JPH0717453B2 - Aluminum nitride sintered body and method for manufacturing the same - Google Patents

Aluminum nitride sintered body and method for manufacturing the same

Info

Publication number
JPH0717453B2
JPH0717453B2 JP60268550A JP26855085A JPH0717453B2 JP H0717453 B2 JPH0717453 B2 JP H0717453B2 JP 60268550 A JP60268550 A JP 60268550A JP 26855085 A JP26855085 A JP 26855085A JP H0717453 B2 JPH0717453 B2 JP H0717453B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
weight
thermal conductivity
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60268550A
Other languages
Japanese (ja)
Other versions
JPS62128971A (en
Inventor
健一郎 宮原
洋一 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60268550A priority Critical patent/JPH0717453B2/en
Publication of JPS62128971A publication Critical patent/JPS62128971A/en
Publication of JPH0717453B2 publication Critical patent/JPH0717453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱伝導性の高い窒化アルミニウム質焼結体及び
その製造方法に関する。
TECHNICAL FIELD The present invention relates to an aluminum nitride sintered body having high thermal conductivity and a method for producing the same.

(従来の技術) 近年、LSIなどの半導体素子の集積度が上がるにしたが
ってLSIの発熱量が増大するために、その発熱した熱を
速やかに外部へ伝熱、放熱する必要が生じてきた。ま
た、パワートランジスタ、レーザーダイオードなど高出
力の半導体素子を実装するための基板及びパッケージに
おいても素子の動作時に発生する熱を短時間の内に素子
外へ放出しなければならない。
(Prior Art) In recent years, the amount of heat generated by an LSI increases as the degree of integration of semiconductor elements such as an LSI increases, so that it becomes necessary to quickly transfer and dissipate the generated heat to the outside. Further, in a substrate and a package for mounting a high-power semiconductor element such as a power transistor and a laser diode, heat generated during the operation of the element must be released to the outside of the element within a short time.

このような発熱量の大きい半導体素子を実装するため
に、熱伝導率の高い基板材料が必要とされ、従来このよ
うな熱伝導率の高い絶縁基板用材料として酸化ベリリウ
ム(BeO)系焼結体が用いられていたが毒性があるた
め、使用範囲が限定されていた。
A substrate material having high thermal conductivity is required to mount such a semiconductor element that generates a large amount of heat. Conventionally, a beryllium oxide (BeO) -based sintered body has been used as a material for an insulating substrate having such high thermal conductivity. Was used, but its range of use was limited because of its toxicity.

そこで、近時、窒化アルミニウム(AlN)が高い熱伝導
率を持ち、機械的強度も高いことから、そうした高熱伝
導材料として注目されてきたが、AlNは本質的には難燃
結性があるため、即ちSiC、Si3N4と同様共有結合性が強
く単味では焼結し難いため、Y2O3等の焼結助剤を添加す
る窒化アルミニウム質焼結体の製造技術が検討されてき
た(例えば特開昭60−127267号、特公昭47−18655号、
特公昭48−18925号公報)。
Therefore, recently, aluminum nitride (AlN) has been attracting attention as such a high thermal conductive material because of its high thermal conductivity and high mechanical strength, but AlN is inherently flame retardant. That is, since it has a strong covalent bond like SiC and Si 3 N 4 and is difficult to sinter by itself, a manufacturing technique of an aluminum nitride sintered body to which a sintering aid such as Y 2 O 3 is added has been studied. (For example, JP-A-60-127267, JP-B-47-18655,
Japanese Patent Publication No. 48-18925).

(発明が解決しようとする問題点) しかし乍ら、単にY2O3を添加するのみの前記公知の窒化
アルミニウム質焼結体の熱伝導率は、例えば前記特開昭
60−127267号公報に示されるように40W/m゜K程度、高
純度窒化アルミニウム原料を使用したイットリア添加系
窒化アルミニウム質焼結体においてさえ、80W/m゜K程
度であって、窒化アルミニウム自体の理論熱伝導率が32
0W/m゜Kであることと対比すると、かなり低いものであ
る。(問題点を解決するための手段) 本発明は上記問題点に鑑み鋭意研究した結果、窒化アル
ミニウムの粒界相にイットリウム化合物の他に、チタ
ン、ジルコニウム又はタンタルの炭化物又は窒化物や、
ホウ素の炭化物の少なくとも1種が共存した窒化アルミ
ニウム質焼結体は充分緻密化しかつ高熱伝導率化が達成
されていることを知見した。
(Problems to be Solved by the Invention) However, the thermal conductivity of the known aluminum nitride-based sintered body, to which Y 2 O 3 is simply added, is,
As disclosed in JP-A-60-127267, about 40 W / m ° K, about 80 W / m ° K even in a yttria-added aluminum nitride sintered body using a high-purity aluminum nitride raw material, the aluminum nitride itself Has a theoretical thermal conductivity of 32
It is considerably low compared with 0 W / m ° K. (Means for Solving the Problems) The present invention has been intensively studied in view of the above problems, and in addition to the yttrium compound in the grain boundary phase of aluminum nitride, a carbide or nitride of titanium, zirconium or tantalum, or
It has been found that an aluminum nitride sintered body in which at least one kind of boron carbide coexists is sufficiently densified and has high thermal conductivity.

したがって、本発明においてはAlN-Y2O3二成分系よりも
さらに優れた高熱伝導性、即ち少なくとも60W/m゜Kの
熱伝導性を有し、かつ高緻密質な窒化アルミニウム質焼
結体を得ることを目的とする。
Therefore, in the present invention, a highly dense aluminum nitride sintered body having a higher thermal conductivity than that of the AlN—Y 2 O 3 binary system, that is, a thermal conductivity of at least 60 W / m ° K. Aim to get.

本発明によれば、窒化アルミニウムの粒界相にイット
リウム化合物と、チタン、ジルコニウム又はタンタルの
炭化物又は窒化物およびホウ素の炭化物のうち少なくと
も1種とが共存していることを特徴とする窒化アルミニ
ウム質焼結体が提供される。また、窒化アルミニウム
85〜99.8重量%と、酸化イットリウム0.1〜10重量%
と、ホウ素、チタン、ジルコニウム又はタンタルの炭化
物のうち少なくとも1種0.1〜5重量%とからなる混合
粉体を成形後、非酸化性雰囲気中1600〜2100℃で焼成す
る事を特徴とする窒化アルミニウム質焼結体の製造方法
が提供される。
According to the present invention, the yttrium compound and at least one of carbides or nitrides of titanium, zirconium or tantalum and carbides of boron coexist in the grain boundary phase of aluminum nitride. A sintered body is provided. Also, aluminum nitride
85-99.8% by weight and yttrium oxide 0.1-10% by weight
Aluminum nitride characterized by being formed into a mixed powder of 0.1 to 5% by weight of at least one of carbides of boron, titanium, zirconium or tantalum, and then firing at 1600 to 2100 ° C in a non-oxidizing atmosphere. Provided is a method for manufacturing a quality sintered body.

即ち、窒化アルミニウム(AlN)の熱伝導は主にフォノ
ン(弾性波)により行われると考えられており、ホウ素
(B)、チタン(Ti)、ジルコニウム(Zr)又はタンタ
ル(Ta)の炭化物を添加しない従来のAlN-Y2O3系焼結体
の粒界相は主としてイットリア(Y2O3)化合物から成る
と推定され、フォノンが大きく散乱されるのに対し、上
記炭化物を添加した焼結体においては粒界相に上記炭化
物又は窒化物が主に存在する。この様な炭化物又は窒化
物はAlN等の絶縁体とは異なり電子伝導性でこの熱伝導
もフォノンによらず主として電子により行われる。
That is, it is considered that heat conduction of aluminum nitride (AlN) is mainly performed by phonons (elastic waves), and carbides of boron (B), titanium (Ti), zirconium (Zr) or tantalum (Ta) are added. It is estimated that the grain boundary phase of the conventional AlN-Y 2 O 3 system sintered body is mainly composed of yttria (Y 2 O 3 ) compound, and the phonons are largely scattered. In the body, the above carbides or nitrides are mainly present in the grain boundary phase. Unlike the insulator such as AlN, such a carbide or nitride has electronic conductivity, and this heat conduction is mainly performed by electrons instead of phonons.

そのため粒界相にこのような炭化物または窒化物がY2O3
と共存していると、粒界によるフォノン散乱が生じにく
いので結果として熱伝導率が向上したものと推定され
る。
Therefore, carbides or nitrides such as Y 2 O 3 are present in the grain boundary phase.
When coexisting with, it is considered that phonon scattering due to grain boundaries is less likely to occur, resulting in improved thermal conductivity.

AlNが85重量%未満では高熱伝導成分であるAlNが少なく
なり熱伝導率が低下すると共に抗折強度が劣化し、99.8
重量%を超えると焼結助剤が少なくなり焼結不足とな
る。Y2O3が0.1重量%未満であると、有効量の炭化物を
含むAlN成形体を充分に緻密化させることができない。
また、10重量%をこえるとY2O3を主体とする粒界相が多
くなり、熱伝導が低下してしまう。
If the AlN content is less than 85% by weight, the amount of AlN, which is a high thermal conductivity component, decreases, the thermal conductivity decreases, and the flexural strength deteriorates.
If it exceeds 5% by weight, the amount of sintering aid decreases and the sintering becomes insufficient. If Y 2 O 3 is less than 0.1% by weight, the AlN compact containing an effective amount of carbide cannot be sufficiently densified.
On the other hand, if it exceeds 10% by weight, the grain boundary phase mainly composed of Y 2 O 3 increases, and the thermal conductivity decreases.

また、上記炭化物(B4C,TiC,ZnC又はTaC)が0.1重量%
未満であるとフォノン散乱を制御する効果が少なく、5
重量%を超えると逆に粒界が変化物量が多くなり過ぎて
逆にフォノン散乱が増大して熱伝導率が低下すると共に
相対密度が小さくなる。
In addition, the above carbide (B 4 C, TiC, ZnC or TaC) is 0.1% by weight.
If it is less than 5, the effect of controlling phonon scattering is small and 5
On the other hand, if the content exceeds 50% by weight, the amount of change in the grain boundaries becomes too large, and conversely the phonon scattering increases, the thermal conductivity decreases, and the relative density decreases.

焼成温度は、1600℃より低い場合には焼結が不十分で焼
結体の緻密化が進まず、また2100℃より高くなると昇華
が激しく、分解し易くなる。また、焼成の雰囲気は、非
酸化性雰囲気でなければならない。酸化雰囲気では、窒
化アルミニウム粒体表面が酸化されて、酸化物粒界相が
増し、ボイドも多くなって、充分緻密化しかつ熱伝導性
の高い優良な窒化アルミニウム質焼結体を得ることはで
きなくなる。
If the firing temperature is lower than 1600 ° C, the sintering will be insufficient and the densification of the sintered body will not proceed, and if it is higher than 2100 ° C, sublimation will be severe and decomposition will be likely to occur. Also, the firing atmosphere must be a non-oxidizing atmosphere. In the oxidizing atmosphere, the surface of the aluminum nitride particles is oxidized, the number of oxide grain boundary phases increases, and the number of voids increases, so that it is possible to obtain a good quality aluminum nitride sintered body that is sufficiently densified and has high thermal conductivity. Disappear.

非酸化性雰囲気であってもアルゴン雰囲気等の場合、ホ
ウ素(B)、チタン(Ti)、ジルコニウム(Zr)又はタ
ンタル(Ta)の炭化物が粒界に生成される。しかし乍
ら、N2雰囲気の場合下記式に示すように窒化物へ変換さ
れているものと考えられる。
Even in a non-oxidizing atmosphere, in an argon atmosphere or the like, carbides of boron (B), titanium (Ti), zirconium (Zr) or tantalum (Ta) are generated at grain boundaries. However, it is considered that in the N 2 atmosphere, it is converted into a nitride as shown in the following formula.

B4C+2N2→4BN+C 2TiC+N2→2TiN+2C 2ZrC+N2→2ZrN+2C この場合、カーボン(C)は例えばフリーカーボンとし
てAlN中の不純物酸素をCO2として除去するのに役立つ。
またTaCは窒化物へ変換する可能性は小さいと考えられ
る。
B 4 C + 2N 2 → 4BN + C 2TiC + N 2 → 2TiN + 2C 2ZrC + N 2 → 2ZrN + 2C In this case, carbon (C) serves as free carbon, for example, to remove impurity oxygen in AlN as CO 2 .
Moreover, it is considered that TaC is unlikely to be converted into a nitride.

上記の理由からホウ素(B)、チタン(Ti)、ジルコニ
ウム(Zr)又はタンタル(Ta)の炭化物を含む混合粉体
をN2雰囲気中で焼成した場合、AlN焼結体の粒界相中上
記の金属が炭化物以外に窒化物として存在することか
ら、始めから窒化物として添加する場合が考えられた。
しかしこの場合前記したようにAlN中の不純物酸素をCO2
として除去するためのC成分が存在しないので炭化物添
加と同様の結果は得られないものと考えられる。
For the above reason, when a mixed powder containing a carbide of boron (B), titanium (Ti), zirconium (Zr) or tantalum (Ta) is fired in an N 2 atmosphere, the above-mentioned in the grain boundary phase of the AlN sintered body Since the above metals exist as nitrides other than carbides, it was considered that they were added as nitrides from the beginning.
However, in this case, as described above, the impurity oxygen in AlN is changed to CO 2
It is considered that the same result as the addition of the carbide cannot be obtained because there is no C component to be removed as.

本発明で得られた窒化アルミニウム質焼結体の組成は多
数の微細なAlN結晶(平均粒径1.5〜10μm)と、その粒
界相はイットリウム(Y)化合物と、ホウ素(B)、チ
タン(Ti)、ジルコニウム(Zr)又はタンタル(Ta)の
少なくとも1種の化合物とが共存した結晶からなってい
る。
The composition of the aluminum nitride sintered body obtained in the present invention is a large number of fine AlN crystals (average grain size: 1.5 to 10 μm), and the grain boundary phase thereof is an yttrium (Y) compound, boron (B), titanium ( Ti), zirconium (Zr) or tantalum (Ta) at least one compound coexists.

本発明においては、焼結助剤としてイットリアの他に、
特定量の炭化物が配合されていることが必須であるが、
この炭化物は常に他から積極的に加えなければならない
ものではなく、窒化アルミニウム粉末原料に予め含んで
いるものでもよい。
In the present invention, in addition to yttria as a sintering aid,
It is essential that a specific amount of carbide is blended,
This carbide does not always have to be positively added from others, and may be contained in the aluminum nitride powder raw material in advance.

これにより高熱伝導性窒化アルミニウム質焼結体が得ら
れるものである。
As a result, a highly heat conductive aluminum nitride sintered body can be obtained.

この理論の解明は未だなされていないが、本発明によれ
ば、比較的純度の高くない窒化アルミニウム原料粉末を
使用しても純度の高くない窒化アルミニウム原料粉末を
用いた窒化アルミニウム質焼結体と同等の高熱伝導性が
得られ、製造コストが低減できる。もちろん高純度のも
のを使用すれば更に高熱伝導性が向上する。
Although this theory has not been elucidated yet, according to the present invention, an aluminum nitride sintered body using an aluminum nitride raw material powder having a relatively high purity even if an aluminum nitride raw material powder having a relatively high purity is used, Equivalent high thermal conductivity can be obtained, and the manufacturing cost can be reduced. Of course, if a high-purity material is used, the high thermal conductivity will be further improved.

(実施例) 平均粒径1.2μm、純度97.0%の窒化アルミニウム(Al
N)粉末(酸素含有量1.5重量%)を主成分とし、これに
平均粒径0.8μmのY2O3粉末(3重量%)と、平均粒径
(3μm以下)のB4C,TiC ZrC,及びTaCを夫々第1表に
に示された量比(0.5及び3重量%)で添加混合し、こ
れに更にバインダーとしてパラフィンワックス6重量%
とステアリン酸1重量%を加えて混合したものを、成形
圧1000Kg/cm2でプレス成形した。
(Example) Aluminum nitride (Al) having an average particle size of 1.2 μm and a purity of 97.0%
N) powder (oxygen content 1.5% by weight) as a main component, Y 2 O 3 powder (3% by weight) with an average particle size of 0.8 μm and B 4 C, TiC ZrC with an average particle size (3 μm or less) , And TaC were added and mixed in the respective amount ratios (0.5 and 3% by weight) shown in Table 1, and 6% by weight of paraffin wax was further added as a binder.
And 1% by weight of stearic acid were added and mixed, and press-molded at a molding pressure of 1000 kg / cm 2 .

次に得られた成形体を常法により脱バインダーした後、
窒素雰囲気中(1気圧)で1860℃、30分加熱焼成して窒
化アルミニウム質焼結体を得た。更に、上記と同様の窒
化アルミニウム粉末の主成分にY2O3粉末3重量%を単味
で添加、混合し(炭化物添加量0重量%)、上記本発明
実施例の比較例とした。
Next, after debinding the obtained molded body by a conventional method,
An aluminum nitride sintered body was obtained by heating and firing at 1860 ° C. for 30 minutes in a nitrogen atmosphere (1 atm). Further, 3% by weight of Y 2 O 3 powder was simply added to and mixed with the main component of the same aluminum nitride powder as described above (the amount of carbide added was 0% by weight), which was used as a comparative example of the above-described inventive examples.

これら焼結体のカサ密度をアルキメデス法で、熱伝導率
をレーザーフラッシュ法で測定したところ、第1表に示
したような結果が得られた。
When the bulk density of these sintered bodies was measured by the Archimedes method and the thermal conductivity thereof was measured by the laser flash method, the results shown in Table 1 were obtained.

また、前記表に記載の各試料を、第1図に試料番号を付
して図示した。
Further, each sample described in the above table is illustrated by adding a sample number to FIG.

第1表及び第1図〜第4図から理解されるように、AIN-
Y2O3系に炭化物を若干添加したものはAlN-Y2O3系のみ
(熱伝導率80W/m゜K)は炭化物添加量の0.5重量%をピ
ークとして熱伝導率向上(熱伝導率80W/m゜K以上)の
効果が認められ、またカサ密度は90%以上を充分保持し
ている。
As can be understood from Table 1 and FIGS. 1 to 4, AIN-
The Y 2 O 3 system with a small amount of carbide added only has the AlN-Y 2 O 3 system (heat conductivity of 80 W / m ° K) with an improvement in the heat conductivity (heat conductivity of 0.5 Wt% of the amount of carbide added). The effect of 80 W / m ° K or more) is recognized, and the bulk density is 90% or more.

以上の焼結体は常圧法によったが、ホットプレス法によ
って行っても同様の傾向の試験結果が得られ、その場合
は焼結体の密度が一層高められるので、熱伝導性も全般
に上昇する。
The above-mentioned sintered body was based on the atmospheric pressure method, but a test result with a similar tendency can be obtained by performing the hot pressing method. In that case, since the density of the sintered body is further increased, the thermal conductivity is generally To rise.

なお、グリーン体の成形は、プレス成形のほか、テープ
成形、鋳込成形によっても行われる。
The green body may be formed by press molding, tape molding, or cast molding.

(発明の効果) 以上、従来高純度な窒化アルミニウム粉末原料や種々の
焼結助剤を使用しなければ高熱伝導性窒化アルミニウム
質焼結体が得られなかったのに対し、本発明によれば前
記特定範囲のY2O3−炭化物の単純な焼結助剤使用によっ
て、比較的純度の高くない窒化アルミニウム粉末原料か
ら高熱伝導性窒化アルミニウム焼結体が得られるのであ
る。
(Effects of the Invention) As described above, according to the present invention, a high thermal conductivity aluminum nitride sintered body could not be obtained unless the conventional high-purity aluminum nitride powder raw material and various sintering aids were used. By using a simple sintering aid of Y 2 O 3 -carbide in the above-mentioned specific range, a highly heat-conductive aluminum nitride sintered body can be obtained from an aluminum nitride powder raw material having a relatively low purity.

したがって本発明は、従来法に比し、非常に有利性の高
いものである。
Therefore, the present invention is extremely advantageous as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

図面は第1表に示す本発明の実施例及び比較例をプロッ
トしたものであり、第1図はB4C添加系、第2図はTiC添
加系、第3図はZrC添加系及び第4図はTaC添加系の熱伝
導率及びカサ密度を示すグラフ図である。
The drawings are plots of Examples and Comparative Examples of the present invention shown in Table 1. FIG. 1 is a B 4 C-added system, FIG. 2 is a TiC-added system, and FIG. 3 is a ZrC-added system. The figure is a graph showing the thermal conductivity and the bulk density of the TaC-added system.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウム(AlN)の粒界相にイッ
トリウム(Y)化合物と、チタン(Ti)、ジルコニウム
(Zr)又はタンタル(Ta)の炭化物又は窒化物およびホ
ウ素(B)の炭化物のうち少なくとも1種とが共存して
いることを特徴とする窒化アルミニウム質焼結体。
1. A yttrium (Y) compound in a grain boundary phase of aluminum nitride (AlN) and a carbide or nitride of titanium (Ti), zirconium (Zr) or tantalum (Ta) and a carbide of boron (B). An aluminum nitride-based sintered body characterized in that at least one kind thereof coexists.
【請求項2】窒化アルミニウム(AlN)85〜99.8重量%
と、酸化イットリウム(Y2O3)0.1〜10重量%と、ホウ
素(B)、チタン(Ti)、ジルコニウム(Zr)又はタン
タル(Ta)の炭化物のうち少なくとも1種0.1〜5重量
%とからなる混合粉体を成形後、非酸化性雰囲気中1600
〜2100℃で焼成する事を特徴とする窒化アルミニウム質
焼結体の製造方法。
2. Aluminum nitride (AlN) 85-99.8% by weight
And 0.1 to 10% by weight of yttrium oxide (Y 2 O 3 ) and 0.1 to 5% by weight of at least one kind of carbide of boron (B), titanium (Ti), zirconium (Zr) or tantalum (Ta). 1600 in a non-oxidizing atmosphere after molding
A method for producing an aluminum nitride-based sintered body, which comprises firing at ~ 2100 ° C.
JP60268550A 1985-11-28 1985-11-28 Aluminum nitride sintered body and method for manufacturing the same Expired - Lifetime JPH0717453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60268550A JPH0717453B2 (en) 1985-11-28 1985-11-28 Aluminum nitride sintered body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60268550A JPH0717453B2 (en) 1985-11-28 1985-11-28 Aluminum nitride sintered body and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS62128971A JPS62128971A (en) 1987-06-11
JPH0717453B2 true JPH0717453B2 (en) 1995-03-01

Family

ID=17460087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60268550A Expired - Lifetime JPH0717453B2 (en) 1985-11-28 1985-11-28 Aluminum nitride sintered body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0717453B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717454B2 (en) * 1985-06-28 1995-03-01 株式会社東芝 Aluminum nitride sintered body and manufacturing method thereof
JP2647346B2 (en) * 1985-06-28 1997-08-27 株式会社東芝 Manufacturing method of aluminum nitride sintered body heat sink
JPH01153573A (en) * 1987-12-11 1989-06-15 Toshiba Ceramics Co Ltd Sintered aln material
JPH02271969A (en) * 1989-04-12 1990-11-06 Toshiba Ceramics Co Ltd Aln-based sintered body
JPH02271967A (en) * 1989-04-12 1990-11-06 Toshiba Ceramics Co Ltd Aln-based sintered body
EP0393524A3 (en) * 1989-04-17 1993-02-10 Kawasaki Steel Corporation Method of making a sintered body of aluminium nitride
JP2567491B2 (en) * 1990-04-17 1996-12-25 住友電気工業株式会社 High thermal conductivity colored aluminum nitride sintered body and method for producing the same
JP2541150B2 (en) * 1994-05-25 1996-10-09 品川白煉瓦株式会社 Aluminum nitride sintered body
JP4245125B2 (en) 2001-11-26 2009-03-25 日本碍子株式会社 Aluminum nitride ceramics, semiconductor manufacturing members, corrosion resistant members, and conductive members
JP4493264B2 (en) * 2001-11-26 2010-06-30 日本碍子株式会社 Aluminum nitride ceramics, semiconductor manufacturing members and corrosion resistant members
CN107195834A (en) * 2017-07-25 2017-09-22 江苏万达新能源科技股份有限公司 A kind of safe electrokinetic cell aluminum hull with shock-absorbing function

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247985C2 (en) * 1982-12-24 1992-04-16 W.C. Heraeus Gmbh, 6450 Hanau Ceramic carrier
JPS6071575A (en) * 1983-09-26 1985-04-23 株式会社トクヤマ Aluminum nitride sintered body
DE3337630A1 (en) * 1983-10-15 1985-04-25 W.C. Heraeus Gmbh, 6450 Hanau TEMPERATURE COMPENSATING BODY
JPS60127267A (en) * 1983-12-12 1985-07-06 株式会社東芝 High heat conductivity aluminum nitride sintered body
JPS60195059A (en) * 1984-03-15 1985-10-03 株式会社トクヤマ Composite sintered body
JPS6131360A (en) * 1984-07-19 1986-02-13 株式会社トクヤマ Manufacture of composite sintered body
JPS6163572A (en) * 1984-09-03 1986-04-01 株式会社トクヤマ Manufacture of composite sintered body
JPS61215264A (en) * 1985-03-19 1986-09-25 ティーディーケイ株式会社 Aluminum nitride sintered body and manufacture
JPS61270262A (en) * 1985-05-22 1986-11-29 日本特殊陶業株式会社 High heat conductive aluminum nitride sintered body
JPS61281074A (en) * 1985-06-05 1986-12-11 日本特殊陶業株式会社 High heat conductivity aluminum nitride sintered body
JPH0717454B2 (en) * 1985-06-28 1995-03-01 株式会社東芝 Aluminum nitride sintered body and manufacturing method thereof
JPS6252191A (en) * 1985-08-29 1987-03-06 東芝タンガロイ株式会社 Plasticity process of ceramic sintered body
JPS6256376A (en) * 1985-09-05 1987-03-12 株式会社トクヤマ Manufacture of composite sintered body

Also Published As

Publication number Publication date
JPS62128971A (en) 1987-06-11

Similar Documents

Publication Publication Date Title
JPH0717453B2 (en) Aluminum nitride sintered body and method for manufacturing the same
JP2547767B2 (en) High thermal conductivity aluminum nitride sintered body
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP2774761B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
EP0064264B1 (en) Silicon carbide powder mixture and process for producing sintered bodies therefrom
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2661113B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6252181A (en) Manufacture of aluminum nitride sintered body
JP2541150B2 (en) Aluminum nitride sintered body
JP2524185B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0515668B2 (en)
JPS635352B2 (en)
JP4702978B2 (en) Aluminum nitride sintered body
JP3272791B2 (en) Manufacturing method of aluminum nitride sintered body
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JPH0678195B2 (en) Aluminum nitride sintered body
JP2778732B2 (en) Boron nitride-aluminum nitride based composite sintered body and method for producing the same
JPS61201669A (en) Aluminum nitride sintered body and manufacture
JP2975490B2 (en) Method for producing high thermal conductivity β-type silicon carbide sintered body
JPH0741366A (en) High heat-conductivity silicon carbide sintered compact
JP2000072552A (en) Silicon nitride heat radiation member and its production