JP3230861B2 - Silicon nitride metallized substrate - Google Patents

Silicon nitride metallized substrate

Info

Publication number
JP3230861B2
JP3230861B2 JP33621892A JP33621892A JP3230861B2 JP 3230861 B2 JP3230861 B2 JP 3230861B2 JP 33621892 A JP33621892 A JP 33621892A JP 33621892 A JP33621892 A JP 33621892A JP 3230861 B2 JP3230861 B2 JP 3230861B2
Authority
JP
Japan
Prior art keywords
substrate
silicon nitride
metallized
weight
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33621892A
Other languages
Japanese (ja)
Other versions
JPH06183864A (en
Inventor
隆之 那波
通泰 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33621892A priority Critical patent/JP3230861B2/en
Publication of JPH06183864A publication Critical patent/JPH06183864A/en
Application granted granted Critical
Publication of JP3230861B2 publication Critical patent/JP3230861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窒化けい素基板に回路
パターン等のメタライズ層を一体に形成した窒化けい素
メタライズ基板に係り、特に高放熱性および高接合強度
を要する半導体モジュール用に好適な窒化けい素メタラ
イズ基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metallized silicon nitride substrate in which a metallized layer such as a circuit pattern is integrally formed on a silicon nitride substrate, and is particularly suitable for a semiconductor module requiring high heat dissipation and high bonding strength. A metallized silicon nitride substrate.

【0002】[0002]

【従来の技術】従来から各種電子機器の構成部品とし
て、アルミナ(Al2 3 )、窒化アルミニウム(Al
N)、酸化ベリリウム(BeO)などのセラミックス焼
結体表面にメタライズ層を一体に形成したセラミックス
メタライズ基板が広く使用されている。
2. Description of the Related Art Conventionally, alumina (Al 2 O 3 ), aluminum nitride (Al
N) and beryllium oxide (BeO) are widely used as ceramic metallized substrates in which a metallized layer is integrally formed on the surface of a ceramic sintered body.

【0003】このセラミックスメタライズ基板は、上記
セラミックス焼結体基板表面に、モリブデン−マンガン
合金、モリブデン、タングステン等の金属粉末をペース
ト状に調製したものを全面に塗布したり、または所定の
回路パターンを形成するようにスクリーン印刷等によっ
て印刷し、回路パターン等を印刷したセラミックス基板
を窒素ガス雰囲気中で1600〜1800℃程度の高温
度で焼成し、硬い導体層(メタライズ層)を形成して製
造されている。またメタライズ層はセラミックス基板上
に銅板を直接配置して加熱接合するDBC法(ダイレク
トボンディングカッパー法)、厚膜法、めっき法によっ
て形成される場合もある。
[0003] This ceramic metallized substrate is prepared by applying a paste prepared from a metal powder of a molybdenum-manganese alloy, molybdenum, tungsten or the like to the surface of the above-mentioned sintered ceramic substrate, or applying a predetermined circuit pattern. It is manufactured by printing by screen printing or the like to form a ceramic substrate on which a circuit pattern or the like is printed, and firing at a high temperature of about 1600 to 1800 ° C. in a nitrogen gas atmosphere to form a hard conductor layer (metallized layer). ing. Further, the metallized layer may be formed by a DBC method (direct bonding copper method) in which a copper plate is directly arranged on a ceramic substrate and heated and joined, a thick film method, or a plating method.

【0004】上記メタライズ層を設けることにより、半
田等の接合材料に対する濡れ性が向上し、セラミックス
焼結体へ、半導体素子(ICチップ)や電極板を高い接
合強度で接合することができ、その結果、半導体素子か
らの発熱の放散性や素子の動作信頼性を良好に保つこと
ができる。またセラミックス基板の裏面にもメタライズ
層を形成することにより、セラミックス基板の応力緩和
および反り(熱変形)防止の目的も達成できる。
By providing the metallized layer, the wettability to a bonding material such as solder is improved, and a semiconductor element (IC chip) or an electrode plate can be bonded to a ceramic sintered body with high bonding strength. As a result, the heat dissipation from the semiconductor element and the operation reliability of the element can be kept good. Further, by forming a metallized layer also on the back surface of the ceramic substrate, the objects of stress relaxation and prevention of warpage (thermal deformation) of the ceramic substrate can be achieved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記セ
ラミックスメタライズ基板のうち、Al2 3 基板を使
用したメタライズ基板においては、Al2 3 の熱伝導
率が低いために良好な放熱性が得られず、半導体素子の
高密度集積化および高出力化に伴う放熱対策に充分対応
できない問題点があった。
[SUMMARY OF THE INVENTION However, among the ceramic metallized substrate, in the metallized substrate using the Al 2 O 3 substrate, good heat dissipation is obtained for the thermal conductivity of Al 2 O 3 is low However, there is a problem that it is not possible to sufficiently cope with heat radiation measures accompanying high-density integration and high output of semiconductor elements.

【0006】また酸化ベリリウム(BeO)基板を使用
した場合においては、特にBeOは酸化物系のセラミッ
クスの中では最も熱伝導率が高い放熱性に優れた材料で
あるが、その毒性のため製造上および取扱い上の難点が
多い。
In the case where a beryllium oxide (BeO) substrate is used, BeO is a material having the highest thermal conductivity and excellent heat dissipation among oxide ceramics. And there are many difficulties in handling.

【0007】さらにAlN基板を使用した場合には、熱
伝導率が高く充分な放熱性が得られるが、メタライズ層
を焼成して形成する際に液相が接合表面部に染み出し、
AlN基板とメタライズ層との接合強度が低下するととも
に色むらが発生し易くなるという問題点があった。その
結果、使用中に繰り返し作用する熱負荷によってメタラ
イズ層が剥離して放熱性が急減し、電子機器の動作信頼
性が低下する問題点があった。
[0007] Further, when an AlN substrate is used, the heat conductivity is high and sufficient heat dissipation is obtained. However, when the metallized layer is formed by firing, the liquid phase oozes out to the joint surface,
There has been a problem that the bonding strength between the AlN substrate and the metallized layer is reduced and color unevenness is apt to occur. As a result, there has been a problem that the metallized layer is peeled off due to a thermal load that repeatedly acts during use, heat dissipation is rapidly reduced, and the operation reliability of the electronic device is reduced.

【0008】本発明は上記問題点を解決するためになさ
れたものであり、特に高放熱性および高接合強度を有
し、半導体モジュール用部品として好適な窒化けい素メ
タライズ基板を提供することを目的とする。
The present invention has been made to solve the above problems, and has as its object to provide a silicon nitride metallized substrate having high heat dissipation and high bonding strength and suitable as a component for a semiconductor module. And

【0009】[0009]

【課題を解決するための手段】本発明者らは上記目的を
達成するため、種々のセラミックス焼結体にメタライズ
層を形成してセラミックスメタライズ基板を調製し、そ
れらの放熱性、メタライズ層の接合強度、外観を比較検
討した。
Means for Solving the Problems In order to achieve the above object, the present inventors formed a metallized layer on various ceramics sintered bodies to prepare a ceramic metallized substrate, dissipated the heat, and joined the metallized layer. The strength and appearance were compared and examined.

【0010】その結果、曲げ強度や破壊靭性値などの機
械的特性に優れる窒化けい素は、焼成プロセス条件を最
適化することにより、60〜180W/m・Kという高
い熱伝導率を有する焼結体となることが判明した。そし
てこの窒化けい素焼結体表面にメタライズ層原料を印刷
して焼成した場合においても、液相の染み出しおよびそ
の染み出しに起因する基板の変色や色むらが少なく、窒
化けい素基板に対するメタライズ層の接合強度を高く維
持できることも判明した。さらに上記のような高い熱伝
導率を有し、機械的強度が高い窒化けい素基板を使用す
ることにより、従来のAl2 3 基板やAlN基板と同
等の強度を与えるように設定した場合には窒化けい素基
板の厚さを1/2程度に減少させることができる。した
がって、熱抵抗の減少に伴い、従来の高熱伝導性AlN
基板を使用した場合と同等の放熱性を有する窒化けい素
メタライズ基板が得られることが確認された。本発明は
上記知見に基づいて完成されたものである。
As a result, silicon nitride having excellent mechanical properties such as flexural strength and fracture toughness can be sintered with a high thermal conductivity of 60 to 180 W / m · K by optimizing the firing process conditions. It turned out to be a body. Even when the metallized layer material is printed on the surface of the silicon nitride sintered body and baked, the discoloration of the liquid phase and the discoloration and color unevenness of the substrate due to the exudation are small, and the metallized layer for the silicon nitride substrate is reduced. It was also found that the bonding strength of the steel could be maintained high. Furthermore, by using a silicon nitride substrate having a high thermal conductivity and a high mechanical strength as described above, when setting to give the same strength as a conventional Al 2 O 3 substrate or an AlN substrate, Can reduce the thickness of the silicon nitride substrate to about 1/2. Therefore, as the thermal resistance decreases, the conventional high thermal conductivity AlN
It was confirmed that a silicon nitride metallized substrate having the same heat radiation property as that obtained when the substrate was used was obtained. The present invention has been completed based on the above findings.

【0011】すなわち本発明に係る窒化けい素メタライ
ズ基板は、熱伝導率が60〜180W/m・Kである窒
化けい素基板表面に、モリブデンおよびタングステンの
少なくとも一方と活性金属窒化物とから成るメタライズ
層を一体に形成したことを特徴とする。
That is, in the metallized silicon nitride substrate according to the present invention, a metallized film comprising at least one of molybdenum and tungsten and an active metal nitride is formed on a surface of a silicon nitride substrate having a thermal conductivity of 60 to 180 W / m · K. It is characterized in that the layers are integrally formed.

【0012】またモリブデンおよびタングステンの少な
くとも一方に対する活性金属窒化物の重量比を1.5〜
2.5に設定したことを特徴とする。
Further, the weight ratio of the active metal nitride to at least one of molybdenum and tungsten is set to 1.5 to 1.5.
2.5 is set.

【0013】さらにメタライズ層の表面にニッケルまた
はニッケル合金から成るめっき層を一体に形成するとよ
い。
Further, it is preferable that a plating layer made of nickel or a nickel alloy is integrally formed on the surface of the metallized layer.

【0014】ここで本発明に係る窒化けい素メタライズ
基板に使用される熱伝導率60〜180W/m・Kの窒
化けい素基板は下記のように組成およびプロセス条件を
最適化して製造される。すなわち、酸素を1.7重量%
以下、Fe,Ca,Mgなどの不純物陽イオン元素を
0.3重量%以下、α相型窒化けい素を90重量%以上
含有し、平均粒径0.8μm以下の窒化けい素粉末に、
希土類元素を酸化物に換算して2〜7.5重量%と、ア
ルミニウムをアルミナ換算で0.5〜2重量%添加した
原料混合体を成形して成形体を調製し、得られた成形体
を脱脂後、温度1800〜2000℃で雰囲気加圧焼結
し、上記焼結温度から、上記希土類元素により焼結時に
形成された液相が凝固する温度までに至る焼結体の冷却
速度を毎時100℃以下に設定して製造される。
The silicon nitride substrate having a thermal conductivity of 60 to 180 W / m · K used for the metallized silicon nitride substrate according to the present invention is manufactured by optimizing the composition and process conditions as described below. That is, 1.7% by weight of oxygen
Hereinafter, a silicon nitride powder containing 0.3% by weight or less of impurity cation elements such as Fe, Ca, and Mg and 90% by weight or more of α-phase type silicon nitride and having an average particle size of 0.8 μm or less,
A molded body is formed by molding a raw material mixture in which a rare earth element is added in an oxide amount of 2 to 7.5% by weight and aluminum is added in an amount of 0.5 to 2% by weight in terms of alumina. After degreasing, sintering is performed under atmospheric pressure at a temperature of 1800 to 2000 ° C., and the cooling rate of the sintered body from the sintering temperature to a temperature at which a liquid phase formed at the time of sintering by the rare earth element solidifies is set to an hourly rate. It is manufactured at a temperature of 100 ° C. or lower.

【0015】上記製造方法によれば、窒化けい素基板の
結晶組織中に希土類元素等を含む粒界相が形成され、気
孔率が1.5%以下、熱伝導率が60W/m・K以上、
三点曲げ強度が室温で80kg/mm2 以上の機械的特性お
よび熱伝導特性が共に優れた窒化けい素基板が得られ
る。
According to the above manufacturing method, a grain boundary phase containing a rare earth element or the like is formed in the crystal structure of the silicon nitride substrate, the porosity is 1.5% or less, and the thermal conductivity is 60 W / m · K or more. ,
A silicon nitride substrate having a three-point bending strength of 80 kg / mm 2 or more at room temperature and excellent in both mechanical properties and heat conduction properties can be obtained.

【0016】また上記製造方法において使用され、基板
の主成分となる窒化けい素粉末としては、焼結性、強度
および熱伝導率を考慮して、酸素含有量が1.7重量%
以下、好ましくは0.5〜1.5重量%、Fe,Mg,
Ceなどの不純物陽イオン元素含有量が0.3重量%以
下、好ましくは0.2重量%以下に抑制され、焼結性が
優れたα相型窒化けい素を90重量%以上、好ましくは
93重量%以上含有し、平均粒径が0.8μm以下、好
ましくは0.4〜0.6μm程度の微細な窒化けい素粉
末を使用するとよい。
The silicon nitride powder used as a main component of the substrate in the above-mentioned manufacturing method has an oxygen content of 1.7% by weight in consideration of sinterability, strength and thermal conductivity.
Below, preferably 0.5 to 1.5% by weight, Fe, Mg,
The content of impurity cation elements such as Ce is suppressed to 0.3% by weight or less, preferably 0.2% by weight or less, and α-phase silicon nitride having excellent sinterability is 90% by weight or more, preferably 93% by weight or more. It is preferable to use fine silicon nitride powder containing at least 0.8% by weight and having an average particle diameter of 0.8 μm or less, preferably about 0.4 to 0.6 μm.

【0017】平均粒径が0.8μm以下の微細な原料粉
末を使用することにより、少量の焼結助剤であっても気
孔率が1.5%以下の緻密な焼結体基板を形成すること
が可能であり、また焼結助剤が熱伝導特性を阻害するお
それも減少する。またFe,Mg,Caなどの不純物陽
イオン元素も熱伝導性を阻害する物質となるため、60
W/m・K以上の熱伝導率を確保するためには、上記不
純物陽イオン元素の含有量は0.3重量%以下に設定さ
れる。特にβ相型と比較して焼結性に優れたα相型窒化
けい素を90重量%以上含有する窒化けい素原料粉末を
使用することにより、高密度の焼結体基板を製造するこ
とができる。
By using fine raw material powder having an average particle size of 0.8 μm or less, a dense sintered body substrate having a porosity of 1.5% or less can be formed even with a small amount of sintering aid. And the likelihood of the sintering aid interfering with the heat transfer properties is reduced. In addition, impurity cation elements such as Fe, Mg, and Ca also become substances that inhibit thermal conductivity.
In order to ensure a thermal conductivity of W / m · K or more, the content of the impurity cation element is set to 0.3% by weight or less. In particular, by using a silicon nitride raw material powder containing 90% by weight or more of α-phase type silicon nitride having excellent sinterability as compared with β-phase type, it is possible to manufacture a high-density sintered body substrate. it can.

【0018】また窒化けい素原料粉末に焼結助剤として
添加する希土類元素としてはY,La,Sc,Pr,C
e,Nd,Dy,Gdなどの酸化物もしくは焼結操作に
より、これらの酸化物となる物質が単独で、または2種
以上の酸化物を組み合せたものを含んでもよいが、特に
酸化イットリウム(Y2 3 )が好ましい。これらの焼
結助剤は、窒化けい素原料粉末と反応して液相を生成
し、焼結促進剤として機能する。
The rare earth elements to be added to the silicon nitride raw material powder as a sintering aid include Y, La, Sc, Pr, C
Oxides such as e, Nd, Dy, and Gd, or substances that become these oxides by the sintering operation may include a single substance or a combination of two or more types of oxides. Particularly, yttrium oxide (Y 2 O 3 ) is preferred. These sintering aids react with the silicon nitride raw material powder to generate a liquid phase and function as sintering accelerators.

【0019】上記焼結助剤の添加量は、酸化物換算で原
料粉末に対して2〜7.5重量%の範囲に設定される。
この添加量が2重量%未満と過少の場合は、焼結体基板
が緻密化されず低強度で低熱伝導率の焼結体基板が形成
される。一方、添加量が7.5重量%を超える過量とな
ると、過量の粒界相が生成し、熱伝導率の低下や強度が
低下し始めるので上記範囲に設定される。特に好ましく
は3〜6重量%に設定することが望ましい。
The addition amount of the sintering aid is set in the range of 2 to 7.5% by weight based on the raw material powder in terms of oxide.
If the amount is less than 2% by weight, the sintered substrate is not densified and a low-strength, low-thermal-conductivity sintered substrate is formed. On the other hand, if the added amount exceeds 7.5% by weight, an excessive amount of the grain boundary phase is generated, and the heat conductivity and strength begin to decrease. It is particularly desirable to set the content to 3 to 6% by weight.

【0020】さらに上記基板製法における他の添加成分
としてのアルミナ(Al2 3 )は、上記希土類元素の
焼結促進剤の機能を助長する役目を果すものであり、特
に加圧焼結を行なう場合に著しい効果を発揮するもので
ある。アルミニウム源としてのAl2 3 の添加量が
0.5重量%未満の場合においては緻密化が不充分であ
る一方、2重量%を超える過量となる場合には過量の粒
界相を生成したり、または窒化けい素に固溶し始め、熱
伝導の低下が起こるため、添加量は0.5〜2重量%の
範囲に設定される。特に強度、熱伝導率共に良好な性能
を確保するためには添加量を0.7〜1.5重量%の範
囲に設定することが望ましい。
Further, alumina (Al 2 O 3 ) as another additive component in the above-mentioned substrate manufacturing method plays a role of promoting the function of the rare earth element sintering accelerator, and particularly performs pressure sintering. It has a remarkable effect in some cases. When the addition amount of Al 2 O 3 as an aluminum source is less than 0.5% by weight, the densification is insufficient, while when the addition amount exceeds 2% by weight, an excessive amount of grain boundary phase is generated. , Or begin to form a solid solution with silicon nitride, resulting in a decrease in heat conduction. Therefore, the amount of addition is set in the range of 0.5 to 2% by weight. In particular, in order to ensure good performance in both strength and thermal conductivity, it is desirable to set the addition amount in the range of 0.7 to 1.5% by weight.

【0021】また焼結体基板の気孔率はメタライズ基板
の熱伝導率および強度に大きく影響するため1.5%以
下に設定される。気孔率が1.5%を超えると熱伝導の
妨げとなり、焼結体基板の熱伝導率が低下するとともに
強度低下が起こる。
The porosity of the sintered body substrate is set to 1.5% or less because it greatly affects the thermal conductivity and strength of the metallized substrate. If the porosity exceeds 1.5%, heat conduction will be hindered, and the thermal conductivity of the sintered body substrate will decrease and strength will decrease.

【0022】また、窒化けい素結晶組織に形成される粒
界相は焼結体基板の熱伝導率に大きく影響するため、本
発明で使用する窒化けい素基板においては粒界相の20
%以上が結晶相で占めるように設定される。結晶相が2
0%未満では熱伝導率が60W/m・K以上となるよう
な放熱特性に優れ、かつ高温強度に優れた焼結体が得ら
れないからである。
Since the grain boundary phase formed in the silicon nitride crystal structure greatly affects the thermal conductivity of the sintered substrate, the silicon nitride substrate used in the present invention has a grain boundary phase of 20%.
% Or more is set so as to occupy the crystal phase. Crystal phase 2
If it is less than 0%, it is not possible to obtain a sintered body having excellent heat radiation properties such that the thermal conductivity is 60 W / m · K or more and having excellent high-temperature strength.

【0023】さらに上記のように窒化けい素基板の気孔
率を1.5%以下にし、また窒化けい素結晶組織に形成
される粒界相の20%以上が結晶相で占めるようにする
ためには、窒化けい素成形体を温度1800〜2000
℃で0.5〜10時間程度、加圧焼結し、かつ焼結操作
完了直後における焼結体の冷却速度を毎時100℃以下
に調整制御することが必要である。
Further, as described above, the porosity of the silicon nitride substrate is set to 1.5% or less, and the crystal phase occupies 20% or more of the grain boundary phase formed in the silicon nitride crystal structure. Has a temperature of 1800 to 2000
It is necessary to perform pressure sintering at 0.5 ° C. for about 0.5 to 10 hours and adjust and control the cooling rate of the sintered body immediately after completion of the sintering operation to 100 ° C. or less per hour.

【0024】焼結温度を1800℃未満に設定した場合
には、焼結体の緻密化が不充分で気孔率が1.5vol%以
上になり機械的強度および熱伝導性が共に低下してしま
う。一方焼結温度が2000℃を超えると窒化けい素成
分自体が蒸発分解し易くなる。特に加圧焼結ではなく、
常圧焼結を実施した場合には、1800℃付近より窒化
けい素の分解蒸発が始まる。
When the sintering temperature is set to less than 1800 ° C., the densification of the sintered body is insufficient, the porosity becomes 1.5 vol% or more, and both the mechanical strength and the thermal conductivity decrease. . On the other hand, when the sintering temperature exceeds 2000 ° C., the silicon nitride component itself is liable to be vaporized and decomposed. Especially not pressure sintering,
When normal-pressure sintering is performed, decomposition and evaporation of silicon nitride starts at about 1800 ° C.

【0025】上記焼結操作完了直後における焼結体の冷
却速度は粒界相を結晶化させるために重要な制御因子で
あり、冷却速度が毎時100℃を超えるような急速冷却
を実施した場合には、焼結体組織の粒界相が非結晶質
(ガラス相)となり、焼結体に生成した液相が結晶相と
して粒界相に占める面積割合が20%未満となり、強度
および熱伝導性が共に低下してしまう。
The cooling rate of the sintered body immediately after the completion of the sintering operation is an important control factor for crystallizing the grain boundary phase, and when the rapid cooling is performed such that the cooling rate exceeds 100 ° C./hour. Is that the grain boundary phase of the sintered body structure becomes non-crystalline (glass phase), the area ratio of the liquid phase formed in the sintered body as a crystal phase to the grain boundary phase is less than 20%, and the strength and thermal conductivity are reduced. Decrease together.

【0026】上記冷却速度を厳密に調整すべき温度範囲
は、所定の焼結温度(1800〜2000℃)から、前
記の焼結助剤の反応によって生成する液相が凝固するま
での温度範囲で充分である。ちなみに前記のような焼結
助剤を使用した場合の液相凝固点は概略1600〜15
00℃程度である。そして少なくとも焼結温度から上記
液相凝固温度に至るまでの焼結体基板の冷却速度を毎時
100℃以下、好ましくは50℃以下に制御することに
より、粒界相の大部分が結晶相になり、熱伝導率および
機械的強度が共に優れた焼結体基板が得られる。
The temperature range in which the cooling rate should be strictly adjusted is a temperature range from a predetermined sintering temperature (1800 to 2000 ° C.) to a temperature at which a liquid phase produced by the reaction of the sintering aid solidifies. Is enough. Incidentally, the liquidus freezing point when using the sintering aid as described above is approximately 1600 to 15
It is about 00 ° C. By controlling the cooling rate of the sintered body substrate at least from the sintering temperature to the above-mentioned liquid phase solidification temperature to 100 ° C. or less, preferably 50 ° C. or less, most of the grain boundary phase becomes a crystalline phase. Thus, a sintered substrate excellent in both thermal conductivity and mechanical strength can be obtained.

【0027】上記窒化けい素基板は、例えば以下のよう
なプロセスを経て製造される。すなわち前記所定の粒
径、および不純物含有量の微細な窒化けい素粉末に対し
て所定量の焼結助剤、有機バインダ等の必要な添加剤を
加えて原料混合体を調整し、次に得られた原料混合体を
成形して所定形状の成形体を得る。原料混合体の成形法
としては、汎用の金型プレス法、ドクターブレード法の
ようなシート成形法などが適用できる。上記成形操作に
引き続いて、成形体を非酸化性雰囲気中で温度600〜
800℃で1〜2時間加熱して、予め添加していた有機
バインダを充分に除去し、脱脂する。次に脱脂処理され
た成形体を窒素ガス、水素ガスやアルゴンガスなどの不
活性ガス雰囲気中で1800〜2000℃の温度で所定
時間雰囲気加圧焼結を行なう。
The silicon nitride substrate is manufactured, for example, through the following process. That is, a predetermined amount of the sintering aid, a necessary additive such as an organic binder, etc. are added to the fine silicon nitride powder having the predetermined particle size and impurity content to prepare a raw material mixture. The obtained raw material mixture is molded to obtain a molded body having a predetermined shape. As a forming method of the raw material mixture, a general-purpose mold pressing method, a sheet forming method such as a doctor blade method, or the like can be applied. Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 600 ° C.
By heating at 800 ° C. for 1 to 2 hours, the organic binder added in advance is sufficiently removed and degreased. Next, the degreased molded body is subjected to atmospheric pressure sintering at a temperature of 1800 to 2000 ° C. for a predetermined time in an inert gas atmosphere such as nitrogen gas, hydrogen gas or argon gas.

【0028】上記製法によって製造された窒化けい素基
板は気孔率1.5%以下で、60〜180W/m・K
(25℃)の熱伝導率を有し、また三点曲げ強度が常温
で80kg/mm2 以上と機械的特性にも優れている。
The silicon nitride substrate manufactured by the above-described method has a porosity of 1.5% or less and a porosity of 60 to 180 W / m · K.
(25 ° C.) and has excellent three-point bending strength of 80 kg / mm 2 or more at room temperature.

【0029】また上記窒化けい素基板表面に一体に形成
されるメタライズ層は、導電材料としてのMoおよびW
の少なくとも一方と、Ti,Zr,Hf,Nbなどの活
性金属の窒化物から成る。このメタライズ層に含有され
るTiなどの活性金属の窒化物(例えばTiN)は、M
oやWなどの導電材料を緻密化するとともに、焼成時に
窒化けい素基板表面において、TiN,Tiシリサイ
ド,Ti−Si−N化合物を形成し、メタライズ層を基
板表面に強固に接合する機能を有する。
The metallized layer integrally formed on the surface of the silicon nitride substrate comprises Mo and W as conductive materials.
And an active metal nitride such as Ti, Zr, Hf, or Nb. The nitride (for example, TiN) of an active metal such as Ti contained in this metallized layer
It has the function of densifying conductive materials such as o and W, forming TiN, Ti silicide, and Ti-Si-N compounds on the surface of the silicon nitride substrate during firing, and firmly joining the metallized layer to the substrate surface. .

【0030】上記MoやWなどの導電材料に対する活性
金属窒化物の重量比は1.5〜2.5の範囲に設定され
る。重量比が1.5未満の場合は、メタライズ層の窒化
けい素基板に対する接合強度を高める機能が不充分であ
り、一方、重量比が2.5を超える場合においてもメタ
ライズ層の接合強度が低下し、かつめっき層を形成させ
る場合の密着性が悪くなるため、上記重量比の範囲にお
いてメタライズ層のピール強度が最大値をとる。
The weight ratio of the active metal nitride to the conductive material such as Mo or W is set in the range of 1.5 to 2.5. When the weight ratio is less than 1.5, the function of increasing the bonding strength of the metallized layer to the silicon nitride substrate is insufficient. On the other hand, when the weight ratio exceeds 2.5, the bonding strength of the metallized layer is reduced. In addition, since the adhesion when forming the plating layer is deteriorated, the peel strength of the metallized layer takes the maximum value in the above range of the weight ratio.

【0031】本発明に係る窒化けい素メタライズ基板
は、例えば次のような手順で製造される。すなわち上記
導電材料としてのMoまたはWの原料粉末と、活性金属
窒化物粉末とを所定の重量比となるように秤量混合し、
得られた混合体にエチルセルロースなどのバインダと、
酢酸ブチルなどの溶剤とを添加して撹拌することにより
メタライズペーストを調製し、このメタライズペースト
を、前記の製法で調製した高熱伝導性窒化けい素基板表
面にスクリーン印刷法等によって印刷して所定の導体層
(回路)パターンを形成する。次に半導体層パターンを
印刷した窒化けい素基板を乾燥後、窒素ガス等の非酸化
性雰囲気中で温度1600〜1800℃で焼成して製造
される。
The metallized silicon nitride substrate according to the present invention is manufactured, for example, by the following procedure. That is, the raw material powder of Mo or W as the conductive material and the active metal nitride powder are weighed and mixed so as to have a predetermined weight ratio,
A binder such as ethyl cellulose in the obtained mixture,
A metallized paste is prepared by adding a solvent such as butyl acetate and stirring, and the metallized paste is printed on a surface of a high thermal conductive silicon nitride substrate prepared by the above-described manufacturing method by a screen printing method or the like to obtain a predetermined metallized paste. A conductor layer (circuit) pattern is formed. Next, the silicon nitride substrate on which the semiconductor layer pattern is printed is dried and then fired at a temperature of 1600 to 1800 ° C. in a non-oxidizing atmosphere such as nitrogen gas.

【0032】さらにメタライズ層の保護、およびメタラ
イズ層に半導体素子や電極材を接合するために使用する
半田等の接合材料との濡れ性を改善するため、メタライ
ズ層表面にニッケル(Ni)やNi−P,Ni−Agな
どのニッケル合金から成るめっき層を形成してもよい。
このめっき層の厚さは1〜6μm程度に設定され、汎用
の電解めっき法や無電解めっき法を使用して形成され
る。
Further, in order to protect the metallized layer and to improve wettability with a bonding material such as solder used for bonding a semiconductor element or an electrode material to the metallized layer, nickel (Ni) or Ni- A plating layer made of a nickel alloy such as P, Ni-Ag may be formed.
The thickness of this plating layer is set to about 1 to 6 μm, and is formed using a general-purpose electrolytic plating method or an electroless plating method.

【0033】[0033]

【作用】上記構成に係る窒化けい素メタライズ基板によ
れば、メタライズ層を焼成して形成する際に液相の染み
出しが少ない高熱伝導性窒化けい素基板を使用している
ため、液相の染み出しに起因するメタライズ層に接合強
度の経時劣化が少なく、高い放熱性および接合強度を有
する耐久性に優れた窒化けい素メタライズ基板を得るこ
とができる。また液相の染み出しによる基板の色むら、
変色も減少し、メタライズ基板の製品歩留りを大幅に改
善することもできる。
According to the silicon nitride metallized substrate having the above-mentioned structure, when the metallized layer is formed by sintering, a high thermal conductive silicon nitride substrate with a small liquid phase exudation is used. It is possible to obtain a silicon nitride metallized substrate having high durability and excellent heat dissipation and bonding strength with less deterioration of the metallized layer due to bleeding over time. Also, uneven color of the substrate due to liquid phase seepage,
Discoloration is also reduced, and the product yield of metallized substrates can be greatly improved.

【0034】特に従来のAlN基板およびAl2 3
板と比較して機械的強度が極めて大きい窒化けい素基板
を使用しているため、従来と同等の強度に設定した場合
には窒化けい素基板の厚さを1/2程度に低減でき、よ
り高密度な実装が可能となる上に、厚さの減少に比例し
て熱抵抗が減少し、従来材であるAlN基板と同等の放
熱性を得ることもできる。
In particular, since a silicon nitride substrate having extremely high mechanical strength is used as compared with the conventional AlN substrate and Al 2 O 3 substrate, the silicon nitride substrate is set to the same strength as the conventional one. Thickness can be reduced to about 1/2, and higher-density mounting is possible. In addition, the thermal resistance is reduced in proportion to the decrease in thickness, and the heat dissipation is equivalent to that of the conventional AlN substrate. You can also get.

【0035】さらに窒化けい素基板の熱膨脹係数が、S
iを主成分とする半導体素子の熱膨脹係数に近似するこ
とになり、半導体素子を一体に接合し繰り返し熱衝撃を
作用させた場合においても熱膨脹差に起因する応力の発
生が少なく、クラックなどの欠陥が生じにくい利点があ
る。
Further, the coefficient of thermal expansion of the silicon nitride substrate is S
The thermal expansion coefficient of the semiconductor element whose main component is i is close to that of the semiconductor element. Even when the semiconductor elements are integrally joined and subjected to repeated thermal shock, the generation of stress due to the difference in thermal expansion is small, and defects such as cracks are generated. There is an advantage that hardly occurs.

【0036】[0036]

【実施例】次に本発明を以下に示す実施例を参照して具
体的に説明する。
Next, the present invention will be specifically described with reference to the following examples.

【0037】実施例1〜5 酸素1.3重量%、陽イオン不純物0.15重量%含有
し、α相型窒化けい素97%を含む平均粒径0.55μ
mの窒化けい素原料粉末に対して、焼結助剤として平均
粒径0.7μmのY2 3 (酸化イットリウム)粉末5
重量%、平均粒径0.5μmのAl2 3 (アルミナ)
粉末1.5重量%を添加し、エチルアルコール中で24
時間湿式混合した後に乾燥して原料粉末混合体を調整し
た。次に得られた原料粉末混合体に有機バインダを所定
量添加して均一に混合した後に、1000kg/cm2 の成
形圧力でプレス成形し、長さ50mm×幅50mm×厚さ5
mmの成形体を多数製作した。次に得られた成形体を70
0℃の雰囲気ガス中において2時間脱脂した後に、この
脱脂体を窒素ガス雰囲気中7.5気圧にて1900℃で
6時間保持し、緻密化焼結を実施した後に、焼結炉に付
設した加熱装置への通電量を制御して焼結炉内温度が1
500℃まで降下するまでの間における焼結体の冷却速
度が50℃/hrとなるように調整して焼結体を冷却し、
それぞれ実施例1〜5用の窒化けい素基板を多数調製し
た。
Examples 1 to 5 An average particle diameter of 0.55 μm containing 1.3% by weight of oxygen, 0.15% by weight of cation impurities and 97% of α-phase silicon nitride
m 2 of silicon nitride raw material powder, Y 2 O 3 (yttrium oxide) powder 5 having an average particle size of 0.7 μm as a sintering aid.
Al 2 O 3 (alumina) with a weight% of 0.5 μm in average particle size
Add 1.5% by weight of powder and add 24% in ethyl alcohol.
After wet-mixing for hours, the mixture was dried to prepare a raw material powder mixture. Next, a predetermined amount of an organic binder is added to the obtained raw material powder mixture, and the mixture is uniformly mixed. Then, the mixture is press-molded at a molding pressure of 1000 kg / cm 2 to have a length of 50 mm × a width of 50 mm × a thickness of 5 mm.
Many mm compacts were manufactured. Next, the obtained molded body was
After degreased in an atmosphere gas at 0 ° C. for 2 hours, the degreased body was maintained at 1900 ° C. for 6 hours at 7.5 atm in a nitrogen gas atmosphere, and after performing densification sintering, it was attached to a sintering furnace. By controlling the amount of electricity to the heating device, the sintering furnace temperature becomes 1
The sintered body was cooled by adjusting the cooling rate of the sintered body until it dropped to 500 ° C. so as to be 50 ° C./hr,
Many silicon nitride substrates for Examples 1 to 5 were prepared.

【0038】一方、導体材料としてのMo粉末およびW
粉末と、活性金属窒化物としてのTiN粉末およびNb
N粉末とを表1に示す重量比率となるように秤量混合し
て5種類の混合体を調製し、さらにバインダとしてのエ
チルセルロースおよび溶剤としての酢酸ブチルを添加し
て撹拌し、5種類の均一なメタライズペーストを調製し
た。
On the other hand, Mo powder and W as conductor materials
Powder, TiN powder and Nb as active metal nitride
N powder was weighed and mixed so as to have a weight ratio shown in Table 1 to prepare five kinds of mixtures, and further, ethyl cellulose as a binder and butyl acetate as a solvent were added and stirred, and the five kinds of uniform substances were stirred. A metallized paste was prepared.

【0039】次の各メタライズペーストを、前記製法で
調製した高熱伝導性窒化けい素基板表面にスクリーン印
刷し、さらに乾燥後、窒化雰囲気中で温度1700〜1
800℃で焼成し、メタライズ層としての回路パターン
を一体に形成した。
Each of the following metallized pastes was screen-printed on the surface of the high thermal conductive silicon nitride substrate prepared by the above-mentioned method, dried, and then dried at a temperature of 1700 to 1 in a nitriding atmosphere.
By firing at 800 ° C., a circuit pattern as a metallized layer was integrally formed.

【0040】さらに半田等の接合材料に対する濡れ性を
改善するために、表1に示すような組成を有する厚さ2
μmのめっき層を無電解めっき法によりそれぞれ形成し
て実施例1〜5に係る窒化けい素メタライズ基板をそれ
ぞれ製造した。
In order to further improve the wettability with respect to a bonding material such as solder, a thickness 2 having a composition as shown in Table 1 is used.
A μm plating layer was formed by an electroless plating method to manufacture silicon nitride metallized substrates according to Examples 1 to 5, respectively.

【0041】比較例1〜3 一方、セラミックス基板として、それぞれAl2 3
結体基板(比較例1用)、AlN焼結体基板(比較例2
用)およびBeO焼結体基板(比較例3用)を使用し、
各焼結体基板表面に表1に示す組成を有するメタライズ
層およびめっき層を実施例1〜5と同様な条件で形成し
てそれぞれ比較例1〜3に係る各種セラミックスメタラ
イズ基板を多数調製した。
Comparative Examples 1 to 3 On the other hand, as a ceramic substrate, an Al 2 O 3 sintered substrate (for Comparative Example 1) and an AlN sintered substrate (Comparative Example 2) were used, respectively.
Using a BeO sintered body substrate (for Comparative Example 3),
Metallized layers and plated layers having the compositions shown in Table 1 were formed on the surface of each sintered body substrate under the same conditions as in Examples 1 to 5, and a number of various ceramic metallized substrates according to Comparative Examples 1 to 3 were prepared.

【0042】こうして調製した実施例1〜5および比較
例1〜3に係る各セラミックス基板について、室温(2
5℃)における熱伝導率、3点曲げ強度、メタライズ層
の接合強度、半田付け性等の特性値を測定するととも
に、色むら等の外観不良率を計測した。なお、接合強度
は、各試料メタライズ基板を下記条件のヒートサイクル
を100回繰り返す熱衝撃試験(TCT)を実施した後
におけるメタライズ層のピール強度として測定した。ヒ
ートサイクルは−50℃で30分間冷却し、室温で10
分間保持し、+150℃で30分間加熱し、室温で10
分間保持する加熱冷却操作を1サイクルとした。
Each of the ceramic substrates according to Examples 1 to 5 and Comparative Examples 1 to 3 thus prepared was subjected to room temperature (2
At 5 ° C.), characteristic values such as thermal conductivity, three-point bending strength, metallized layer bonding strength, and solderability were measured, and the appearance defect rate such as color unevenness was measured. The bonding strength was measured as the peel strength of the metallized layer after performing a thermal shock test (TCT) in which each sample metallized substrate was subjected to a heat cycle under the following conditions 100 times. The heat cycle was performed by cooling at −50 ° C. for 30 minutes and room temperature for 10 minutes.
Hold at + 150 ° C. for 30 minutes and at room temperature for 10 minutes.
The heating and cooling operation for holding for one minute was one cycle.

【0043】また半田付け性はメタライズ層の半田に対
する濡れ性を評価するために測定したものであり、下記
方法で測定した。すなわち直径5mmの球状の半田塊をメ
タライズ層表面上に載置した後に溶融せしめたときに元
の半田塊の高さ(5mm)から溶融半田の盛上り高さに至
るまでの高さの減少割合(%)で半田付け性を評価し
た。
The solderability was measured to evaluate the wettability of the metallized layer with respect to solder, and was measured by the following method. That is, when a 5 mm-diameter spherical solder mass is placed on the surface of the metallized layer and then melted, the rate of decrease in height from the height of the original solder mass (5 mm) to the height of the molten solder rises (%) Was used to evaluate the solderability.

【0044】以上の測定結果を下記表1に示す。The results of the above measurements are shown in Table 1 below.

【0045】[0045]

【表1】 [Table 1]

【0046】表1に示す結果から明らかなように、実施
例1〜5に係る窒化けい素メタライズ基板によれば、メ
タライズ層を焼成して形成する際に、液相の染み出しが
少ないため、ヒートサイクル試験後においてもメタライ
ズ層の接合強度の経時的な低下が少なく、耐久性および
外観に優れた窒化けい素メタライズ基板が得られた。特
に同じ厚さでセラミックス基板を調製した場合には、比
較例2に示すAlN基板を用いた場合より熱伝導率は低
下するが、AlN基板と同等の強度を付与するようにS
3 4 基板の厚さを設定すると厚さはAlN基板の1
/2程度になる。そのため、60〜180W/m・Kの
高熱伝導率を有するSi3 4 基板を使用することによ
り、AlN基板を使用した場合と同等の放熱性を有する
メタライズ基板が得られた。また基板厚さを低減できる
ため、半導体素子をより高密度に実装した半導体モジュ
ールが実現した。
As is evident from the results shown in Table 1, according to the silicon nitride metallized substrates according to Examples 1 to 5, when the metallized layer is formed by firing, the liquid phase exudes little. Even after the heat cycle test, there was little decrease in the bonding strength of the metallized layer over time, and a silicon nitride metallized substrate excellent in durability and appearance was obtained. In particular, when the ceramic substrate is prepared with the same thickness, the thermal conductivity is lower than when the AlN substrate shown in Comparative Example 2 is used.
When the thickness of the i 3 N 4 substrate is set, the thickness becomes 1 of the AlN substrate.
/ 2. Therefore, by using a Si 3 N 4 substrate having a high thermal conductivity of 60 to 180 W / m · K, a metallized substrate having the same heat radiation as that obtained by using an AlN substrate was obtained. Further, since the substrate thickness can be reduced, a semiconductor module in which semiconductor elements are mounted at a higher density has been realized.

【0047】一方、比較例1に係るAl2 3 メタライ
ズ基板によれば、熱伝導率が低く半導体モジュールの高
出力化に対応できず、また比較例2のAlNメタライズ
基板は熱伝導率は高いが、メタライズ層形成時に液相の
染み出しが顕著になり、接合強度が低下するとともに色
むら発生率が高くなり、製品歩留りが低下した。さらに
比較例3のBeOメタライズ基板においては、熱伝導率
は高いが曲げ強度が小さく、薄型化することは困難であ
った。
On the other hand, according to the Al 2 O 3 metallized substrate according to Comparative Example 1, the thermal conductivity is low and it is not possible to cope with high output of the semiconductor module, and the AlN metallized substrate according to Comparative Example 2 has high thermal conductivity. However, when the metallized layer was formed, the exudation of the liquid phase became remarkable, the bonding strength was reduced, the color unevenness was increased, and the product yield was reduced. Further, in the BeO metallized substrate of Comparative Example 3, the thermal conductivity was high, but the bending strength was small, and it was difficult to reduce the thickness.

【0048】[0048]

【発明の効果】以上説明の通り本発明に係る窒化けい素
メタライズ基板は、メタライズ層を焼成して形成する際
に液相の染み出しが少ない高熱伝導性窒化けい素基板を
使用しているため、液相の染み出しに起因するメタライ
ズ層に接合強度の経時劣化が少なく、高い放熱性および
接合強度を有する耐久性に優れた窒化けい素メタライズ
基板を得ることができる。また液相の染み出しによる基
板の色むら、変色も減少し、メタライズ基板の製品歩留
りを大幅に改善することもできる。
As described above, the silicon nitride metallized substrate according to the present invention uses a high thermal conductive silicon nitride substrate with little liquid phase exudation when the metallized layer is formed by firing. In addition, a metal nitride layer which has less deterioration with time in the bonding strength of the metallized layer due to the exudation of the liquid phase, has high heat dissipation and excellent bonding strength, and has excellent durability can be obtained. In addition, uneven color and discoloration of the substrate due to the exudation of the liquid phase are reduced, and the product yield of the metallized substrate can be greatly improved.

【0049】特に従来のAlN基板およびAl2 3
板と比較して機械的強度が極めて大きい窒化けい素基板
を使用しているため、従来と同等の強度に設定した場合
には窒化けい素基板の厚さを1/2程度に低減でき、よ
り高密度な実装が可能となる上に、厚さの減少に比例し
て熱抵抗が減少し、従来材であるAlN基板と同等の放
熱性を得ることもできる。
In particular, since a silicon nitride substrate having extremely high mechanical strength is used as compared with the conventional AlN substrate and Al 2 O 3 substrate, when the same strength as the conventional one is set, the silicon nitride substrate is used. Thickness can be reduced to about 1/2, and higher-density mounting is possible. In addition, the thermal resistance is reduced in proportion to the decrease in thickness, and the heat dissipation is equivalent to that of the conventional AlN substrate. You can also get.

【0050】さらに窒化けい素基板の熱膨脹係数が、S
i主成分とする半導体素子の熱膨脹係数に近似すること
になり、半導体素子を一体に接合し繰り返し熱衝撃を作
用させた場合においても熱膨脹差に起因する応力の発生
が少なく、クラックなどの欠陥が生じにくい利点があ
る。
Further, the coefficient of thermal expansion of the silicon nitride substrate is S
It is similar to the thermal expansion coefficient of the semiconductor element containing i as the main component, and even when the semiconductor elements are integrally joined and subjected to repeated thermal shock, the generation of stress due to the difference in thermal expansion is small, and defects such as cracks are reduced. There is an advantage that is hard to occur.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱伝導率が60〜180W/m・Kであ
る窒化けい素基板表面に、モリブデンおよびタングステ
ンの少なくとも一方と活性金属窒化物とから成るメタラ
イズ層を一体に形成したことを特徴とする窒化けい素メ
タライズ基板。
1. A metallized layer comprising at least one of molybdenum and tungsten and an active metal nitride is integrally formed on a surface of a silicon nitride substrate having a thermal conductivity of 60 to 180 W / m · K. Silicon nitride metallized substrate.
【請求項2】 モリブデンおよびタングステンの少なく
とも一方に対する活性金属窒化物の重量比を1.5〜
2.5に設定したことを特徴とする請求項1記載の窒化
けい素メタライズ基板。
2. The weight ratio of active metal nitride to at least one of molybdenum and tungsten is from 1.5 to 1.5.
2. The metallized silicon nitride substrate according to claim 1, wherein said substrate is set to 2.5.
【請求項3】 メタライズ層の表面にニッケルまたはニ
ッケル合金から成るめっき層を一体に形成したことを特
徴とする請求項1記載の窒化けい素メタライズ基板。
3. The metallized silicon nitride substrate according to claim 1, wherein a plating layer made of nickel or a nickel alloy is integrally formed on the surface of the metallized layer.
JP33621892A 1992-12-16 1992-12-16 Silicon nitride metallized substrate Expired - Lifetime JP3230861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33621892A JP3230861B2 (en) 1992-12-16 1992-12-16 Silicon nitride metallized substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33621892A JP3230861B2 (en) 1992-12-16 1992-12-16 Silicon nitride metallized substrate

Publications (2)

Publication Number Publication Date
JPH06183864A JPH06183864A (en) 1994-07-05
JP3230861B2 true JP3230861B2 (en) 2001-11-19

Family

ID=18296861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33621892A Expired - Lifetime JP3230861B2 (en) 1992-12-16 1992-12-16 Silicon nitride metallized substrate

Country Status (1)

Country Link
JP (1) JP3230861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139117C (en) * 1995-03-20 2004-02-18 株式会社东芝 Silicon nitride circuit substrate
JPH1179872A (en) 1997-09-03 1999-03-23 Sumitomo Electric Ind Ltd Metallized silicon nitride-based ceramic, its production and metallizing composition used for the production

Also Published As

Publication number Publication date
JPH06183864A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
JP4812144B2 (en) Aluminum nitride sintered body and manufacturing method thereof
US4997798A (en) Process for producing aluminum nitride sintered body with high thermal conductivity
JP3115238B2 (en) Silicon nitride circuit board
JPH09153567A (en) Heat conductive silicon nitride circuit board and semiconductor device
KR20010079642A (en) Composite Material and Semiconductor Device Using the Same
JPH1093211A (en) Silicon nitride circuit board
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP2698780B2 (en) Silicon nitride circuit board
JP3193305B2 (en) Composite circuit board
JP2772273B2 (en) Silicon nitride circuit board
JP2939444B2 (en) Multilayer silicon nitride circuit board
JP3230861B2 (en) Silicon nitride metallized substrate
JPH0243700B2 (en)
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JP2677748B2 (en) Ceramics copper circuit board
JP2772274B2 (en) Composite ceramic substrate
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JP3973407B2 (en) Method for producing aluminum nitride sintered body
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JPH0313190B2 (en)
JP2620326B2 (en) Method for producing aluminum nitride sintered body having metallized layer
EP0955279A1 (en) Aluminum-nitride sintered body, method for fabricating the same, and semiconductor substrate comprising the same
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JPH0964235A (en) Silicon nitride circuit board
JP3895211B2 (en) Method for manufacturing silicon nitride wiring board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 12