JP3973407B2 - Method for producing aluminum nitride sintered body - Google Patents

Method for producing aluminum nitride sintered body Download PDF

Info

Publication number
JP3973407B2
JP3973407B2 JP2001349954A JP2001349954A JP3973407B2 JP 3973407 B2 JP3973407 B2 JP 3973407B2 JP 2001349954 A JP2001349954 A JP 2001349954A JP 2001349954 A JP2001349954 A JP 2001349954A JP 3973407 B2 JP3973407 B2 JP 3973407B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
cap glass
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349954A
Other languages
Japanese (ja)
Other versions
JP2003146761A (en
Inventor
秀朗 石田
浩二 西村
信行 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001349954A priority Critical patent/JP3973407B2/en
Publication of JP2003146761A publication Critical patent/JP2003146761A/en
Application granted granted Critical
Publication of JP3973407B2 publication Critical patent/JP3973407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐水性に優れ、高放熱性基板等として好適な窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板に関する。
【0002】
【従来の技術】
従来、窒化アルミニウム基板の一方の面に銅等の金属回路、反対面には銅等の金属放熱板を形成させ、その金属回路面に半導体素子を半田付けされてなるモジュールが使用されている。このようなモジュールにおいては、半導体素子から発生した熱をいかに効率良く除去するかが重要な課題あり、その解決法の1つに窒化アルミニウム基板の熱伝導率をその理論値(約320W/mK)に近づけることの努力が行われている。
【0003】
窒化アルミニウム基板の熱伝導率を高めるには、その焼結体を緻密化することが必要であり、従来よりアルカリ土類金属化合物やランタノイド元素化合物等、多くの焼結助剤が検討されている。CaO等のアルカリ土類金属化合物を使用する技術としては、特開昭50−23411号公報、特開昭60−71575号公報、特開昭61−10071号公報、特開平05−178671号公報等があり、3CaO・Al23を使用するものとしては、特開平04−154670号公報があり、12CaO・7Al23を使用するものとしては、特開平05−9075号公報がある。以上のように、CaOを含有する焼結助剤は、Al23すなわち窒化アルミニウム中の不純物酸素と結合して生成するAl23と反応して液相生成温度を低下させるので、低温焼成であっても焼結体の高密度化を可能とする。
【0004】
【発明が解決しようとする課題】
しかしながら、この焼結助剤で焼結されたとする窒化アルミニウム焼結体は、湿度の高い雰囲気下に曝されると、絶縁破壊電圧が低下する等、耐水性が低下するという課題が未解決であった。これは、窒化アルミニウム焼結体の粒界相に生成した、3CaO・Al23、12CaO・7Al23、CaO・Al23、CaO・2Al23等のカルシウムアルミネートと水との接触により、3CaO・Al23・6H2O、2CaO・Al23・8H2O、CaO・Al23・10H2O等の水和物が生成されるためである。
【0005】
本発明の目的は、熱伝導率100W/mK以上にして、耐水性の良好な、回路基板として好適な窒化アルミニウム焼結体、その製造方法及びその焼結体を用いた回路基板を提供することである。本発明の課題は、窒化アルミニウム粉末にCaO−Al23−P25組成ガラスの配合された混合粉末を温度1500〜1700℃の比較的低温で焼結した後、所定速度で冷却することによって達成することができる。
【0006】
【課題を解決するための手段】
すなわち、本発明は、粒界相にCaO−Al23−P25組成ガラスを含んでなり、熱伝導率が100W/mK以上であることを特徴とする窒化アルミニウム焼結体である。CaO−Al23−P25組成ガラスの化学組成が、CaO35〜60質量%、Al2330〜60質量%、P251〜10質量%であることが好ましい。また、本発明は、窒化アルミニウム粉末100質量部と、CaO−Al23−P25組成ガラス1〜15質量部を含む混合粉末を成形後、非酸化性雰囲気下、温度1500〜1700℃で焼結した後、温度1200℃までを20℃/分以上の冷却速度で急冷することを特徴とする窒化アルミニウム焼結体の製造方法である。さらに、本発明は、上記窒化アルミニウム焼結体をセラミックス基板として用い、その表面に金属回路を形成させてなることを特徴とする回路基板である。
【0007】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0008】
本発明の窒化アルミニウム焼結体は、窒化アルミニウム粒子とその粒子間を埋める粒界相からなるものであって、窒化アルミニウム粒子の大きさは0.5〜20μmであることが好ましい。
【0009】
窒化アルミニウム焼結体における粒界相の構成割合は1〜20%(質量%、以下同じ)であることが好ましい。粒界相の構成割合は、アルカリ溶解法(分析化学,Vol.37,No.12,pp.1133−1137(1996)に準ずる)によって窒化アルミニウム粒子を溶解し、未溶解物を105℃−2時間乾燥後の質量から求めることができる。
【0010】
本発明の窒化アルミニウム焼結体は、粒界相にCaO−Al23−P25組成ガラス(以下、CAPガラスという。)を含有していることが特徴である。粒界相中のCAPガラスの割合は70%以上、特に90%以上であることが好ましい。CAPガラスの割合が70%未満であると、耐水性が向上しない場合がある。CAPガラスの割合は、アルカリ溶解法の未溶解物を粉末X線回折分析し、結晶ピークからその結晶相量を差し引くことによって求めることができる。
【0011】
CAPガラスの化学組成は、CaO35〜60%、Al2330〜60%、P251〜10%であることが好ましい。CaOが35%未満又は60%を超過するか、Al2330%未満又は60%を超過するか、あるいはP25が10%を超過すると、焼結性が悪く、また熱伝導率100W/mK以上の実現が困難となる。P25が1%未満であると、本課題で説明したように、カルシウムアルミネートが生成するため、湿度の高い雰囲気下に曝されると水和物が生成し耐水性が向上しない。なお、粒界相の化学組成は、EPMAによって測定することができる。
【0012】
つぎに、本発明の窒化アルミニウム焼結体の製造方法について説明する。本発明は、上記した耐水性に優れた本発明の窒化アルミニウム焼結体の製造に適用できるものである。
【0013】
窒化アルミニウム粉末100部(質量部、以下同じ)と、CAPガラス1〜15部を含む混合原料を調合する。CAPガラスが1部未満であると、緻密化が阻害される恐れがあり、15部を超過すると、相対的に窒化アルミニウム粉末の割合が少なくなるので、窒化アルミニウム焼結体の熱伝導率を100W/mK以上、特に150W/mK以上にすることが困難となる。CAPガラス量は3〜5部がより好ましい。窒化アルミニウム粉末とCAPガラスの混合には、ボールミル、ロッドミル等が使用される。
【0014】
窒化アルニミウム粉末としては、直接窒化法、アルミナ還元法等公知の方法で製造された粉末が使用されるが、酸素含有量が2%以下、炭素量1000ppm以下であることが特に好ましい。酸素含有量が2%超であるか、炭素量1000ppm超であると、窒化アルミニウム焼結体の熱伝導率を100W/mK以上、特に150W/mK以上にするには焼成時間が長くなる。また、窒化アルミニウム粉末の粒度は、平均粒子径で10μm以下、特に1μm以下がましい。平均粒子径が10μmを超えると、焼結密度が低下し、熱伝導率及び強度に悪影響を及ぼす恐れがある。
【0015】
本発明で使用されるCAPガラスは、前述した粒界相中のCAPガラスと同一化学組成であることが好ましい。CAPガラスのかわりにその構成成分の混合粉末、すなわちCaO成分、Al23成分、P25成分を含む混合粉末を用いてもよいが、CAPガラスにしてから窒化アルニミウム粉末と混合することが好ましい。何故なら、混合粉末の状態で使用すると、焼結中にAl23成分が窒化され、粒界相にCAPガラスの形成不十分となり、リン酸カルシウムが優先的に生成する恐れがあるためである。
【0016】
CAPガラスの製造は、酸化カルシウム、炭酸カルシウム、水酸化カルシウム、硝酸カルシウム、硫酸カルシウム等のCaO成分と、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム等のAl23成分と、無水リン酸、メタリン酸、オルトリン酸、ピロリン酸、ポリリン酸、酸化リン等のP25成分とを含む混合物、又はリン酸カルシウム、リン酸アルミニウム、アルミン酸カルシウム等のいずれか2成分と他の成分との混合物を、酸化性又は非酸化性雰囲気下で1400〜1600℃で加熱溶融し、その後、圧縮空気で吹き飛ばす、水中に投入する等、急冷することによって行うことができる。CAPガラスの粒度は、平均粒子径で10μm以下、特に1μm以下が好ましい。平均粒子径が10μmを超えると、焼結密度が低下し、熱伝導率及び強度に悪影響を及ぼす場合がある。
【0017】
窒化アルミニウム粉末とCAPガラスの混合原料は、次いで成形される。具体的には、ポリビニルブチラール、ポリアクリレート、ポリメチルメタクリレート、メチルセルロース、ポリエチレン、ワックス等のバインダーを加え、金型、静水圧プレスあるいはシート成形により成形する。その後、成形体を窒素ガスや空気等の気流中、350〜700℃で1〜10時間加熱してバインダーを除去した後、窒化硼素製、黒鉛製又は窒化アルミニウム製等の容器にセットし、窒素ガス、アルゴンガス等の非酸化性雰囲気中、1500〜1700℃で焼結される。その後、1200℃まで、より好ましくは1000℃まで、20℃/分以上の冷却速度で急冷し、粒界相にガラス相を形成させる。冷却速度が20℃/分未満であると、粒界相のCAPガラスが十分に生成されず、結晶性のリン酸カルシウムと、アルミン酸カルシウムが単独で形成される恐れがあり、耐水性が劣ることがある。急冷は、窒素ガス、アルゴンガス等の流量や、炉体を冷却する冷却水の水量を高めることによって行うことができる。
【0018】
つぎに、本発明の回路基板について説明すると、本発明の回路基板は、従来の回路基板構造において、セラミックス基板を本発明の窒化アルミニウム焼結体からなるセラミックス基板としたものである。すなわち、本発明の回路基板は、窒化アルミニウム基板の一方の面に半導体素子搭載用の金属回路が、またその反対面には金属放熱板が形成されてなるものである。窒化アルミニウム基板の厚みとしては、放熱特性を重視する場合は0.5〜1mm程度、高電圧下での絶縁耐圧を著しく高めたいときには1〜3mm程度とする。
【0019】
金属回路と金属放熱板の材質は、Al、Cu又はAl−Cu合金であることが好ましい。これらは、単体ないしはこれを一層として含むクラッド等の積層体の形態で用いられる。Alは、Cuよりも降伏応力が小さく、塑性変形に富み、ヒートサイクルなどの熱応力負荷時において、セラミックス基板にかかる熱応力を大幅に低減できるので、Cuよりも窒化アルミニウム基板に発生するクラックを抑制することが可能となり、高信頼性回路基板となる。
【0020】
金属回路の厚みは、電気的、熱的特性の点からAl回路の場合は0.4〜0.5mm、Cu回路は0.3〜0.5mmであることが好ましい。一方、金属放熱板の厚みは、半田付け時の反りを生じさせないように決定される。具体的には、Al放熱板の場合は0.1〜0.4mm、Cu放熱板は0.15〜0.4mmであることが好ましい。
【0021】
窒化アルミニウム基板に金属回路と金属放熱板を形成させるには、金属板と窒化アルミニウム基板とを接合した後エッチングする方法、金属板から打ち抜かれた回路及び放熱板のパターンを窒化アルミニウム基板に接合する方法等によって行うことができる。窒化アルミニウム基板と金属回路等との接合は、Ag、Cu又はAg−Cu合金と、Ti、Zr、Hf等の活性金属成分とを含むろう材を用いる活性金属ろう付け法等によって行うことができる。
【0022】
【実施例】
以下、実施例をあげて、さらに具体的に本発明を説明する。
【0023】
実施例1
酸化カルシウム、酸化アルミニウム、無水リン酸を配合し、1500℃に加熱後、水中に投入してガラス化し、さらに粉砕し平均粒子径0.8μmのCAPガラスを製造した。CAPガラスの化学組成を表1に示す。
【0024】
窒化アルミニウム粉末(平均粒子径0.7μm、酸素含有量0.8%、炭素含有量250ppm)100部に対し、CAPガラスを表2に示す割合で配合し、ボールミルで混合し混合原料を調製した。ついで、バインダー(ポリアクリレート系)を加え、造粒、プレス成型してから、窒素ガス中、500℃、2時間保持して脱脂した後、窒素ガス雰囲気中、1600℃、2時間の常圧焼結を行った。その後、温度1200℃までの冷却速度を25℃/分として急冷し、さらに室温まで徐冷して窒化アルミニウム焼結体を製造した。
【0025】
得られた窒化アルミニウム焼結体を粉砕し、アルカリ溶解法により窒化アルミニウム粒子を溶解し、粒界層中のCAPガラスの割合、及びCAPガラスの化学組成を測定した。なお、CAPガラスの割合は粉末X線回折法により、CAPガラスの化学組成はEPMAにより測定した。また、窒化アルミニウム焼結体の相対密度はアルキメデス法により、熱伝導率はレーザーフラッシュ法により測定した。さらに、耐水性試験は、窒化アルミニウム焼結体を純水の入った四フッ化エチレン製容器に入れ、90℃−10日間放置した。その後、窒化アルミニウム焼結体を取り出し、水溶液のpHを測定した。それらの結果を表2に併記した。
【0026】
【表1】

Figure 0003973407
【0027】
【表2】
Figure 0003973407
【0028】
表1から、粒界相にCAPガラスを生成させることによって、熱伝導率100W/mkを保持し耐水性が著しく向上することが分かる。
【0029】
実験番号2の窒化アルミニウム焼結体を表面研削して窒化アルミニウム基板(寸法:0.635×50×50mm)とした。この窒化アルミニウム基板の表裏面に接合材(Al−9.5%Si−1%Mg合金箔)を介してAl回路形成用とAl放熱板形成用のAl板(厚み0.5mm、Al純度99.9%)を重ね、黒鉛板に挟み、窒化アルミニウム基板の垂直方向から加圧しながら、真空中、580℃で加熱した。得られた接合体を軟X線を用い3倍に拡大して接合不良を検査したがそれは認められなかった(検出下限は直径0.3mmである)。
【0030】
ついで、表裏面それぞれのAl板の周囲2mmを塩化第2鉄水溶液でエッチングし、無電解Ni−Pメッキを3μm施してモジュールとした。その一方のAl面を回路面として12.5mm角のシリコンチップを中央に共晶半田で半田付けし、その反対面を放熱板面としてAl製ヒートシンクに半田付けした。この状態で、−40℃、30分→室温、10分→125℃、30分→室温、10分を1サイクルとして3000サイクルの熱履歴試験を実施し、膨れ、剥がれ等の外観チェックと、断面観察による半田クラックの発生の有無を調べたが、異常は認められなかった。
【0031】
【発明の効果】
本発明によれば、耐水性が高く、高放熱性基板等として好適な窒化アルミニウム焼結体とその製造方法が提供される。また、本発明によれば、高電圧用パワーモジュール用回路基板が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum nitride sintered body excellent in water resistance and suitable as a high heat dissipation substrate, a manufacturing method thereof, and a circuit board using the sintered body.
[0002]
[Prior art]
Conventionally, a module in which a metal circuit such as copper is formed on one surface of an aluminum nitride substrate and a metal heat sink such as copper is formed on the opposite surface and a semiconductor element is soldered on the metal circuit surface is used. In such a module, there is an important problem of how to efficiently remove the heat generated from the semiconductor element. One of the solutions is the thermal conductivity of the aluminum nitride substrate as its theoretical value (about 320 W / mK). Efforts are being made to approach
[0003]
In order to increase the thermal conductivity of the aluminum nitride substrate, it is necessary to densify the sintered body. Conventionally, many sintering aids such as alkaline earth metal compounds and lanthanoid element compounds have been studied. . Examples of the technique using an alkaline earth metal compound such as CaO include Japanese Patent Application Laid-Open No. 50-23411, Japanese Patent Application Laid-Open No. 60-71575, Japanese Patent Application Laid-Open No. 61-10071, and Japanese Patent Application Laid-Open No. 05-178671. Japanese Patent Laid-Open No. 04-154670 discloses the use of 3CaO · Al 2 O 3 , and Japanese Patent Laid-Open No. 05-9075 discloses the use of 12CaO · 7Al 2 O 3 . As described above, sintering aid containing CaO, since reacts, Al 2 O 3, based on generating combined with Al 2 O 3 Namely impurity oxygen in the aluminum nitride lowers the liquidus generation temperature, low temperature Even in firing, the sintered body can be densified.
[0004]
[Problems to be solved by the invention]
However, the aluminum nitride sintered body that has been sintered with this sintering aid has not yet solved the problem of reduced water resistance, such as reduced dielectric breakdown voltage when exposed to a high humidity atmosphere. there were. This was produced in the grain boundary phase of the aluminum nitride sintered body, 3CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, CaO · Al 2 O 3, calcium aluminate such as CaO · 2Al 2 O 3 and water by contact with, because the 3CaO · Al 2 O 3 · 6H 2 O, 2CaO · Al 2 O 3 · 8H 2 O, the CaO · Al 2 O 3 · 10H 2 hydrate O etc. are generated.
[0005]
An object of the present invention is to provide an aluminum nitride sintered body having a thermal conductivity of 100 W / mK or more and good water resistance and suitable as a circuit board, a manufacturing method thereof, and a circuit board using the sintered body. It is. An object of the present invention is to sinter a mixed powder in which CaO—Al 2 O 3 —P 2 O 5 composition glass is mixed with aluminum nitride powder at a relatively low temperature of 1500 to 1700 ° C. and then cool at a predetermined rate. Can be achieved.
[0006]
[Means for Solving the Problems]
That is, the present invention is an aluminum nitride sintered body comprising CaO—Al 2 O 3 —P 2 O 5 composition glass in a grain boundary phase and having a thermal conductivity of 100 W / mK or more. . CaO-Al 2 O 3 -P 2 chemical composition of O 5 glass composition, CaO35~60 mass%, Al 2 O 3 30 to 60 wt%, preferably a P 2 O 5 1 to 10 wt%. Moreover, the present invention forms a mixed powder containing 100 parts by mass of aluminum nitride powder and 1 to 15 parts by mass of CaO—Al 2 O 3 —P 2 O 5 composition glass, and then, in a non-oxidizing atmosphere, temperature 1500 to 1700. A method for producing an aluminum nitride sintered body, comprising sintering at a temperature of 1200 ° C. and then rapidly cooling to a temperature of 1200 ° C. at a cooling rate of 20 ° C./min or more. Furthermore, the present invention is a circuit board characterized in that the aluminum nitride sintered body is used as a ceramic substrate and a metal circuit is formed on the surface thereof.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0008]
The aluminum nitride sintered body of the present invention is composed of aluminum nitride particles and a grain boundary phase filling between the particles, and the size of the aluminum nitride particles is preferably 0.5 to 20 μm.
[0009]
The constituent ratio of the grain boundary phase in the aluminum nitride sintered body is preferably 1 to 20% (mass%, the same applies hereinafter). The composition ratio of the grain boundary phase was determined by dissolving the aluminum nitride particles by an alkali dissolution method (analytical chemistry, Vol. 37, No. 12, pp. 1133 to 1137 (1996)), and removing the undissolved material at 105 ° C. It can obtain | require from the mass after time drying.
[0010]
The aluminum nitride sintered body of the present invention is characterized by containing CaO—Al 2 O 3 —P 2 O 5 composition glass (hereinafter referred to as CAP glass) in the grain boundary phase. The ratio of CAP glass in the grain boundary phase is preferably 70% or more, particularly 90% or more. If the proportion of CAP glass is less than 70%, water resistance may not be improved. The ratio of the CAP glass can be determined by subjecting an undissolved material of the alkali dissolution method to powder X-ray diffraction analysis and subtracting the amount of the crystal phase from the crystal peak.
[0011]
The chemical composition of the CAP glass is preferably CaO 35-60%, Al 2 O 3 30-60%, and P 2 O 5 1-10%. If CaO is less than 35% or more than 60%, Al 2 O 3 less than 30% or more than 60%, or P 2 O 5 exceeds 10%, the sinterability is poor and the thermal conductivity is poor. Realization of 100 W / mK or more becomes difficult. When P 2 O 5 is less than 1%, calcium aluminate is generated as described in this problem. Therefore, when exposed to a high humidity atmosphere, a hydrate is generated and the water resistance is not improved. The chemical composition of the grain boundary phase can be measured by EPMA.
[0012]
Below, the manufacturing method of the aluminum nitride sintered compact of this invention is demonstrated. The present invention can be applied to the production of the above-described aluminum nitride sintered body having excellent water resistance.
[0013]
A mixed raw material containing 100 parts (parts by mass, the same applies hereinafter) of aluminum nitride powder and 1 to 15 parts of CAP glass is prepared. If the CAP glass is less than 1 part, densification may be hindered. If it exceeds 15 parts, the proportion of aluminum nitride powder is relatively reduced, so the thermal conductivity of the aluminum nitride sintered body is 100 W. / MK or more, particularly 150 W / mK or more is difficult. The amount of CAP glass is more preferably 3 to 5 parts. For mixing the aluminum nitride powder and the CAP glass, a ball mill, a rod mill or the like is used.
[0014]
As the aluminum nitride powder, a powder produced by a known method such as a direct nitriding method or an alumina reduction method is used, but it is particularly preferable that the oxygen content is 2% or less and the carbon content is 1000 ppm or less. When the oxygen content is more than 2% or the carbon content is more than 1000 ppm, the firing time becomes longer to make the thermal conductivity of the aluminum nitride sintered body 100 W / mK or more, particularly 150 W / mK or more. The particle size of the aluminum nitride powder is preferably 10 μm or less, particularly 1 μm or less in terms of average particle size. When the average particle diameter exceeds 10 μm, the sintered density is lowered, which may adversely affect the thermal conductivity and strength.
[0015]
The CAP glass used in the present invention preferably has the same chemical composition as the CAP glass in the grain boundary phase described above. Instead of CAP glass, a mixed powder of its constituents, that is, a mixed powder containing CaO component, Al 2 O 3 component, P 2 O 5 component may be used, but after mixing into CAP glass, it is mixed with aluminum nitride powder. Is preferred. This is because when used in a mixed powder state, the Al 2 O 3 component is nitrided during sintering, and CAP glass is not sufficiently formed in the grain boundary phase, and calcium phosphate may be preferentially produced.
[0016]
The production of CAP glass consists of CaO components such as calcium oxide, calcium carbonate, calcium hydroxide, calcium nitrate, and calcium sulfate; Al 2 O 3 components such as aluminum oxide, aluminum hydroxide, and aluminum sulfate; and anhydrous phosphoric acid and metalin. A mixture containing a P 2 O 5 component such as acid, orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorus oxide, or a mixture of any two components such as calcium phosphate, aluminum phosphate, calcium aluminate and the like, It can be carried out by quenching by heating and melting at 1400 to 1600 ° C. in an oxidizing or non-oxidizing atmosphere, and then blowing off with compressed air or putting it into water. The particle size of the CAP glass is preferably 10 μm or less, particularly preferably 1 μm or less, in terms of average particle size. When the average particle diameter exceeds 10 μm, the sintered density is lowered, which may adversely affect the thermal conductivity and strength.
[0017]
The mixed raw material of aluminum nitride powder and CAP glass is then formed. Specifically, a binder such as polyvinyl butyral, polyacrylate, polymethyl methacrylate, methyl cellulose, polyethylene, wax, etc. is added and molded by a mold, isostatic pressing or sheet molding. Thereafter, the molded body is heated at 350 to 700 ° C. for 1 to 10 hours in an air flow such as nitrogen gas or air to remove the binder, and then set in a container made of boron nitride, graphite or aluminum nitride, and the like. It sinters at 1500-1700 degreeC in non-oxidizing atmosphere, such as gas and argon gas. Thereafter, it is rapidly cooled to 1200 ° C., more preferably 1000 ° C., at a cooling rate of 20 ° C./min or more to form a glass phase in the grain boundary phase. When the cooling rate is less than 20 ° C./minute, the CAP glass in the grain boundary phase is not sufficiently formed, and crystalline calcium phosphate and calcium aluminate may be formed alone, resulting in poor water resistance. is there. The rapid cooling can be performed by increasing the flow rate of nitrogen gas, argon gas, or the like, or the amount of cooling water for cooling the furnace body.
[0018]
Next, the circuit board of the present invention will be described. The circuit board of the present invention is a conventional circuit board structure in which the ceramic substrate is a ceramic substrate made of the aluminum nitride sintered body of the present invention. That is, the circuit board of the present invention is formed by forming a metal circuit for mounting a semiconductor element on one surface of an aluminum nitride substrate and forming a metal heat sink on the opposite surface. The thickness of the aluminum nitride substrate is about 0.5 to 1 mm when importance is attached to the heat dissipation characteristics, and about 1 to 3 mm when it is desired to significantly increase the withstand voltage under high voltage.
[0019]
The material of the metal circuit and the metal heat sink is preferably Al, Cu or Al—Cu alloy. These are used in the form of a single body or a laminated body such as a clad including this as a single layer. Al has a lower yield stress than Cu, is rich in plastic deformation, and can greatly reduce the thermal stress applied to the ceramic substrate when subjected to a thermal stress such as a heat cycle. It becomes possible to suppress, and it becomes a highly reliable circuit board.
[0020]
The thickness of the metal circuit is preferably 0.4 to 0.5 mm in the case of an Al circuit and 0.3 to 0.5 mm in the case of a Cu circuit in terms of electrical and thermal characteristics. On the other hand, the thickness of the metal heat radiating plate is determined so as not to cause warpage during soldering. Specifically, it is preferable that the Al heat sink is 0.1 to 0.4 mm, and the Cu heat sink is 0.15 to 0.4 mm.
[0021]
In order to form the metal circuit and the metal heat sink on the aluminum nitride substrate, the metal plate and the aluminum nitride substrate are joined and then etched, the circuit punched from the metal plate and the pattern of the heat sink are joined to the aluminum nitride substrate. It can be performed by a method or the like. The aluminum nitride substrate and the metal circuit or the like can be joined by an active metal brazing method using a brazing material containing Ag, Cu or an Ag—Cu alloy and an active metal component such as Ti, Zr, and Hf. .
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0023]
Example 1
Calcium oxide, aluminum oxide, and anhydrous phosphoric acid were blended, heated to 1500 ° C., poured into water to vitrify, and pulverized to produce CAP glass having an average particle size of 0.8 μm. Table 1 shows the chemical composition of CAP glass.
[0024]
For 100 parts of aluminum nitride powder (average particle size 0.7 μm, oxygen content 0.8%, carbon content 250 ppm), CAP glass was blended in the ratio shown in Table 2, and mixed by a ball mill to prepare a mixed raw material. . Next, after adding a binder (polyacrylate), granulating and press molding, holding in nitrogen gas at 500 ° C. for 2 hours for degreasing, and then baking in nitrogen gas atmosphere at 1600 ° C. for 2 hours at atmospheric pressure Yui was done. Thereafter, the aluminum nitride sintered body was manufactured by rapidly cooling to a temperature of 1200 ° C. at a cooling rate of 25 ° C./min and further gradually cooling to room temperature.
[0025]
The obtained aluminum nitride sintered body was pulverized, aluminum nitride particles were dissolved by an alkali dissolution method, and the ratio of CAP glass in the grain boundary layer and the chemical composition of CAP glass were measured. The ratio of CAP glass was measured by a powder X-ray diffraction method, and the chemical composition of CAP glass was measured by EPMA. The relative density of the aluminum nitride sintered body was measured by the Archimedes method, and the thermal conductivity was measured by the laser flash method. Further, in the water resistance test, the aluminum nitride sintered body was placed in a container made of ethylene tetrafluoride containing pure water and left at 90 ° C. for 10 days. Thereafter, the aluminum nitride sintered body was taken out and the pH of the aqueous solution was measured. The results are also shown in Table 2.
[0026]
[Table 1]
Figure 0003973407
[0027]
[Table 2]
Figure 0003973407
[0028]
From Table 1, it can be seen that by generating CAP glass in the grain boundary phase, the thermal conductivity is maintained at 100 W / mk and the water resistance is remarkably improved.
[0029]
The aluminum nitride sintered body of Experiment No. 2 was surface ground to obtain an aluminum nitride substrate (size: 0.635 × 50 × 50 mm). Al plates (thickness 0.5 mm, Al purity 99) for forming an Al circuit and an Al heat dissipation plate via bonding materials (Al-9.5% Si-1% Mg alloy foil) on the front and back surfaces of the aluminum nitride substrate. .9%), sandwiched between graphite plates, and heated in a vacuum at 580 ° C. while pressing from the vertical direction of the aluminum nitride substrate. The obtained bonded body was magnified 3 times using soft X-rays and examined for bonding failure, but it was not recognized (the lower limit of detection was 0.3 mm in diameter).
[0030]
Subsequently, 2 mm around each of the front and back Al plates was etched with a ferric chloride aqueous solution, and electroless Ni—P plating was applied to 3 μm to obtain a module. One Al surface was used as a circuit surface, and a 12.5 mm square silicon chip was soldered to the center with eutectic solder, and the opposite surface was soldered to an Al heat sink as a heat sink surface. In this state, a thermal history test of 3000 cycles is performed with −40 ° C., 30 minutes → room temperature, 10 minutes → 125 ° C., 30 minutes → room temperature, 10 minutes as one cycle, appearance check such as swelling and peeling, and cross section Observation was made for the presence of solder cracks, but no abnormality was found.
[0031]
【The invention's effect】
According to the present invention, an aluminum nitride sintered body having high water resistance and suitable as a high heat dissipation substrate or the like and a method for producing the same are provided. Moreover, according to this invention, the circuit board for power modules for high voltages is provided.

Claims (1)

窒化アルミニウム粉末100質量部と、CaO40〜60%、Al 35〜55%、P 1〜15%の組成を有するCaO−Al23−P25組成ガラス1〜15質量部を含む混合粉末を成形後、非酸化性雰囲気下、温度1500〜1700℃で焼結した後、温度1200℃までを20℃/分以上の冷却速度で急冷することを特徴とする窒化アルミニウム焼結体の製造方法。And aluminum powder 100 parts by weight of nitride, CaO40~60%, Al 2 O 3 35~55%, CaO-Al 2 O 3 -P 2 O 5 composition glass 15 having a composition of P 2 O 5 1-15% Aluminum powder characterized in that, after forming a mixed powder containing parts by mass, sintered at a temperature of 1500 to 1700 ° C. in a non-oxidizing atmosphere, and then rapidly cooled to a temperature of 1200 ° C. at a cooling rate of 20 ° C./min or more. A method for producing a sintered body.
JP2001349954A 2001-11-15 2001-11-15 Method for producing aluminum nitride sintered body Expired - Fee Related JP3973407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349954A JP3973407B2 (en) 2001-11-15 2001-11-15 Method for producing aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349954A JP3973407B2 (en) 2001-11-15 2001-11-15 Method for producing aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JP2003146761A JP2003146761A (en) 2003-05-21
JP3973407B2 true JP3973407B2 (en) 2007-09-12

Family

ID=19162549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349954A Expired - Fee Related JP3973407B2 (en) 2001-11-15 2001-11-15 Method for producing aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP3973407B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187029B1 (en) * 2010-07-30 2012-09-28 주식회사 이글래스 High heat dissipation low temperature co-fired ceramics
WO2015096095A1 (en) * 2013-12-26 2015-07-02 深圳大学 Ternary inorganic compound crystal and preparation method and application thereof
KR102599515B1 (en) * 2018-09-05 2023-11-06 주식회사 엘지화학 Manufacturing method of aluminum nitride sintered body
KR102500848B1 (en) * 2019-04-09 2023-02-15 주식회사 엘지화학 Method of Preparing the Aluminum Nitride Powder

Also Published As

Publication number Publication date
JP2003146761A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP5245405B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride wiring substrate using the same, and semiconductor module
JP4812144B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP5673106B2 (en) Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
JP5972875B2 (en) Ceramic circuit board
JP6129738B2 (en) Ceramic circuit board
WO1996029736A1 (en) Silicon nitride circuit substrate
JP3629783B2 (en) Circuit board
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
KR100244823B1 (en) Silicon nitride ceramic circuit substrate and semiconductor device using same
JP2698780B2 (en) Silicon nitride circuit board
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP3973407B2 (en) Method for producing aluminum nitride sintered body
JP3193305B2 (en) Composite circuit board
JP4763929B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and circuit board using the sintered body
JP5043260B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JP2772274B2 (en) Composite ceramic substrate
JP2677748B2 (en) Ceramics copper circuit board
JP2003073169A (en) Aluminum nitride sintered compact, its manufacturing method and circuit substrate using the same
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP3230861B2 (en) Silicon nitride metallized substrate
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPH10251069A (en) Silicon nitride circuit board and semiconductor device
JP2620326B2 (en) Method for producing aluminum nitride sintered body having metallized layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees