JPH0566905B2 - - Google Patents

Info

Publication number
JPH0566905B2
JPH0566905B2 JP62182400A JP18240087A JPH0566905B2 JP H0566905 B2 JPH0566905 B2 JP H0566905B2 JP 62182400 A JP62182400 A JP 62182400A JP 18240087 A JP18240087 A JP 18240087A JP H0566905 B2 JPH0566905 B2 JP H0566905B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
group
oxide
weight
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62182400A
Other languages
Japanese (ja)
Other versions
JPS6428280A (en
Inventor
Akira Yamakawa
Hitoshi Sakagami
Hisao Takeuchi
Koichi Sogabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62182400A priority Critical patent/JPS6428280A/en
Publication of JPS6428280A publication Critical patent/JPS6428280A/en
Publication of JPH0566905B2 publication Critical patent/JPH0566905B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は窒化アルミニウム焼結体およびその製
造方法に係り、更に詳しくは緻密質で熱伝導性、
絶縁性、誘電率などの実用上の諸特性に秀れてい
る窒化アルミニウム焼結体の製造方法に関する。 [従来の技術] 最近のLSIの進歩はめざましく、集積度の向上
が著しい。これには、ICチツプサイズの向上も
寄与しており、ICチツプサイズの向上に伴つて
パツケージ当りの発熱量が増大している。このた
め基板材料の放熱性が重要視されるようになつて
きた。また、従来IC基板として用いられていた
アルミナ焼結体の熱伝導率では放熱性が不十分で
あり、ICチツプの発熱量の増大に対応できなく
なりつつある。このためアルミナ基板に代わるも
のとして、高熱伝導性のベリリア基板が検討され
ているが、ベリリアは毒性が強く取扱いが難しい
という欠点がある。 窒化アルミニウム(AIN)は、本来、材質的
に高熱伝導性、高絶縁性を有し、毒性もないた
め、半導体工業において絶縁材料あるいはパツケ
ージ材料として注目を集めている。 [発明が解決しようとする問題点] 上述のように窒化アルミニウムは理論的には単
結晶としては高熱伝導性、高絶縁性を有する材料
である。しかしながら、窒化アルミニウム粉末か
ら焼結体を製造する場合、窒化アルミニウム粉末
自体の焼結性が良くないため、粉末成形後、焼結
して得られる窒化アルミニウム焼結体の相対密度
(窒化アルミニウムの理論密度3.26g/cm3を基準
とする)は、焼結条件にも依るが、高々70〜80%
しか示さず、多量の気孔を包含する。 一方、窒化アルミニウム焼結体の如き絶縁性セ
ラミツクスの熱伝導機構は、フオノン伝導を主体
とするため気孔、不純物等の欠陥はフオノン散乱
を起こし、熱伝導率は低レベルのものしか得られ
ない。 緻密質で、良好な熱伝導性の窒化アルミニウム
焼結体を得るため窒化アルミニウム粉末に種々の
焼結助剤を添加し、ホツトプレスあるいは常圧焼
結することが試みられており、かなり良質の焼結
体が得られている。たとえば、酸化カルシウム
(CaO)、酸化バリウム(BaO)、酸化ストロンチ
ウム(SrO)などを窒化アルミニウム粉末に添加
して焼結する方法(特公昭58−49510号)がある。
この方法によれば相対密度98%以上で、熱伝導率
0.10〜0.13cal/cm・sec・deg(42〜54W/m・k)
(室温)のものが得られている。しかし、この程
度の値の熱伝導率では今後のIC、LSIの集積度向
上による発熱量の増大に対応するには十分といえ
ない。 一方、緻密質で高強度の窒化アルミニウム焼結
体を得ることを目的として、窒化アルミニウム粉
末にY2O3及びSiO2等を添加する試みもなされて
おり(特公昭56−9475号)、98%以上の相対密度
を得ているが、熱伝導率は0.07cal/cm・sec・
deg(29W/m・k)に満たない程の低レベルで
ある。 本発明の目的は、今後の半導体用絶縁材料ある
いはパツケージ材料として好適に使用できるよう
な緻密質で且つ熱伝導性、絶縁性、誘電率などの
実用上の諸特性に優れている窒化アルミニウム焼
結体とその製造方法を提供することにある。 [問題点を解決するための手段] 本発明者らは高熱伝導性の窒化アルミニウム焼
結体を種々検討したところ、焼結助剤として用い
るa族化合物を焼結中に焼結体から抜き、焼結
体中のa族化合物含有量を添加量に比べ減少せ
しめることによつて、熱伝導率に秀れた焼結体を
得ることを見出したものである。本発明は、高熱
伝導性で、かつ誘電率が12以下の窒化アルミニウ
ム焼結体とその製造方法、すなわち、原料粉末の
成形体を、窒化ホウ素またはカーボンの粉末ある
いは成形体と接触させて加熱することによつて、
原料に添加したa族元素酸化物と窒化アルミニ
ウム粉末に含有される酸素を流出除去させる方法
に関する発明である。 そのため、使用する窒化ホウ素あるいはカーボ
ンは粉末またはその成形体である必要があり、
a族酸化物を吸収するためには多孔質でなければ
ならない。この点で先行技術の特開昭60−127267
で使用する黒鉛容器とは異なるものである。 また、焼結時間は、窒化ホウ素あるいはカーボ
ンの粉末あるいは成形体に吸収させるために3時
間以上の加熱が必要となる。 窒化アルミニウムの緻密化に必要なa族化合
物がそのまま焼結体中に残存すると、熱伝導率の
低下だけでなく、耐酸化性、耐食性劣化をひきお
こすが、カーボンまたは窒化ホウ素成形体あるい
はそれらの粉末に接した状態で3時間以上加熱焼
結すればa族酸化物は、それらに吸収されるた
めに、焼結体中に残留する量が少なくなるものと
考えられる。 特にa族元素酸化物量を1.0重量%以下に低
減させた場合、誘電率の増加を防止することが可
能となる。それに基づいて特許請求の範囲に記載
のとおりの構成を有する本発明をしたものであ
る。 すなわち、本発明は窒化アルミニウムに酸化ス
カンジウム、酸化イツトリウム、酸化セリウム等
のa族酸化物を添加し、窒化アルミニウム中の
酸素とアルミニウムとの間で反応を起させ、窒化
アルミニウムを緻密化させると同時に窒化アルミ
ニウム中の酸素を吸収し、窒化アルミニウムを高
熱伝導化せしめるものであり、a族酸化物が
0.01〜1.0重量%で酸素が0.01〜2.0重量%含むこ
とを特徴とする窒化アルミニウム焼結体である。
ここでa族酸化物量は1.0重量%を越えると誘
電率が高く、また耐酸性が劣るし、酸素量が2.0
重量%を越えると、熱伝導率が低くなる。さらに
a族酸化物、酸素量が0.01%未満では緻密質の
焼結体が得られていない。 本発明は窒化アルミニウム粉とa族酸化物粉
末を混合後非酸化雰囲気中(800〜2200℃で焼結
し、焼結体中のa族酸化物量を配合量よりも減
少させることを特徴とする。a族酸化物量の配
合量は5.0重量%を越えると焼結体中のa族酸
化物量が過大となり、0.5重量%未満では焼結体
の緻密化、高熱伝導化が困難である。また窒化ア
ルミニウム粉末としては、酸素含有量が2.0重量
%を越えると熱伝導度が低くなるし、平均粒径が
2μを越えると緻密化が困難である。焼結中に
a族酸化物を減少せしめるためには、カーボン雰
囲気が好ましいが、特に成形体とカーボンまたは
窒化ホウ素の成形体、粉末を接して加熱焼結すれ
ば、a族酸化物は、それらに吸収されるため
に、焼結体中に残留する量が少なくなるものと考
えられる。 [実施例] 以下、実施例および比較例を表1に具体的に説
明する。
[Industrial Application Field] The present invention relates to an aluminum nitride sintered body and a method for manufacturing the same, and more specifically, it relates to an aluminum nitride sintered body and a method for manufacturing the same, and more specifically, it is a dense, thermally conductive,
This invention relates to a method for manufacturing aluminum nitride sintered bodies that have excellent practical properties such as insulation and dielectric constant. [Conventional technology] Recent advances in LSI have been remarkable, with significant improvements in the degree of integration. Improvements in IC chip size are also contributing to this, and as IC chip size improves, the amount of heat generated per package increases. For this reason, importance has been placed on the heat dissipation properties of substrate materials. Furthermore, the thermal conductivity of the alumina sintered bodies conventionally used as IC substrates is insufficient for heat dissipation, and they are becoming unable to cope with the increase in heat generation of IC chips. For this reason, a highly thermally conductive beryllia substrate is being considered as an alternative to the alumina substrate, but beryllia has the drawback of being highly toxic and difficult to handle. Aluminum nitride (AIN) inherently has high thermal conductivity, high insulation properties, and is nontoxic, so it is attracting attention as an insulating material or package material in the semiconductor industry. [Problems to be Solved by the Invention] As described above, aluminum nitride is theoretically a material that has high thermal conductivity and high insulation properties as a single crystal. However, when producing a sintered body from aluminum nitride powder, the sinterability of the aluminum nitride powder itself is not good, so the relative density of the aluminum nitride sintered body obtained by sintering after powder compaction (aluminum nitride theory) (based on density 3.26g/ cm3 ) is at most 70-80%, depending on the sintering conditions.
It shows only a large amount of pores and contains a large amount of pores. On the other hand, the heat conduction mechanism of insulating ceramics such as aluminum nitride sintered bodies is mainly based on phonon conduction, so defects such as pores and impurities cause phonon scattering, and only a low level of thermal conductivity can be obtained. In order to obtain a dense aluminum nitride sintered body with good thermal conductivity, attempts have been made to add various sintering aids to aluminum nitride powder and perform hot pressing or pressureless sintering. Solids have been obtained. For example, there is a method of adding calcium oxide (CaO), barium oxide (BaO), strontium oxide (SrO), etc. to aluminum nitride powder and sintering it (Japanese Patent Publication No. 49510/1983).
According to this method, the relative density is 98% or more, and the thermal conductivity is
0.10~0.13cal/cm・sec・deg (42~54W/m・k)
(room temperature) is obtained. However, this level of thermal conductivity cannot be said to be sufficient to cope with the increase in heat generation due to future increases in the degree of integration of ICs and LSIs. On the other hand, attempts have been made to add Y2O3 , SiO2 , etc. to aluminum nitride powder with the aim of obtaining a dense and high-strength aluminum nitride sintered body (Japanese Patent Publication No. 56-9475), 98 % or more, but the thermal conductivity is 0.07 cal/cm・sec・
The level is so low as to be less than deg (29W/m・k). The object of the present invention is to produce sintered aluminum nitride that is dense and has excellent practical properties such as thermal conductivity, insulation, and dielectric constant, so that it can be suitably used as an insulating material for semiconductors or a package material in the future. The objective is to provide the body and its manufacturing method. [Means for Solving the Problems] The present inventors investigated various highly thermally conductive aluminum nitride sintered bodies, and found that a group a compound used as a sintering aid was extracted from the sintered body during sintering, and It has been discovered that a sintered body with excellent thermal conductivity can be obtained by reducing the content of the group a compound in the sintered body compared to the amount added. The present invention provides an aluminum nitride sintered body with high thermal conductivity and a dielectric constant of 12 or less, and a method for producing the same, that is, a molded body of raw material powder is brought into contact with boron nitride or carbon powder or a molded body and heated. By the way,
This invention relates to a method for removing oxygen contained in group A element oxides and aluminum nitride powder added to raw materials. Therefore, the boron nitride or carbon used must be powder or compacted form thereof.
It must be porous in order to absorb Group A oxides. In this respect, the prior art JP-A-60-127267
This is different from the graphite container used in Further, the sintering time requires heating for 3 hours or more in order to absorb the powder into the boron nitride or carbon powder or compact. If Group A compounds necessary for densification of aluminum nitride remain in the sintered body, they will not only cause a decrease in thermal conductivity but also deterioration of oxidation resistance and corrosion resistance. It is thought that if the oxide is heated and sintered in contact with the sintered body for 3 hours or more, the group a oxides will be absorbed by the oxides, so that the amount remaining in the sintered body will be reduced. In particular, when the amount of group a element oxide is reduced to 1.0% by weight or less, it becomes possible to prevent the dielectric constant from increasing. Based on this, the present invention having the configuration as described in the claims has been made. That is, the present invention adds Group A oxides such as scandium oxide, yttrium oxide, and cerium oxide to aluminum nitride, causes a reaction between oxygen in the aluminum nitride and aluminum, and simultaneously densifies the aluminum nitride. It absorbs oxygen in aluminum nitride and makes aluminum nitride highly thermally conductive.
The present invention is an aluminum nitride sintered body characterized by containing 0.01 to 1.0% by weight of oxygen and 0.01 to 2.0% by weight of oxygen.
If the amount of group a oxide exceeds 1.0% by weight, the dielectric constant will be high and the acid resistance will be poor, and the amount of oxygen will be 2.0% by weight.
If it exceeds % by weight, the thermal conductivity decreases. Further, if the amount of group A oxide or oxygen is less than 0.01%, a dense sintered body cannot be obtained. The present invention is characterized in that aluminum nitride powder and group A oxide powder are mixed and then sintered in a non-oxidizing atmosphere (at 800 to 2200°C) to reduce the amount of group A oxide in the sintered body compared to the blended amount. If the amount of Group A oxides exceeds 5.0% by weight, the amount of Group A oxides in the sintered body becomes excessive, and if it is less than 0.5% by weight, it is difficult to make the sintered body dense and have high thermal conductivity. As for aluminum powder, if the oxygen content exceeds 2.0% by weight, the thermal conductivity will decrease and the average particle size will decrease.
If it exceeds 2μ, it will be difficult to densify it. In order to reduce group A oxides during sintering, a carbon atmosphere is preferable, but especially if the compact is heated and sintered by contacting the compact with carbon or boron nitride compact or powder, the group A oxides will be reduced. It is thought that the amount remaining in the sintered body is reduced due to absorption by the sintered body. [Examples] Examples and comparative examples will be specifically described in Table 1 below.

【表】 上記表1から原料組成物中のa族元素の酸化
物の量あるいは焼結体中のa族元素の酸化物の
量が本発明の成分の範囲外にある比較例に対し
て、これらが本発明の組成範囲内にある各実施例
の製品は、熱伝導率が大きく、誘電率が小さいこ
とがわかる。 [発明の効果] 以上、説明したように、本発明の窒化アルミニ
ウム焼結体は従来のものに比較して熱伝導率が高
く、優れた放熱性を有するIC基板として有用で
ある。
[Table] From Table 1 above, for the comparative example in which the amount of the oxide of the group A element in the raw material composition or the amount of the oxide of the group A element in the sintered body is outside the range of the components of the present invention, It can be seen that the products of each example, which are within the composition range of the present invention, have high thermal conductivity and low dielectric constant. [Effects of the Invention] As explained above, the aluminum nitride sintered body of the present invention has higher thermal conductivity than conventional ones, and is useful as an IC substrate having excellent heat dissipation properties.

Claims (1)

【特許請求の範囲】 1 窒化アルミニウムを主成分とし、a族元素
酸化物が0.01〜1.0重量%、酸素含有量が0.1〜1.0
重量%の範囲にあり、かつ誘電率が12以下で、熱
伝導率が150W/mk以上であることを特徴とす
る窒化アルミニウム焼結体。 2 酸素含有量2.0重量%以下で、かつ平均粒子
径2μm以下である窒化アルミニウム粉末に対し、
a族酸化物、または加熱により酸化物に変換す
るa族元素化合物を酸化物換算で0.5〜5.0重量
%の範囲になるように混合、成形した後、成形体
を窒化ホウ素またはカーボンの粉末またはそれら
の成形体に接触させた状態で非酸化雰囲気中で
1800〜2200℃で3時間以上焼結することによつて
焼結体中のa族元素の酸化物および酸素含有量
を配合量より少ない、0.01〜1.0重量%の範囲に
なるように流出除去または減少させることを特徴
とする窒化アルミニウム焼結体の製造方法。
[Claims] 1 Main component is aluminum nitride, 0.01 to 1.0% by weight of group A element oxide, and 0.1 to 1.0% oxygen content.
% by weight, a dielectric constant of 12 or less, and a thermal conductivity of 150 W/mk or more. 2 For aluminum nitride powder with an oxygen content of 2.0% by weight or less and an average particle size of 2 μm or less,
After mixing and molding a Group A oxide or a Group A element compound that can be converted into an oxide by heating to a concentration in the range of 0.5 to 5.0% by weight in terms of oxide, the molded body is mixed with boron nitride or carbon powder or the like. in a non-oxidizing atmosphere while in contact with the molded body of
By sintering at 1800 to 2200°C for 3 hours or more, the oxides and oxygen contents of group A elements in the sintered body are removed or removed so that they are in the range of 0.01 to 1.0% by weight, which is less than the blended amount. A method for producing an aluminum nitride sintered body, characterized by reducing the amount of aluminum nitride.
JP62182400A 1987-07-23 1987-07-23 Sintered aluminum nitride and production thereof Granted JPS6428280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62182400A JPS6428280A (en) 1987-07-23 1987-07-23 Sintered aluminum nitride and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62182400A JPS6428280A (en) 1987-07-23 1987-07-23 Sintered aluminum nitride and production thereof

Publications (2)

Publication Number Publication Date
JPS6428280A JPS6428280A (en) 1989-01-30
JPH0566905B2 true JPH0566905B2 (en) 1993-09-22

Family

ID=16117648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62182400A Granted JPS6428280A (en) 1987-07-23 1987-07-23 Sintered aluminum nitride and production thereof

Country Status (1)

Country Link
JP (1) JPS6428280A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017485A (en) * 1996-03-28 2000-01-25 Carborundum Corporation Process for making a low electrical resistivity, high purity aluminum nitride electrostatic chuck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127267A (en) * 1983-12-12 1985-07-06 株式会社東芝 High heat conductivity aluminum nitride sintered body
JPS61117161A (en) * 1984-11-09 1986-06-04 株式会社東芝 Manufacture of aluminium nitride ceramics
JPS6259575A (en) * 1985-09-11 1987-03-16 電気化学工業株式会社 Production of aluminum nitride sintered body
JPS62105960A (en) * 1985-10-30 1987-05-16 株式会社トクヤマ Manufacture of aluminum nitride sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127267A (en) * 1983-12-12 1985-07-06 株式会社東芝 High heat conductivity aluminum nitride sintered body
JPS61117161A (en) * 1984-11-09 1986-06-04 株式会社東芝 Manufacture of aluminium nitride ceramics
JPS6259575A (en) * 1985-09-11 1987-03-16 電気化学工業株式会社 Production of aluminum nitride sintered body
JPS62105960A (en) * 1985-10-30 1987-05-16 株式会社トクヤマ Manufacture of aluminum nitride sintered body

Also Published As

Publication number Publication date
JPS6428280A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
US4650777A (en) Method for preparing aluminum nitride ceramics having superior thermal conductivities
JPS63190761A (en) Aluminum nitride-base sintered body
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
JPS6331434B2 (en)
JPH0566905B2 (en)
JPS6221764A (en) Manufacture of aluminum nitride
JPH0336782B2 (en)
KR960001429B1 (en) Process for producing sintered bodies of aluminium nitromal
JP2620260B2 (en) Manufacturing method of aluminum nitride sintered body
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JPS61201669A (en) Aluminum nitride sintered body and manufacture
JPS61286266A (en) Manufacture of aluminum nitride base sintered body
JPH05330807A (en) Aluminum nitride powder for sintering and its production
JPS61201670A (en) Aluminum nitride sintered body and manufacture
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JPH03218977A (en) Production of aluminum nitride sintered body
JPH0566339B2 (en)
JPS6236069A (en) Manufacture of aluminum nitride sintered body
JPS6236066A (en) Silicon carbide base sintered body and manufacture
JP2684728B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0735302B2 (en) Method for manufacturing aluminum nitride sintered body
JPH0566904B2 (en)
RU2032642C1 (en) Mixture for articles of aluminium nitride having high heat conductivity and method for their production
JP2704194B2 (en) Black aluminum nitride sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term