JPS6236069A - Manufacture of aluminum nitride sintered body - Google Patents
Manufacture of aluminum nitride sintered bodyInfo
- Publication number
- JPS6236069A JPS6236069A JP60171407A JP17140785A JPS6236069A JP S6236069 A JPS6236069 A JP S6236069A JP 60171407 A JP60171407 A JP 60171407A JP 17140785 A JP17140785 A JP 17140785A JP S6236069 A JPS6236069 A JP S6236069A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- weight
- thermal conductivity
- aluminum nitride
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は窒化アルミニウム焼結体の製造方法に関わり、
更に詳しくは緻密質で熱伝導性、絶縁性(誘電率)など
の実用上の緒特性に優れた窒化アルミニウム焼結体の製
造方法に関する。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for producing an aluminum nitride sintered body,
More specifically, the present invention relates to a method for producing an aluminum nitride sintered body that is dense and has excellent practical properties such as thermal conductivity and insulation (permittivity).
従来の技術
半導体装置、これらを利用ずろ装置、機器は、半導体素
子、抵抗器類、コイル類等における発熱のために複雑な
熱系を構成するが、このような熱は各種熱伝導様式、例
えば熱伝導、熱輻射、対流等により装置外に放出される
ことになる。Conventional technology Semiconductor devices, devices and equipment using these constitute complex thermal systems due to heat generation in semiconductor elements, resistors, coils, etc. Such heat is transmitted through various heat conduction methods, e.g. It will be released outside the device by heat conduction, heat radiation, convection, etc.
一般に、半導体素子には特性上並びに信頼性の点から最
大限許される温度(最高許容温度)があり、また、雑音
余裕の点からも素子内あるいは素子相互間の温凌差にも
許容範囲が存在する。In general, semiconductor devices have a maximum permissible temperature (maximum allowable temperature) from the standpoint of characteristics and reliability, and also from the standpoint of noise margin, there is a tolerance range for temperature differences within the device or between devices. exist.
従って、これら素子等を安定かつ信頼性よく動作させる
べく、最良の熱設計を行うことは、半導体装置等の設計
、製作において極めて重要である。Therefore, in order to operate these elements stably and reliably, it is extremely important to perform the best thermal design in the design and manufacture of semiconductor devices and the like.
更に、近年、半導体素子の高速化、高密度化、大型化の
動向がみられ、それに伴い半導体素子の発熱量の増大が
大きな問題となっている。そこで、半導体装置用基板に
ついても、放熱性の改良、即ち基板全体としての板厚方
向の熱伝導性のより一層の改良が要求されている。その
ために、半導体装置用基板については、同時に高い電気
絶縁性と、高い放熱性とを有することが要求されること
になる。Furthermore, in recent years, there has been a trend toward faster speeds, higher densities, and larger sizes of semiconductor devices, and with this, an increase in the amount of heat generated by semiconductor devices has become a major problem. Therefore, there is a demand for improved heat dissipation of substrates for semiconductor devices, that is, further improvement of thermal conductivity in the thickness direction of the entire substrate. Therefore, substrates for semiconductor devices are required to have high electrical insulation and high heat dissipation properties at the same time.
その結果、従来IC基板として用いられていたアルミナ
焼結体は、その熱伝導率が低く放熱性が不十分であるた
めに、上記のようなICチップ等の高集積化に伴う発熱
の増大に対して十分に対応できなくなりつつある。そこ
で、このアルミナ基板に代わるものとして、高熱伝導性
のベリリア基板が検討されているが、ベリリアは毒性が
強く取り扱いが困難であるばかりでなく、供給量も少な
く高価であるので実用的でない。As a result, the alumina sintered bodies conventionally used as IC substrates have low thermal conductivity and insufficient heat dissipation, so they are susceptible to increased heat generation due to the high integration of IC chips, etc. It is becoming increasingly difficult to respond adequately. Therefore, a highly thermally conductive beryllia substrate is being considered as an alternative to this alumina substrate, but beryllia is not only highly toxic and difficult to handle, but also is not practical because it is scarce and expensive.
一方で、窒化アルミニウム(AJN)は、本来材質的に
高熱伝導性、高絶縁性を存し、毒性も少ないために、半
導体工業において、絶縁材料やパッケージ材料として注
目を集めている。On the other hand, aluminum nitride (AJN) is attracting attention as an insulating material and a packaging material in the semiconductor industry because it inherently has high thermal conductivity and high insulation properties, and is also low in toxicity.
しかしながら、AIN粉末からその焼結体を製造する場
合、AfN粉末自体の焼結性が良くないために、粉末成
形後、焼結して得られるAIN焼結体の相対密度(Af
fiNの理論密度3.26g/cjを基準とする)は、
焼結条件にもよるが、高々70〜80%程度に過ぎず、
しかも多量の気孔を有している。ところで、窒化アルミ
ニウム焼結体の如き絶縁性セラミックの熱伝導機構はこ
のものがイオン結合、共有結合からなるために、主とし
て格子振動間の非調和相互作用によるフォノン伝導を主
体としているため、多量の気孔、不純物等の欠陥を有す
る場合には、フォノン散乱が著しく、低熱伝導度のもの
しか得られない。However, when producing the sintered body from AIN powder, the relative density of the AIN sintered body obtained by sintering after powder compaction (Af
(based on the theoretical density of fiN 3.26 g/cj) is
Although it depends on the sintering conditions, it is only about 70-80% at most.
Moreover, it has a large number of pores. By the way, the heat conduction mechanism of insulating ceramics such as aluminum nitride sintered bodies consists of ionic and covalent bonds, and is mainly based on phonon conduction due to anharmonic interaction between lattice vibrations. When there are defects such as pores and impurities, phonon scattering is significant and only a material with low thermal conductivity can be obtained.
そこで、緻密質で良好な熱伝導率を有するAzNfi結
体を得るために、AJN粉末に種々の焼結助剤を添加し
、ホットプレスあるいは常圧焼結することが試みられて
おり、かなり良質のA1N焼結体を得ることができるよ
うになってきた。Therefore, in order to obtain AzNfi compacts that are dense and have good thermal conductivity, attempts have been made to add various sintering aids to AJN powder and perform hot pressing or pressureless sintering. It has become possible to obtain A1N sintered bodies.
例えば、酸化カルシウム(Cab)、酸化バリウム(B
ad)、酸化ストロンチウム(SrO)などをAIN粉
末に0.1〜10重量%の割合で添加し、焼結する方法
が特公昭58−49510号公報明細書に開示されてい
る。この方法によれば、相対密度98%以上で、熱伝導
率0.1〜0.13cal/c+m、sec、deg
(42〜54W/m、k) (室温)の製品が得られて
いる。しかしながら、この程度の値では、今後のIC,
LSI等の集積度向上に伴う大きな発熱量に十分対応で
きるとはいえない。For example, calcium oxide (Cab), barium oxide (B
ad), a method in which strontium oxide (SrO) or the like is added to AIN powder in a proportion of 0.1 to 10% by weight and sintered is disclosed in Japanese Patent Publication No. 58-49510. According to this method, the relative density is 98% or more, the thermal conductivity is 0.1 to 0.13 cal/c+m, sec, deg.
(42 to 54 W/m, k) (room temperature) product has been obtained. However, with this level of value, future IC,
It cannot be said that it can sufficiently cope with the large amount of heat generated due to the increase in the degree of integration of LSIs and the like.
また、ホットプレス法としてはCaO、BaO、SrO
などを0.01〜1.0重量%の割合でAIN粉末に添
加して焼結する方法がある。(特開昭59−50077
号公報発明参照)、シかしながら、この方法においても
熱伝導率60〜70W/請、に程度のものしか得られて
いない、しかも、このホットプレス法では・得られる焼
結体の形状に制限があり、その上この工程は高価なプリ
セスであるために、前述のIC。In addition, as a hot press method, CaO, BaO, SrO
There is a method of adding 0.01 to 1.0% by weight of AIN powder to AIN powder and sintering it. (Unexamined Japanese Patent Publication No. 59-50077
However, even with this method, only a thermal conductivity of about 60 to 70 W/kg can be obtained.Furthermore, with this hot pressing method, the shape of the obtained sintered body is Due to the limitations and furthermore, this process is an expensive process, the above-mentioned IC.
LSI等の基板として用いるには経済的に不利である。It is economically disadvantageous to use it as a substrate for LSI or the like.
発明が解決しようとする問題点
以上述べたように、半導体装置の高集積化に伴って、I
Cチップ等の大型化がみられ、これら素子、デバイスの
発熱量は著しく増大するものと予想されるが、従来の基
板はこのような発熱量の増大に対し十分に対応し得なく
なってきており、新しい基板材料の開発が望まれている
。このような状況の下で、高耐熱性の高温構造材料とし
て、注目を集めているAfNが熱伝導性、電気絶縁性、
両者において優れていることから、半導体工業における
絶縁材料、パッケージ材料として期待されているが、そ
の実情は既に述べた通りであり、実用に耐え得る優れた
物性のAIN焼結体は今のところ得られていない。Problems to be Solved by the Invention As mentioned above, as semiconductor devices become more highly integrated, I
As C-chips and other devices become larger, the amount of heat generated by these elements and devices is expected to increase significantly, but conventional substrates are no longer able to adequately cope with this increase in amount of heat generated. , the development of new substrate materials is desired. Under these circumstances, AfN, which is attracting attention as a high-temperature structural material with high heat resistance, has thermal conductivity, electrical insulation,
Because it is excellent in both, it is expected to be used as an insulating material and a packaging material in the semiconductor industry, but the actual situation is as described above, and so far, AIN sintered bodies with excellent physical properties that can withstand practical use are not available. It has not been done.
そこで、本発明の目的は熱伝導性の良好なAIN焼結体
を経済的に有利に製造する方法を提供することにあり、
勿論100W/麟、に以上の高い熱伝導性を有し、かつ
緻密質の新規なAJN焼結体を提供することも本発明の
目的の一つである。Therefore, an object of the present invention is to provide an economically advantageous method for manufacturing an AIN sintered body with good thermal conductivity.
Of course, it is also an object of the present invention to provide a novel dense AJN sintered body that has a high thermal conductivity of 100 W/in or more.
問題点を解決するための手段
本発明者等はAIN焼結体の製造法における上記の如き
従来の現状に鑑みて、熱伝導率100W/m、に以上の
高熱伝導性を有するAIN焼結体を経済的に有利な常圧
焼結法により得ることのできる方法を開発すべく、原料
粉末純度、焼結助剤、焼結条件等を詳細に検討した結果
、低酸素含有量のAj!N粉末を用い、また焼結用添加
剤として酸化カルシウム (Cab)および弗化カルシ
ウム (CaFz)を少量添加することが上記目的達成
のために極めて有利であることを見出し、本発明を完成
した。Means for Solving the Problems The present inventors have developed an AIN sintered body having a high thermal conductivity of 100 W/m or more, in view of the above-mentioned conventional state of the manufacturing method for AIN sintered bodies. In order to develop a method that can obtain Aj! by an economically advantageous pressureless sintering method, we conducted detailed studies on raw material powder purity, sintering aids, sintering conditions, etc., and found that Aj! The present invention was completed based on the discovery that using N powder and adding small amounts of calcium oxide (Cab) and calcium fluoride (CaFz) as sintering additives is extremely advantageous for achieving the above object.
即ち、本発明のAj!N焼結体の製造方法は、0.5〜
1.5重量%の酸素含有量率を有するAIN粉末に、0
.01〜0.07重量%の酸化カルシウムおよび0.1
〜0.7重量%の弗化カルシウムとを添加し、混合した
後成形し、次いで1700〜2200℃の範囲内の温度
にて、非酸化性雰囲気中で常圧焼結することを特徴とす
るものである。That is, Aj! of the present invention! The manufacturing method of N sintered body is 0.5~
AIN powder with an oxygen content rate of 1.5% by weight,
.. 01-0.07% by weight of calcium oxide and 0.1
~0.7% by weight of calcium fluoride is added, mixed, molded, and then pressureless sintered in a non-oxidizing atmosphere at a temperature within the range of 1700 to 2200°C. It is something.
本発明の方法において、非酸化性雰囲気とは、真空ある
いは窒素ガス、水素ガス、−酸化炭素ガス、アルゴンガ
ス、ヘリウムガス、などからなる群から選ばれた少なく
とも一種で構成される雰囲気を意味する。In the method of the present invention, the non-oxidizing atmosphere means a vacuum or an atmosphere composed of at least one selected from the group consisting of nitrogen gas, hydrogen gas, -carbon oxide gas, argon gas, helium gas, etc. .
本発明の方法においても、AAN焼結体を一般にみられ
るセラミックと同じように、各成分の調合、成形、焼成
の一連の工程に従って製造する。In the method of the present invention, the AAN sintered body is manufactured in the same way as commonly used ceramics by following a series of steps of preparing each component, molding, and firing.
本発明の方法を更に説明すると、まず、AINと所定量
の酸化カルシウムおよび弗化カルシウムを混合する。次
いで所定の形状に成形し、常圧焼結する。ここで成形法
としては特に制限はなく、従来公知の、例えば目的とす
る製品の形状、寸法に応じて金型成形、ラバープレス、
押し出し成形、射出成形、鋳込み成形等の中から最適な
方法を選び実施する。To further explain the method of the present invention, first, AIN and predetermined amounts of calcium oxide and calcium fluoride are mixed. Next, it is molded into a predetermined shape and sintered under normal pressure. There are no particular restrictions on the molding method, and conventional methods such as mold molding, rubber press,
Select and implement the most suitable method from extrusion molding, injection molding, casting molding, etc.
また、このような成形法と生地の機械加工とを併用して
複雑な形状の目的製品を得ることもでき、この機械加工
法としては均質に、しかも最終製品の寸法精度、表面欠
陥等の発生などを考慮すれば高精度の技術の利用が必要
になり、NC研削加工、レーザー加工等の利用が望まし
い。In addition, it is also possible to obtain a target product with a complex shape by combining this molding method with machining of the dough, and this machining method can achieve uniformity while reducing the dimensional accuracy of the final product and the occurrence of surface defects. Considering these factors, it is necessary to use high-precision technology, and it is desirable to use NC grinding, laser processing, etc.
作 用
−aに焼結性が良くないとされているA6Nの緻密質、
かつ高熱伝導率を有する焼結体を得るために、特に問題
とならていた点は最終製品中に残存する大量の気孔であ
った。そこで、この気孔量を減じ、高熱伝導率のAIN
焼結体製品とするために各種の焼結助剤を用いる方法が
提案されたが、従来使用されてきたものは未だ不十分で
あり、大型化、高集積化の図られた半導体装置等の十分
な放熱性を61保する基板はまだ知られていない。Effect-a is the dense nature of A6N, which is said to have poor sinterability.
In order to obtain a sintered body with high thermal conductivity, a particular problem was the large amount of pores remaining in the final product. Therefore, by reducing the amount of pores, AIN with high thermal conductivity
Methods using various sintering aids have been proposed to produce sintered products, but the ones that have been used in the past are still insufficient, and are suitable for semiconductor devices that are becoming larger and more integrated. A substrate that maintains sufficient heat dissipation is not yet known.
ところで、本発明に従って、焼結助剤として酸化カルシ
ウムおよび弗化カルシウムを用いることによって緻密か
つ高熱伝導のAIN焼結体を有利に得ることが可能とな
った。By the way, according to the present invention, it has become possible to advantageously obtain a dense and highly thermally conductive AIN sintered body by using calcium oxide and calcium fluoride as sintering aids.
本発明の方法において、目的とする特に熱伝導率が10
0W/m、に以上の高い放熱性のAIN焼結体を得る際
に、いくつかの条件は臨界的に作・用する。In the method of the present invention, a particularly targeted thermal conductivity of 10
When obtaining an AIN sintered body with high heat dissipation of 0 W/m or more, several conditions act critically.
まず、AIN粉末中の酸素含有率は0.5〜1.5重量
%でなければならない、というのは、この上限を越えて
酸素が存在する場合、焼結工程において酸素力Al5o
z アルイはAl0N(7)形でAl1N焼結体中に
混入してしまい、既に述べたようにフォノン散乱を生じ
、熱伝導率の低いものが得られてしまい、目的とする1
00W/m、に以上の高熱伝導率のAIN焼結体を得る
ことができないからである。Firstly, the oxygen content in the AIN powder must be between 0.5 and 1.5% by weight, because if oxygen is present above this upper limit, the oxygen power Al5o will be reduced during the sintering process.
z Aluminum is mixed into the Al1N sintered body in the form of Al0N(7), which causes phonon scattering as mentioned above, resulting in a product with low thermal conductivity.
This is because it is impossible to obtain an AIN sintered body with a high thermal conductivity of 00 W/m or more.
また、0.5重量%未満ではAj!N粉末の焼結性が著
しく阻害され、95%以上の相対密度が得られなむ1結
果、熱伝導率も1001へ、に以上を得られない。Moreover, if it is less than 0.5% by weight, Aj! The sinterability of the N powder is significantly inhibited, making it impossible to obtain a relative density of 95% or more.As a result, the thermal conductivity also drops to 1001, making it impossible to obtain a relative density of 95% or more.
次に焼結助剤として添加する酸化カルシウムおよび弗化
カルシウムの添加量は各々0.O1〜0.07重量%お
よび0.1〜0.7重量%の範囲内とすることが必要で
ある。即ち、下限の0.01重量%及び0.1重量%に
満たない量で使用した場合には十分に緻密な常圧焼結体
を得ることができず、逆に上限の0.07重量%および
0.7重量%を越えて使用した場合には、得られる焼結
体の熱伝導率が低下し、目的とする放熱性良好なAfN
焼結体が得られない。Next, the amounts of calcium oxide and calcium fluoride added as sintering aids were each 0. It is necessary that O is in the range of 1 to 0.07% by weight and 0.1 to 0.7% by weight. That is, if the amount is less than the lower limit of 0.01% by weight or 0.1% by weight, a sufficiently dense pressureless sintered body cannot be obtained; If it is used in an amount exceeding 0.7% by weight, the thermal conductivity of the obtained sintered body will decrease, and the desired heat dissipation property of AfN will decrease.
A sintered body cannot be obtained.
酸化カルシウムおよび弗化カルシウムは各々単独で添加
した場合はその効果は小さく、混合物として添加して始
めて100W/m、に以上の熱伝導率が得られることが
わかっている。It is known that when calcium oxide and calcium fluoride are added individually, the effect is small, and that a thermal conductivity of 100 W/m or more can only be obtained when they are added as a mixture.
また、焼結温度は1700〜2200℃の範囲内とする
ことが好ましい、なんとなれば、1700℃未満では十
分に焼結が進行せず、相対密度95%以上の緻密な製品
を得ることができず、また、2200 ’Cを越える温
度で焼結した場合にはAl1Nの分解反応が著しく促進
され、焼結体の重量減少が大きくなるためである。In addition, it is preferable that the sintering temperature be within the range of 1700 to 2200°C, since sintering will not proceed sufficiently at temperatures below 1700°C, making it impossible to obtain a dense product with a relative density of 95% or more. First, if sintering is performed at a temperature exceeding 2200'C, the decomposition reaction of Al1N will be significantly accelerated, resulting in a large weight loss of the sintered body.
以上述べたように、本発明の方法によればAfNの焼結
助剤として酸化カルシウムおよび弗化カルシウムを用い
ることにより、緻密なA7!N焼結体を得ることが可能
となる。また、大量の発熱量を有する高集積化半導体デ
バイスのパッケージ用基板として有用な高い放熱性を与
えるAIN焼結体を得るためには、酸化カルシウムおよ
び弗化カルンウムの添加量、AItN中の酸素含有率、
焼結温度等の各条件を上記のような範囲とする必要があ
り、これによって焼結法としては最も経済性のよい常圧
焼結法で、高い熱伝導率(100W/m、に以上)と繊
密性(高相対密度)のAβN焼結体が有利に提供される
。As described above, according to the method of the present invention, by using calcium oxide and calcium fluoride as sintering aids for AfN, dense A7! It becomes possible to obtain a N sintered body. In addition, in order to obtain an AIN sintered body that provides high heat dissipation properties and is useful as a packaging substrate for highly integrated semiconductor devices that generate a large amount of heat, it is necessary to rate,
It is necessary to keep the conditions such as sintering temperature within the above ranges, and this allows the atmospheric pressure sintering method, which is the most economical sintering method, to achieve high thermal conductivity (over 100 W/m). An AβN sintered body with high density (high relative density) is advantageously provided.
酸化カルシウムおよび弗化カルシウムの混合物がAIN
の焼結を促進する機構は明らかではないが、CaOとC
aFzおよびAfNの反応によりガラス様の液相が発生
し、液相焼結による緻密化及び結晶Mi織の粒状化が起
こり、熱伝導率の改善がなされるものと考えられる。A mixture of calcium oxide and calcium fluoride is AIN
Although the mechanism promoting sintering of CaO and C is not clear,
It is thought that a glass-like liquid phase is generated by the reaction of aFz and AfN, and densification and granulation of the crystalline Mi texture occur due to liquid phase sintering, thereby improving thermal conductivity.
また、後記の実施例で示されるように、熱伝導率はCa
O及びCaFtを添加しない窒化アルミニウム焼結体に
較べ、著しい増加を示している。これは最適な酸素含有
量のAβN粉末とCaO及びCaFzの組み合わせによ
り、窒化アルミニウム焼結体の緻密化並びに低欠陥濃度
化が十分達成されたためと考えられる。また、結晶組織
の粒状化が熱伝導率の向上に寄与していると考えられる
。In addition, as shown in the examples below, the thermal conductivity is Ca
This shows a significant increase compared to the aluminum nitride sintered body to which O and CaFt are not added. This is considered to be because the combination of AβN powder with an optimal oxygen content, CaO, and CaFz sufficiently achieved densification and low defect concentration of the aluminum nitride sintered body. Furthermore, it is thought that the granularity of the crystal structure contributes to the improvement of thermal conductivity.
実施例
以下、本発明を実施例により説明するが、これら実施例
は本発明の範囲を制限す北ものではない。EXAMPLES Hereinafter, the present invention will be explained by examples, but these examples do not limit the scope of the present invention.
実施例1
酸素含有量が0.5〜1.5重量%の範囲内の各種の窒
化アルミニウム粉末に、酸化カルシウムを0.05%弗
化カルシウムを0.4%混合添加し、ボールミルで12
時間混合し混合粉末を作製した。これを2トン/cat
の圧力下で成形し、1900℃にて3時間1気圧のN!
ガス雰囲気中で常圧焼結した。得られた各焼結体試料に
つき相対密度および熱伝導率を測定し、結果を以下の第
1表に示した。Example 1 A mixture of 0.05% calcium oxide and 0.4% calcium fluoride was added to various aluminum nitride powders with an oxygen content in the range of 0.5 to 1.5% by weight, and milled in a ball mill for 12 hours.
A mixed powder was prepared by mixing for a period of time. 2 tons/cat of this
It was molded under a pressure of 1 atm of N at 1900°C for 3 hours.
Normal pressure sintering was performed in a gas atmosphere. The relative density and thermal conductivity of each obtained sintered body sample were measured, and the results are shown in Table 1 below.
比較例1
酸素含有量が1.5重量%を越える窒化アルミニウム粉
末または、酸素含有量が0.5重量%未満の窒化アルミ
ニウム粉末を用い、実施例1と同様に酸化カルシウムお
よび弗化カルシウムを添加・混合し、成形、焼結して比
較試料を作製した。同様に相対密度と熱伝導率を測定し
、結果を第1表に示した。Comparative Example 1 Using aluminum nitride powder with an oxygen content of more than 1.5% by weight or aluminum nitride powder with an oxygen content of less than 0.5% by weight, and adding calcium oxide and calcium fluoride in the same manner as in Example 1.・Comparative samples were prepared by mixing, molding, and sintering. Relative density and thermal conductivity were similarly measured and the results are shown in Table 1.
この結果から、また熱伝導率を100W/m、に以上と
するためにはAINの酸素含有率は0.5〜1.5重量
%である必要があることがわかる。更に、本発明の方法
で得られる焼結体は極めて大きな相対密度(99%以上
)を有し、気孔率が大幅に改善されていることを容易に
理解することができる。This result also shows that the oxygen content of AIN needs to be 0.5 to 1.5% by weight in order to increase the thermal conductivity to 100 W/m or more. Furthermore, it can be easily seen that the sintered body obtained by the method of the present invention has an extremely high relative density (99% or more) and has significantly improved porosity.
実施例2
酸素含有量1.2重量%の窒化アルミニウム粉末に酸化
カルシウムを0.01〜0.07重量%、弗化カルシウ
ムを0.1〜0.7重量%の範囲の種々の量で添加・混
合し、実施例1と同様な方法で成形し、焼結し本発明の
窒化アルミニウム焼結体を製作した。Example 2 Calcium oxide was added to aluminum nitride powder with an oxygen content of 1.2% by weight in various amounts ranging from 0.01 to 0.07% by weight and calcium fluoride in the range from 0.1 to 0.7% by weight. - The materials were mixed, molded and sintered in the same manner as in Example 1 to produce an aluminum nitride sintered body of the present invention.
得られた焼結体の相対密度および熱伝導率は以下、X の第2表に示す通りであった。The relative density and thermal conductivity of the obtained sintered body are as follows: The results were as shown in Table 2.
比較例2
酸素含有N1.2重量%の窒化アルミニウム粉末に酸化
カルシウム及び弗化カルシウムを本発明の範囲外の量で
添加・混合し、以下実施例1と同様に処理して比較試料
を作製した。相対密度、熱伝導率の測定結果を第2表に
示す。Comparative Example 2 A comparative sample was prepared by adding and mixing calcium oxide and calcium fluoride in amounts outside the range of the present invention to aluminum nitride powder containing 1.2% by weight of oxygen-containing N, and then treating the mixture in the same manner as in Example 1. . Table 2 shows the measurement results of relative density and thermal conductivity.
第2表の結果は酸化カルシウムを0.01〜0607重
量%および弗化カルシウムを0.1〜0.7重量%の量
で使用することにより、100W/m、に以上の高熱伝
導率の窒化アルミニウム焼結体を有利に得ることができ
ることを示している。The results in Table 2 show that by using calcium oxide in an amount of 0.01 to 0,607% by weight and calcium fluoride in an amount of 0.1 to 0.7% by weight, a high thermal conductivity of 100 W/m or more can be obtained by nitriding. This shows that aluminum sintered bodies can be advantageously obtained.
実施例3
酸素含有量1.2重量%の窒化アルミニウム粉末に酸化
カルシウムを0.05重量%、弗化カルシウムを0.5
重量%混合添加し、実施例1と同様な方法で焼結体試料
を得た。尚、焼結は1,700〜2,200℃の範囲内
の温度にて3時間1気圧のN2ガス雰囲気中で常圧焼結
法に従って実施した。得られた焼結体の特性の測定結果
を第3表に示す。Example 3 0.05% by weight of calcium oxide and 0.5% by weight of calcium fluoride were added to aluminum nitride powder with an oxygen content of 1.2% by weight.
A sintered body sample was obtained in the same manner as in Example 1 by adding a mixture of % by weight. Incidentally, the sintering was carried out at a temperature within the range of 1,700 to 2,200° C. for 3 hours in a N2 gas atmosphere of 1 atm according to an atmospheric pressure sintering method. Table 3 shows the measurement results of the properties of the obtained sintered body.
比較例3
酸素含有N1.2重量%の窒化アルミニウム粉末に酸化
カルシウムおよび弗化カルシウムを各々0.05重量%
および0.5重量%添加・混合し、実施例1と同様に成
形した後、本発明の範囲外の焼結温度にて焼結し比較試
料を得た。物性の測定結果を第3表に示す。Comparative Example 3 0.05% by weight each of calcium oxide and calcium fluoride in aluminum nitride powder containing 1.2% by weight of oxygen-containing N
and 0.5% by weight were added and mixed, molded in the same manner as in Example 1, and then sintered at a sintering temperature outside the range of the present invention to obtain a comparative sample. Table 3 shows the measurement results of physical properties.
実施例3および比較例3は、本発明の方法において所定
の特性を有する焼結体を得るためには焼結温度が臨界条
件であることを示すために行ったものであるが、第3表
の結果は下県の1700℃に満たない場合には十分な熱
伝導率、相対密度が確保できないことを明賄に示してい
る。Example 3 and Comparative Example 3 were conducted to demonstrate that the sintering temperature is a critical condition in order to obtain a sintered body with predetermined characteristics in the method of the present invention. The results clearly show that sufficient thermal conductivity and relative density cannot be secured if the temperature is lower than Shimoken's 1,700°C.
発明の効果
以上詳しく説明したように、本発明の方法に従えば、酸
素含有l005〜1.5重量%の窒化アルミニウム粉末
に、0.01−0.07重量%の酸化カルシウムおよび
0.1〜0.7重量%の弗化カルシウムを混合添加後成
形し、次いで1.700〜2,200℃の温度にて非酸
化性雰囲気下で常圧焼結することにより、¥1tIf!
買かつ特に熱伝導性に優れた、半導体装置の放熱材料あ
るいはパッケージ材料として有用である。Effects of the Invention As explained in detail above, according to the method of the present invention, 0.01-0.07% by weight of calcium oxide and 0.1 to 1.5% by weight of oxygen-containing aluminum nitride powder are added to 1005 to 1.5% by weight of oxygen-containing aluminum nitride powder. By mixing and adding 0.7% by weight of calcium fluoride, molding, and then sintering under normal pressure at a temperature of 1.700 to 2,200°C in a non-oxidizing atmosphere, ¥1tIf!
It is useful as a heat dissipation material or packaging material for semiconductor devices because it is inexpensive and has particularly excellent thermal conductivity.
本発明の方法により得られる窒化アルミニウム焼結体は
、サーディンプ用基板、サーパンク用基板、バイブリフ
トIC用基板等のIC基板ばかりでなく、パワートラン
ジスタ、パワーダイオードおよびレーザダイオード用の
ヒートシンクとして、更にレーザ発振器用部品、或いは
マイカ代替用絶縁性薄板として好適に利用でき、実用的
に優れた効果を発揮するものと期待される。The aluminum nitride sintered body obtained by the method of the present invention can be used not only for IC substrates such as sardimp substrates, sarpank substrates, and vibelift IC substrates, but also as heat sinks for power transistors, power diodes, and laser diodes. It can be suitably used as a part for a laser oscillator or as an insulating thin plate as a substitute for mica, and is expected to have excellent practical effects.
第1図は、本発明による製造方法で得られた窒化アルミ
ニウム焼結体の結晶組織の代表例を倍率xzooにて示
す光学顕微鏡写真である。FIG. 1 is an optical micrograph showing a typical example of the crystal structure of an aluminum nitride sintered body obtained by the manufacturing method according to the present invention at a magnification of xzoo.
Claims (1)
粉末に、0.01〜0.07重量%の酸化カルシウムお
よび0.1〜0.7重量%の弗化カルシウムとを混合成
形し、次いで1700〜2200℃の温度で非酸化性雰
囲気中で常圧焼結し、粒状の結晶組織を生成せしめるこ
とを特徴とする窒化アルミニウム焼結体の製造方法。Aluminum nitride powder with an oxygen content of 0.5 to 1.5% by weight is mixed and molded with 0.01 to 0.07% by weight of calcium oxide and 0.1 to 0.7% by weight of calcium fluoride, A method for producing an aluminum nitride sintered body, which is then sintered under normal pressure in a non-oxidizing atmosphere at a temperature of 1700 to 2200°C to generate a granular crystal structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171407A JPH0627032B2 (en) | 1985-08-03 | 1985-08-03 | Method for manufacturing aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171407A JPH0627032B2 (en) | 1985-08-03 | 1985-08-03 | Method for manufacturing aluminum nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6236069A true JPS6236069A (en) | 1987-02-17 |
JPH0627032B2 JPH0627032B2 (en) | 1994-04-13 |
Family
ID=15922572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60171407A Expired - Fee Related JPH0627032B2 (en) | 1985-08-03 | 1985-08-03 | Method for manufacturing aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627032B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62108774A (en) * | 1985-11-08 | 1987-05-20 | 株式会社トクヤマ | Manufacture of aluminum nitride sintered body |
JPS63236765A (en) * | 1987-03-26 | 1988-10-03 | 品川白煉瓦株式会社 | Aluminum nitride sintered body |
-
1985
- 1985-08-03 JP JP60171407A patent/JPH0627032B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62108774A (en) * | 1985-11-08 | 1987-05-20 | 株式会社トクヤマ | Manufacture of aluminum nitride sintered body |
JPH0535109B2 (en) * | 1985-11-08 | 1993-05-25 | Tokuyama Soda Kk | |
JPS63236765A (en) * | 1987-03-26 | 1988-10-03 | 品川白煉瓦株式会社 | Aluminum nitride sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPH0627032B2 (en) | 1994-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0219933B1 (en) | Sintered silicon carbide ceramic body of high electrical resistivity | |
US4540673A (en) | Sintered aluminum nitride and semi-conductor device using the same | |
JPS6353151B2 (en) | ||
EP0080213B1 (en) | Highly heat-conductive ceramic material | |
JPS6221764A (en) | Manufacture of aluminum nitride | |
JPS63277567A (en) | Sintered aluminum nitride having high thermal conductivity | |
JPS6236069A (en) | Manufacture of aluminum nitride sintered body | |
JPH0336782B2 (en) | ||
EP0267623A2 (en) | Black sintered body of aluminum nitride and process for producing the same | |
JPS62235262A (en) | Manufacture of aluminum nitride sintered body | |
CN113233903A (en) | Silicon nitride ceramic substrate and preparation method thereof | |
JP2664063B2 (en) | Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them | |
JPS63218585A (en) | High heat-conductive aluminum nitride sintered body and manufacture | |
JPH01252584A (en) | Sintered composite ceramic compact and production thereof | |
JPS61201669A (en) | Aluminum nitride sintered body and manufacture | |
JPS61286266A (en) | Manufacture of aluminum nitride base sintered body | |
JPS62275069A (en) | Manufacture of aln ceramics | |
US5411924A (en) | Ceramic body | |
JPS61201670A (en) | Aluminum nitride sintered body and manufacture | |
JP2620260B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPH0832593B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPS6236066A (en) | Silicon carbide base sintered body and manufacture | |
JPH0566905B2 (en) | ||
JP2975490B2 (en) | Method for producing high thermal conductivity β-type silicon carbide sintered body | |
JPH04254475A (en) | Heat radiating plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |