JPS61270262A - High heat conductive aluminum nitride sintered body - Google Patents

High heat conductive aluminum nitride sintered body

Info

Publication number
JPS61270262A
JPS61270262A JP60111113A JP11111385A JPS61270262A JP S61270262 A JPS61270262 A JP S61270262A JP 60111113 A JP60111113 A JP 60111113A JP 11111385 A JP11111385 A JP 11111385A JP S61270262 A JPS61270262 A JP S61270262A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
periodic table
elements
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60111113A
Other languages
Japanese (ja)
Other versions
JPH0243700B2 (en
Inventor
奥野 晃康
正一 渡辺
生駒 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60111113A priority Critical patent/JPS61270262A/en
Publication of JPS61270262A publication Critical patent/JPS61270262A/en
Priority to US07/039,347 priority patent/US4877760A/en
Priority to US07/405,780 priority patent/US4997798A/en
Priority to US07/405,872 priority patent/US4961987A/en
Publication of JPH0243700B2 publication Critical patent/JPH0243700B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、絶縁基板、ヒートシンク等に使用される高熱
伝導性窒化アルミニウム焼結体に関するものであり、特
に、メタライズの容易な高熱伝導性窒化アルミニウム焼
結体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a highly thermally conductive aluminum nitride sintered body used for insulating substrates, heat sinks, etc. In particular, the present invention relates to a highly thermally conductive aluminum nitride sintered body that is easily metalized. Regarding aluminum sintered bodies.

[従来の技術] 近年、電子機器の小形化や機能向上に対する要求は極め
て大きくなっており、それに伴って半導体は集積密度の
向上、多機能化、高速化、高出力化、高信頼化の方向に
急速に進展している。これらに対応して半導体から発生
する熱量はますます増加しており、従来のへ9203基
板にかわる放熱能力の大きい基板が要求されるようにな
っている。
[Conventional technology] In recent years, demands for miniaturization and improved functionality of electronic devices have become extremely large, and as a result, semiconductors are becoming more integrated, more multifunctional, faster, more output, and more reliable. is rapidly progressing. Correspondingly, the amount of heat generated from semiconductors is increasing more and more, and a substrate with a large heat dissipation ability is required to replace the conventional He9203 substrate.

この放熱能力の大きい基板材料、即ち熱伝導性の高い材
料としては、ダイヤモンド、立方晶BN(窒化硼素)、
5iC(炭化硅素)、Bed(ベリリア)、AΩN(窒
化アルミニウム)、Si等をあげることができる。しか
し、ダイヤモンド、立方晶BNは基板として利用できる
大きさを製造することが困難であり、又、非常に高価で
ある。
Examples of substrate materials with a large heat dissipation capacity, that is, materials with high thermal conductivity include diamond, cubic BN (boron nitride),
Examples include 5iC (silicon carbide), Bed (beryria), AΩN (aluminum nitride), and Si. However, diamond and cubic BN are difficult to manufacture in a size that can be used as a substrate, and are also very expensive.

SiCは半導体であるために電気絶縁性、誘電率等の電
気特性がAQ203より劣り、AΩ203基板のかわり
として使用できない。BeOは電気特性が非常に優れて
いるが、成形時、研削加工時等に発生する粉末が毒性を
もつために国内で生産されず、海外から求める必要があ
るために供給が不安定となる恐れがある。3iは電気特
性が悪く、又、機械的強度も小さいので、基板材料とし
ての使用は限られる。AQNは高絶縁性、高絶縁耐圧、
低誘電率などの優れた電気特性に加えて、常圧焼結が適
用できるが、所要面に金属層が形成出来ず、未だ高出力
用の多層基板は開発されていないのが実情である。
Since SiC is a semiconductor, its electrical properties such as electrical insulation and dielectric constant are inferior to AQ203, and it cannot be used as a substitute for the AΩ203 substrate. Although BeO has very excellent electrical properties, the powder generated during molding and grinding processes is toxic, so it cannot be produced domestically and must be obtained from overseas, which may lead to unstable supply. There is. 3i has poor electrical properties and low mechanical strength, so its use as a substrate material is limited. AQN has high insulation, high dielectric strength,
In addition to excellent electrical properties such as low dielectric constant, pressureless sintering can be applied, but the reality is that a metal layer cannot be formed on the required surface, and a multilayer substrate for high output has not yet been developed.

[発明の解決しようとする問題点] この様に、AQNは、金属との濡れ性が悪いために、メ
タライズできず基板としての使用は困難であった。
[Problems to be Solved by the Invention] As described above, AQN has poor wettability with metals, so it cannot be metalized and is difficult to use as a substrate.

又、例えば、特開昭50−75208や特開昭59−4
0404のように、AΩN基板表面を酸化させてからメ
タライズしたり、特開昭53−102310のように、
先ず、AΩN基板表面に金属酸化物を設け、その後にメ
タライズする等の技術が知られているが、いずれも焼結
体表面にメタライズすることは出来ても、多層化を目的
とする同時焼成、法には適用することが出来ず、又メタ
ライズされた金属層とAQN基板との間に比較的熱伝導
率の低い層が介在することになるために熱伝導率の低下
はさけられないといった欠点を有していた。
Also, for example, JP-A-50-75208 and JP-A-59-4
0404, the AΩN substrate surface is oxidized and then metalized, or as in JP-A-53-102310,
First, there are known techniques such as providing a metal oxide on the surface of an AΩN substrate and then metalizing it, but although these techniques can metallize the surface of a sintered body, simultaneous firing for the purpose of multilayering, Furthermore, since a layer with relatively low thermal conductivity is interposed between the metallized metal layer and the AQN substrate, a decrease in thermal conductivity cannot be avoided. It had

[問題点を解決するための手段] 本発明は上記問題点を解決するために次の手段を採用し
た。
[Means for solving the problems] The present invention employs the following means to solve the above problems.

第1の発明の高熱伝導性窒化アルミニウム焼結体は、 窒化アルミニウムを100重量部と、 周期率表の4a、5a、5a族元索の硼化物及び周期率
表の4a、5a族元索の窒化物から選ばれた1種又は2
種以上の化合物を、金属元素に換算して総量で0.1〜
10重量部と からなることを特徴とする。
The highly thermally conductive aluminum nitride sintered body of the first invention contains 100 parts by weight of aluminum nitride, borides of groups 4a, 5a, and 5a of the periodic table, and borides of groups 4a and 5a of the periodic table. One or two selected from nitrides
The total amount of more than one species of compounds in terms of metal elements is 0.1~
10 parts by weight.

周期率表の4a族元素は、Ti、 Zr、1−1fのこ
とであり、5a族元素は、V、Nb、Taのことであり
、6a族元素はcr、MO,Wのことである。
Group 4a elements of the periodic table are Ti, Zr, and 1-1f, group 5a elements are V, Nb, and Ta, and group 6a elements are cr, MO, and W.

この周期率表の48,5a、6a族元素の硼化物及び周
期率表の4a、5a−族元素の窒化物から選ばれた1種
又は2種以上の化合物が、金属元素に換算して総量でA
QN100重但部に対し、0.1重但部以上10重足部
以下であるのは、この範囲より少ないとAΩN焼結体の
金属との濡れ性が改善されないためであり、逆にこの範
囲より多いとAQN焼結体の高熱伝導性が劣化し、又、
焼結性が劣化するためである。
The total amount of one or more compounds selected from borides of elements in groups 48, 5a, and 6a of the periodic table and nitrides of elements in groups 4a and 5a of the periodic table in terms of metal elements. DeA
The reason why the amount is 0.1 part to 10 part to QN100 part is because if it is less than this range, the wettability of the AΩN sintered body with metal will not be improved; If the amount is higher, the high thermal conductivity of the AQN sintered body will deteriorate, and
This is because sinterability deteriorates.

本発明は上記成分のみでも十分であるが、必要に応じて
Y203やCao等の焼結助剤をAΩN100重量部に
対して5重量部を超えない範囲で含んでもよい。
Although the above-mentioned components alone are sufficient for the present invention, if necessary, a sintering aid such as Y203 or Cao may be included in an amount not exceeding 5 parts by weight per 100 parts by weight of AΩN.

又、この焼結体の相対密度(理論密度に対する密度%)
が90%以上であるとAQNの持つ高熱伝導性の効果が
大きく、又、メタライズの接着強度が大きい。
Also, the relative density of this sintered body (density% relative to theoretical density)
When it is 90% or more, the high thermal conductivity effect of AQN is large, and the adhesive strength of the metallization is large.

第2の発明の高熱伝導性窒化アルミニウム焼結体は、第
1の発明に周期率表の4a、5a、5a族元索の炭化物
を加えたものであり、その要旨は、窒化アルミニウムを
100重量部と、 周期率表の4a、5a、5a族元素の硼化物及び周期率
表の4a、5a族元素の窒化物から選ばれた1種又は2
種以上の化合物と周期率表の4a。
The highly thermally conductive aluminum nitride sintered body of the second invention is obtained by adding carbides of groups 4a, 5a, and 5a of the periodic table to the first invention, and the gist thereof is that aluminum nitride is and one or two selected from borides of elements in groups 4a, 5a, and 5a of the periodic table and nitrides of elements in groups 4a and 5a of the periodic table.
More than one species of compounds and 4a of the periodic table.

5a、6a族元素の炭化物から選ばれた1種又は2種以
上の化合物との両生合物を、金属元素に換算して総量で
0.1〜10重量部と からなることを特徴とする。
It is characterized in that it consists of a total amount of 0.1 to 10 parts by weight in terms of metal elements of an amphibiotic compound with one or more compounds selected from carbides of group 5a and 6a elements.

前述の硼化物、窒化物及び炭化物の総量がAΩN100
重最部に対重量、0.1〜10重量部であ−るのは、第
1の発明と同様に、この範囲より少ないと、AQN焼結
体の金属との濡れ性が改善されず、逆にこの範囲より多
いと、/IN焼結体の高熱伝導性が劣化し、又、焼結性
が劣化するためである。
The total amount of borides, nitrides and carbides mentioned above is AΩN100
The weight of the heaviest part is 0.1 to 10 parts by weight, as in the first invention, if it is less than this range, the wettability of the AQN sintered body with metal will not be improved; On the other hand, if the content exceeds this range, the high thermal conductivity of the /IN sintered body will deteriorate, and the sinterability will also deteriorate.

又、AQNは本発明においても第1の発明と同様にY2
03やCaOを5重量部以下含んでもよい。
Also, in the present invention, AQN is Y2 as in the first invention.
03 or CaO in an amount of 5 parts by weight or less.

第1及び第2の発明は、AQN粉末、前述の硼化物粉末
、窒化物粉末、又はそれに加えて炭化物粉末に必要に応
じて焼結助剤粉末を加えて金型等により成形し、通常の
N2 、Ar、NHa腸分解ガス、N2等の非酸化性雰
囲気下で焼結したり、最終的に硼化物、窒化物、炭化物
になる化合物を用いてN、B、C等の存在下で焼結する
ことによって得ることができる。
The first and second inventions are made by adding sintering aid powder to AQN powder, the aforementioned boride powder, nitride powder, or carbide powder as needed, and molding the mixture using a mold or the like. Sintering in a non-oxidizing atmosphere such as N2, Ar, NHa enterolytic gas, N2, etc., or sintering in the presence of N, B, C, etc. using a compound that ultimately becomes a boride, nitride, or carbide. It can be obtained by tying

[作用] 周期率表の4a、5a、5a族元素の硼化物及び/又は
周期率表の4a、5a族元素の窒化物、第2の発明の場
合はそれに加えて周期率表の4a。
[Function] A boride of an element in groups 4a, 5a, or 5a of the periodic table and/or a nitride of an element in groups 4a or 5a of the periodic table, and in the case of the second invention, in addition to that, 4a of the periodic table.

5a、6a族元素の炭化物はAΩN粒子中に固溶するこ
となく、AQN粒子間、即ち、粒界に存在して、金属と
結合するために、本発明は、AQNの金属との濡れ性を
改善すると思われる。
The carbides of group 5a and 6a elements do not form a solid solution in the AΩN particles, but instead exist between the AQN particles, that is, at the grain boundaries, and bond with the metal. Therefore, the present invention improves the wettability of AQN with the metal. I think it will improve.

又、通常、粒界に添加物が存在すると熱伝導性は悪化す
るが、本発明は、前述の硼化物、窒化物又はそれに加え
て炭化物がA!2Nの粒界に存在するにもかかわらず、
AQNの高熱伝導性を損わないことを見出したものであ
る。この理由は、添加した化合物が/INと反応して、
他の化合物を生成することがなく、又、AQNの粒子全
体を覆う様な存在をしない為に、AQN粒子同志の結合
は損なわれず、AΩN本来の特性を維持しながら、AQ
Nの金属との濡れ性を改善できるものと思われる。
Further, normally, the presence of additives at grain boundaries deteriorates thermal conductivity, but in the present invention, the above-mentioned boride, nitride, or carbide in addition to A! Although it exists at the 2N grain boundary,
It has been found that this does not impair the high thermal conductivity of AQN. The reason for this is that the added compound reacts with /IN,
Since other compounds are not generated and there is no presence that covers the entire AQN particle, the bond between AQN particles is not impaired, and while maintaining the original characteristics of AΩN, AQN
It is thought that the wettability of N with metal can be improved.

[発明の効果] 本発明の高熱伝導性窒化アルミニウム焼結体は、窒化ア
ルミニウムに周期率表の4a、5a、 6a族元素の硼
化物及び/又は周期率表の4a、5a族元素の窒化物あ
るいはそれに加えて周期率表の4a、’5a、6a族元
素の炭化物を含有することによって窒化アルミニウムの
優れた熱伝導性を損なうことなく、金属との濡れ性を改
善できた。
[Effects of the Invention] The highly thermally conductive aluminum nitride sintered body of the present invention comprises boride of an element of groups 4a, 5a, or 6a of the periodic table and/or nitride of an element of group 4a or 5a of the periodic table in aluminum nitride. Alternatively, by containing carbides of elements of groups 4a, '5a, and 6a of the periodic table in addition, the wettability with metals could be improved without impairing the excellent thermal conductivity of aluminum nitride.

本発明はメタライズ時に基板表面に酸化物等の層を設け
ないために、メタライズした金属層とAΩN基板とが直
接結合するため、接合強度、熱伝導性において優れた性
質をもつ。
Since the present invention does not provide a layer of oxide or the like on the substrate surface during metallization, the metallized metal layer and the AΩN substrate are directly bonded to each other, resulting in excellent bonding strength and thermal conductivity.

又、本発明をIC等の基板に利用することにより、放熱
性に優れた電子部品を得ることができるが、従来のよう
に、基板表面の処理等を必要とせず、又同時間焼成によ
る多層基板を容易に得ることができる。
Furthermore, by applying the present invention to a substrate such as an IC, it is possible to obtain an electronic component with excellent heat dissipation. The substrate can be easily obtained.

し実施例] 第1の発明及び第2の発明の一実施例について説明する
Embodiment] An embodiment of the first invention and the second invention will be described.

本実施例は、平均粒径1.0μmのAΩN粉末100重
量部に対して硼化物、窒化物、炭化物を第1表に示す金
属換算の所定量■加えて混合し、エタノール中で4時間
、湿式混合して原料粉末をつくり、その後、密度及び熱
伝導率測定用の試料と、金属との濡れ性測定用の試料と
を得た。
In this example, borides, nitrides, and carbides were added to 100 parts by weight of AΩN powder with an average particle size of 1.0 μm in the specified amounts in terms of metal shown in Table 1, mixed, and mixed in ethanol for 4 hours. Raw material powders were prepared by wet mixing, and then samples for measuring density and thermal conductivity and samples for measuring wettability with metal were obtained.

密度及び熱伝導率の測定は、原料粉末を直径11mm厚
さ3mmに成形圧力1.5 ton/Cm2で成形した
後、1700’Cの窒素雰囲気中で1時間常圧焼結を行
って得た試料について行った。密度は相対密度(理論密
度に対する見掛は比重比%)として測定し、又、熱伝導
率は、試料の厚みを2mmに手研加工した後にレーザー
フラッシュ法を用いて測定した。
The density and thermal conductivity measurements were obtained by molding the raw powder into a diameter of 11 mm and a thickness of 3 mm at a molding pressure of 1.5 ton/Cm2, followed by pressureless sintering in a nitrogen atmosphere at 1700'C for 1 hour. I followed the sample. The density was measured as a relative density (the apparent density relative to the theoretical density is % of specific gravity), and the thermal conductivity was measured using a laser flash method after hand polishing the sample to a thickness of 2 mm.

金属との濡れ性は、メタライズの接着強度として測定し
た。メタライズの接着強度は、原料粉末を30X10X
5mmに成形圧力1 、5 ton/Cm2で成形した
後に、通常メタライズに用いられるW粉末(平均粒径1
.0μm)を含むペーストを該成形体表面に2 X 2
 mm、厚さ約20μmに塗布し、乾燥して、1700
℃窒素雰囲気下で1時間常圧焼結し、次いで、該焼結体
表面に電解NiメッキによってNi層を2〜5μm形成
し、850℃、10分間シ、ンターした後に、共晶銀ロ
ーを用いて1 X 1 mmのコバール(コバルトと鉄
を含むニッケル合金)板を930’C15分間でロー付
し、その接着強度をビール強度として測定した。
Wettability with metal was measured as adhesive strength of metallization. The adhesive strength of metallization is 30X10X of the raw material powder.
After molding to 5 mm with a molding pressure of 1.5 ton/cm2, W powder (average particle size 1
.. 0 μm) on the surface of the molded body.
mm, approximately 20 μm thick, dried, 1700 mm
After sintering at normal pressure for 1 hour in a nitrogen atmosphere, a Ni layer of 2 to 5 μm thick was formed on the surface of the sintered body by electrolytic Ni plating, and after sintering at 850°C for 10 minutes, a eutectic silver solder was applied. A 1 x 1 mm Kovar (nickel alloy containing cobalt and iron) plate was brazed at 930'C for 15 minutes using the adhesive, and the adhesive strength was measured as beer strength.

このビール強度は上記コバール板に接合されたリード線
を接着面に対して垂直方向に向って0.5mm/ Se
Cの速度で引張り、上記コバール板が焼結体から剥離し
たときの強度である。
This beer strength is 0.5 mm/Se when the lead wire bonded to the Kovar plate is perpendicular to the adhesive surface.
This is the strength when the Kovar plate is peeled off from the sintered body by pulling at a speed of C.

第1表に相対密度、熱伝導率、ビール強度の測定結果を
示す。尚、試料No、1a〜6aは第1発明のNo、1
b、2bは第2発明の実施例である。又、第1表に示さ
れた組成以外は全てAQNであり、組成の含有量の単位
はAQN100重量部に対する金属換算の重量部でおる
Table 1 shows the measurement results of relative density, thermal conductivity, and beer strength. Note that samples No. 1a to 6a are No. 1 of the first invention.
b and 2b are examples of the second invention. In addition, all compositions other than those shown in Table 1 are AQN, and the unit of content in the composition is parts by weight in terms of metal relative to 100 parts by weight of AQN.

本実施例より、第1表に示す如く、AQNに周期率表の
48,5a、6a族元索の硼化物、窒化物、から選ばれ
た1種又は2種以上の化合物、おるいはそれに加えて炭
化物を、金属に換算して0゜1〜10重量部含有させる
ことにより、熱伝導率が高く、ビール強度の高い、即ち
、金属との濡れ性の良好な焼結体が得られることが分か
った。
From this example, as shown in Table 1, AQN contains one or more compounds selected from borides and nitrides of groups 48, 5a, and 6a of the periodic table, or In addition, by containing 0.1 to 10 parts by weight of carbide in terms of metal, a sintered body with high thermal conductivity and high beer strength, that is, good wettability with metal, can be obtained. I understand.

尚、第1表に示した以外の周期率表の4a、5a、6a
族元素、の硼化物及び周期率表の4a、5a族元素の窒
化物、あるいはそれに加えて周期率表の4a、5a、6
a族元素の炭化物を用いた試料も第1表に示した試料と
同様に、上記化合物をAQNに対して金属に換算して0
.1〜10重ω部含有することにより、熱伝導率が高く
金属との濡れ性の良好な焼結体が得られた。
In addition, 4a, 5a, 6a of the periodic table other than those shown in Table 1
Borides of group elements, and nitrides of group 4a, 5a elements of the periodic table, or in addition to borides of group 4a, 5a, 6 of the periodic table.
Similar to the samples shown in Table 1, samples using carbides of Group A elements also have a value of 0 when converted to metal with respect to AQN.
.. By containing 1 to 10 weight omega parts, a sintered body with high thermal conductivity and good wettability with metal was obtained.

尚、従来の/’MIEN焼結体(相対密度99%)の熱
伝導率は0.14〜0.24caQ/cm、sec。
The thermal conductivity of the conventional /'MIEN sintered body (relative density 99%) is 0.14 to 0.24 caQ/cm, sec.

°C、ビール強度は0.5kMmm2より小さイ。又、
AΩ2o3 (相対密度99%)の熱伝導率は0゜04
〜0.07CaΩ/cm、sec、 ’Cで、ビール強
度は:2−5k2−5k でaる。
°C, beer strength is less than 0.5 kmMmm2. or,
The thermal conductivity of AΩ2o3 (99% relative density) is 0°04
~0.07 CaΩ/cm, sec, 'C, beer strength is: 2-5k2-5k.

/IN粉末(平均粒径1.0μm>100重量部にMo
に換算して3重量部のMO2B(平均粒径2.0μm)
を加えた混合物に、焼結助剤としてCaOを添加して、
相対密度、熱伝導率、ビール強度を測定した。その結果
を第2表に示す。
/IN powder (average particle size 1.0 μm>100 parts by weight of Mo
3 parts by weight of MO2B (average particle size 2.0 μm)
Adding CaO as a sintering aid to the mixture containing
Relative density, thermal conductivity, and beer strength were measured. The results are shown in Table 2.

第2表 第2表から分るように、CaOの添加量が5重量部まで
は、焼結性、熱伝導率、ビール強度共に、CaOを添加
しないものと同程度であったが、10重量部のCaoを
添加した場合は、焼成後のメタライズ表面に、焼成中に
発生するCa3AΩ208等の液相が原因と思われる析
出物の発生が激   ゛しくなり、ビール強度の測定は
不可能となることがわかった。
Table 2 As can be seen from Table 2, when the amount of CaO added was up to 5 parts by weight, the sinterability, thermal conductivity, and beer strength were all the same as those without CaO, but up to 5 parts by weight. If a certain amount of Cao is added, the occurrence of precipitates on the metallized surface after firing, which are thought to be caused by the liquid phase such as Ca3AΩ208 generated during firing, becomes severe, making it impossible to measure beer strength. I understand.

Claims (1)

【特許請求の範囲】 1 窒化アルミニウムを100重量部と、 周期率表の4a、5a、6a族元素の硼化物及び周期率
表の4a、5a族元素の窒化物から選ばれた1種又は2
種以上の化合物を、金属元素に換算して総量で0.1〜
10重量部と からなることを特徴とする高熱伝導性窒化アルミニウム
焼結体。 2 窒化アルミニウムを100重量部と、 周期率表の4a、5a、6a族元素の硼化物及び周期率
表の4a、5a族元素の窒化物から選ばれた1種又は2
種以上の化合物と周期率表の4a、5a、6a族元素の
炭化物から選ばれた1種又は2種以上の化合物との両化
合物を、金属元素に換算して総量で0.1〜10重量部
と からなることを特徴とする高熱伝導性窒化アルミニウム
焼結体。
[Scope of Claims] 1 100 parts by weight of aluminum nitride, and one or two selected from borides of elements in groups 4a, 5a, and 6a of the periodic table and nitrides of elements in groups 4a and 5a of the periodic table.
The total amount of more than one species of compounds in terms of metal elements is 0.1~
10 parts by weight of a highly thermally conductive aluminum nitride sintered body. 2 100 parts by weight of aluminum nitride, and one or two selected from borides of elements in groups 4a, 5a, and 6a of the periodic table and nitrides of elements in groups 4a and 5a of the periodic table.
A total of 0.1 to 10% of the total weight of both compounds, including one or more compounds selected from carbides of elements in groups 4a, 5a, and 6a of the periodic table, in terms of metal elements. A highly thermally conductive aluminum nitride sintered body comprising:
JP60111113A 1985-05-22 1985-05-22 High heat conductive aluminum nitride sintered body Granted JPS61270262A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60111113A JPS61270262A (en) 1985-05-22 1985-05-22 High heat conductive aluminum nitride sintered body
US07/039,347 US4877760A (en) 1985-05-22 1987-04-17 Aluminum nitride sintered body with high thermal conductivity and process for producing same
US07/405,780 US4997798A (en) 1985-05-22 1989-09-11 Process for producing aluminum nitride sintered body with high thermal conductivity
US07/405,872 US4961987A (en) 1985-05-22 1989-09-11 Aluminum nitride sintered body with high thermal conductivity and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111113A JPS61270262A (en) 1985-05-22 1985-05-22 High heat conductive aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS61270262A true JPS61270262A (en) 1986-11-29
JPH0243700B2 JPH0243700B2 (en) 1990-10-01

Family

ID=14552739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111113A Granted JPS61270262A (en) 1985-05-22 1985-05-22 High heat conductive aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61270262A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128971A (en) * 1985-11-28 1987-06-11 京セラ株式会社 Aluminum nitride base sintered body and manufacture
JPS62153173A (en) * 1985-06-28 1987-07-08 株式会社東芝 Aluminum nitride sintered body and manufacture
JPS63310772A (en) * 1987-06-10 1988-12-19 Shinko Electric Ind Co Ltd Aluminum nitride sintered body
JPS63319267A (en) * 1987-06-23 1988-12-27 Narumi China Corp Aluminum nitride sintered body
JPH0196068A (en) * 1987-10-07 1989-04-14 Nippon Chemicon Corp Production of aluminum nitride sintered body
JPH01100066A (en) * 1987-10-10 1989-04-18 Nippon Chemicon Corp Production of aluminum nitride sintered compact
JPH02271969A (en) * 1989-04-12 1990-11-06 Toshiba Ceramics Co Ltd Aln-based sintered body
JPH07176656A (en) * 1985-06-28 1995-07-14 Toshiba Corp Sintered aluminium nitride heat dissipation plate and manufacture thereof
JPH07176655A (en) * 1985-06-28 1995-07-14 Toshiba Corp Sintered aluminium nitride heat dissipation plate and manufacture thereof
JPH08330483A (en) * 1995-05-31 1996-12-13 Seiko Seiki Co Ltd Heat sink

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153173A (en) * 1985-06-28 1987-07-08 株式会社東芝 Aluminum nitride sintered body and manufacture
JPH07176656A (en) * 1985-06-28 1995-07-14 Toshiba Corp Sintered aluminium nitride heat dissipation plate and manufacture thereof
JPH07176655A (en) * 1985-06-28 1995-07-14 Toshiba Corp Sintered aluminium nitride heat dissipation plate and manufacture thereof
JPS62128971A (en) * 1985-11-28 1987-06-11 京セラ株式会社 Aluminum nitride base sintered body and manufacture
JPS63310772A (en) * 1987-06-10 1988-12-19 Shinko Electric Ind Co Ltd Aluminum nitride sintered body
JPS63319267A (en) * 1987-06-23 1988-12-27 Narumi China Corp Aluminum nitride sintered body
JPH0196068A (en) * 1987-10-07 1989-04-14 Nippon Chemicon Corp Production of aluminum nitride sintered body
JPH01100066A (en) * 1987-10-10 1989-04-18 Nippon Chemicon Corp Production of aluminum nitride sintered compact
JPH02271969A (en) * 1989-04-12 1990-11-06 Toshiba Ceramics Co Ltd Aln-based sintered body
JPH08330483A (en) * 1995-05-31 1996-12-13 Seiko Seiki Co Ltd Heat sink

Also Published As

Publication number Publication date
JPH0243700B2 (en) 1990-10-01

Similar Documents

Publication Publication Date Title
US4997798A (en) Process for producing aluminum nitride sintered body with high thermal conductivity
US6232657B1 (en) Silicon nitride circuit board and semiconductor module
JPS62207789A (en) Surface structure for aluminum nitride material and manufacture
JPS631267B2 (en)
JPH0840789A (en) Ceramic metallized substrate having smooth plating layer and its production
JPS61270262A (en) High heat conductive aluminum nitride sintered body
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JPH022836B2 (en)
JPS61291480A (en) Surface treating composition for aluminum nitride base material
JP2772273B2 (en) Silicon nitride circuit board
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JPH1065292A (en) Composite circuit board
US6447923B1 (en) Metallized silicon nitride ceramic and fabricating process thereof as well as metallizing composite for the process
JPH0313190B2 (en)
JPS61281074A (en) High heat conductivity aluminum nitride sintered body
JP3833410B2 (en) Ceramic circuit board
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JP2772274B2 (en) Composite ceramic substrate
JP2677748B2 (en) Ceramics copper circuit board
JPH08731B2 (en) High thermal conductivity aluminum nitride sintered body
JPH04950B2 (en)
JP2967065B2 (en) Semiconductor module
JPH0323511B2 (en)
JP3230861B2 (en) Silicon nitride metallized substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees