1988-05-30 1988-05-30 Aluminum nitride powder and production thereof

Country Status (1)

Country Link
JP (1) JPH01301505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483707A (en) * 1990-07-26 1992-03-17 Tokyo Tungsten Co Ltd Aluminum nitride power and production thereof
JPH05186207A (en) * 1992-01-14 1993-07-27 Tokuyama Soda Co Ltd Aluminum nitride powder
JP2019147709A (en) * 2018-02-27 2019-09-05 株式会社トクヤマ Method for producing aluminum nitride powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311506A (en) * 1986-07-01 1988-01-19 Murata Mfg Co Ltd Production of aluminum nitride powder
JPS63225506A (en) * 1987-03-13 1988-09-20 Sumitomo Chem Co Ltd Production of aluminum nitride powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311506A (en) * 1986-07-01 1988-01-19 Murata Mfg Co Ltd Production of aluminum nitride powder
JPS63225506A (en) * 1987-03-13 1988-09-20 Sumitomo Chem Co Ltd Production of aluminum nitride powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483707A (en) * 1990-07-26 1992-03-17 Tokyo Tungsten Co Ltd Aluminum nitride power and production thereof
JPH05186207A (en) * 1992-01-14 1993-07-27 Tokuyama Soda Co Ltd Aluminum nitride powder
JP2019147709A (en) * 2018-02-27 2019-09-05 株式会社トクヤマ Method for producing aluminum nitride powder

Also Published As

Publication number Publication date
JPH0563406B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
TWI573757B (en) A silicon nitride powder manufacturing method and a silicon nitride powder, and a silicon nitride sintered body and a circuit board using the same
JP6292306B2 (en) Silicon nitride powder, silicon nitride sintered body and circuit board, and method for producing silicon nitride powder
Baranwal et al. Flame spray pyrolysis of precursors as a route to nano‐mullite powder: powder characterization and sintering behavior
US4778778A (en) Process for the production of sintered aluminum nitrides
JP7027196B2 (en) Manufacturing method of aluminum nitride powder
WO2018117161A1 (en) Oriented aln sintered body, and production method therefor
TW200533600A (en) A method for producing an α-alumina particle
JPH01301505A (en) Aluminum nitride powder and production thereof
KR102669394B1 (en) Powder for film forming or sintering
JP2516295B2 (en) Aluminum nitride powder
JPS6278103A (en) Production of aluminum nitride powder
JP6346718B1 (en) Aluminum nitride particles
JPH0251841B2 (en)
TW202204288A (en) Method for continuous production of silicon nitride sintered body
JPH0789759A (en) Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
JP2525077B2 (en) Method for producing aluminum nitride powder
JP2680681B2 (en) Method for producing aluminum nitride powder
JPH05147910A (en) Aluminum nitride-based powder and its production
WO2019180937A1 (en) Aluminum nitride particles
JPH04317402A (en) Aluminum nitride power and its production
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
JP2723411B2 (en) Aluminum nitride powder
JPS62153171A (en) Manufacture of composite sintered body
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
Abothu et al. Nanocomposite versus sol-gel processing of barium magnesium tantalate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees