JPH05270828A - Rare earth superconductor - Google Patents

Rare earth superconductor

Info

Publication number
JPH05270828A
JPH05270828A JP6562592A JP6562592A JPH05270828A JP H05270828 A JPH05270828 A JP H05270828A JP 6562592 A JP6562592 A JP 6562592A JP 6562592 A JP6562592 A JP 6562592A JP H05270828 A JPH05270828 A JP H05270828A
Authority
JP
Japan
Prior art keywords
rare earth
superconductor
silver
superconducting
bulk body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6562592A
Other languages
Japanese (ja)
Inventor
Naoyuki Ogawa
尚之 小川
Hitoshi Yoshida
均 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6562592A priority Critical patent/JPH05270828A/en
Publication of JPH05270828A publication Critical patent/JPH05270828A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Abstract

PURPOSE:To provide a rare earth superconducting bulk body having magnetic repulsive force which can be applied for magnetic bearings. CONSTITUTION:This rare earth superconducting bulk body is a composite body consisting of RE-Ba-Cu-0 superconductor A (wherein RE is one or more elements selected from Y, Sm, Eu, Gd, Dy, Ho, Er and Yb) and silver layers B. The silver layers are arranged at certain intervals so as not to prevent the Meissner current from flowing in the bulk body induced by an external magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類系超電導体に関
し、更に詳しくは、強力な磁性反発力を有するRE−Ba
−Cu−O系超電導体(但し、REは、Y、Sm、Eu、
Gd、Dy、Ho、Er及びYbからなる元素群から選
ばれた1または2以上の元素を表す。以下同様とす
る。)と銀層とが複合化されてなるバルク体構造の希土
類系超電導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-based superconductor, more specifically, RE-Ba having a strong magnetic repulsion force.
-Cu-O superconductor (however, RE is Y, Sm, Eu,
It represents one or more elements selected from the group of elements consisting of Gd, Dy, Ho, Er and Yb. The same applies hereinafter. ) And a silver layer are combined to form a bulk body structure rare earth-based superconductor.

【0002】[0002]

【従来の技術】いわゆる溶融法により形成される希土類
系超電導体は、強力なピン止め効果を有することから実
用化研究が盛んである。溶融法により得られる希土類系
超電導バルク体は、永久磁石との組合わせにより磁気反
発力が発生し、その磁気反発力を利用する磁気ベアリン
グの開発が試みられている。
2. Description of the Related Art A rare earth-based superconductor formed by a so-called melting method has a strong pinning effect, and thus researches for its practical use have been actively conducted. The rare earth-based superconducting bulk body obtained by the melting method produces a magnetic repulsive force when combined with a permanent magnet, and attempts have been made to develop a magnetic bearing utilizing the magnetic repulsive force.

【0003】溶融法の代表的なMTG(Melt Textured
Growth)法は、例えば、希土類系超電導体において、一
般に超電導相の123相(YBa2 Cu3y 、但し、
YはY元素を含む希土類元素を表示する。)の分解溶融
温度から徐冷することにより、非超電導相の211相
(Y2 BaCuO5 、但し、YはY元素を含む希土類元
素を表示する。)と液相との包晶反応を起こさせ結晶成
長させるもので、この包晶反応で成長した超電導相結晶
内部には、未反応の211相が存在しピンニングセンタ
ーとして作用する。そのため、得られる希土類系超電導
体は磁場中でも高い臨界電流密度(Jc)を示す。しか
し、上記MTG法で得られる希土類系超電導体は、21
1相の粒径が大きく、その分布が不均一であり、且つ、
結晶成長方向に沿ったクラックが存在する等の不都合が
ある。そのため、MTG法の欠点を改良したMPMG法
が提案されている。MPMG法では、溶融・急冷工程に
よる211相の微細化と、銀または酸化銀粉末を添加す
ることによる上記クラックの減少が著しいとされてい
る。
A typical MTG (Melt Textured) of the melting method
Growth) method, for example, in a rare-earth superconductor, is generally a superconducting phase of 123 phases (YBa 2 Cu 3 O y ,
Y represents a rare earth element containing the Y element. ) Is gradually cooled from the decomposition and melting temperature of (1) to cause a peritectic reaction between the liquid phase and the 211 phase of the non-superconducting phase (Y 2 BaCuO 5 , where Y represents a rare earth element containing the Y element). The crystal is grown, and an unreacted 211 phase exists inside the superconducting phase crystal grown by this peritectic reaction and acts as a pinning center. Therefore, the obtained rare-earth superconductor shows high critical current density (Jc) even in the magnetic field. However, the rare earth-based superconductor obtained by the MTG method is 21
The particle size of one phase is large, its distribution is non-uniform, and
There are inconveniences such as the presence of cracks along the crystal growth direction. Therefore, the MPMG method which has improved the drawbacks of the MTG method has been proposed. In the MPMG method, it is said that the 211 phase is made finer by the melting / quenching process and the cracks are significantly reduced by adding the silver or silver oxide powder.

【0004】[0004]

【発明が解決しようとする課題】上記した磁気ベアリン
グへの希土類系超電導体の適用における重要課題は、強
力な磁気反発力を生じさせることにある。磁気反発力を
阻害する要因の1つに、希土類系超電導バルク体中に存
在するクラックが挙げられる。希土類系超電導バルク体
中にクラックがあると、超電導電流がバルク体全体に渡
り均一に流れることができない。そのため、ピン止め力
が弱まり充分な磁気反発力が得られない。
An important problem in applying the rare earth-based superconductor to the above magnetic bearing is to generate a strong magnetic repulsion force. One of the factors that obstruct the magnetic repulsion is cracks present in the rare earth-based superconducting bulk body. If the rare earth-based superconducting bulk body has cracks, the superconducting current cannot flow uniformly over the entire bulk body. Therefore, the pinning force is weakened and sufficient magnetic repulsion cannot be obtained.

【0005】上記MTG法を改良しクラックの減少を意
図したMPMG法で形成された希土類系超電導バルク体
においても、未だ磁気反発力が充分ではない。発明者ら
は、希土類系超電導体を適用して磁気ベアリングの実現
化を目的にし、従来の溶融法により得られる希土類系超
電導バルク体において、発生するクラックの進展を極力
抑制し、優れた磁気反発力を有する希土類系超電導バル
ク体を得ることを鋭意検討した結果、本発明を完成し
た。
Even in the rare earth type superconducting bulk body formed by the MPMG method intended to improve the above MTG method and reduce cracks, the magnetic repulsive force is still insufficient. The inventors have aimed to realize a magnetic bearing by applying a rare earth-based superconductor, and in the rare earth-based superconducting bulk body obtained by a conventional melting method, suppress the development of cracks as much as possible and have excellent magnetic repulsion. The present invention has been completed as a result of earnest studies on obtaining a rare earth-based superconducting bulk material having strength.

【0006】[0006]

【課題を解決するための手段】本発明によれば、RE−B
a−Cu−O系超電導体(但し、REは、Y、Sm、E
u、Gd、Dy、Ho、Er及びYbからなる元素群か
ら選ばれた1または2以上の元素を表す。)と銀層とが
複合化されてなる超電導バルク体であって、該銀層が、
該バルク体において外部磁場により誘起されるマイスナ
ー電流の流れを阻害しないように間隔を有して配置され
てなることを特徴とする希土類系超電導体が提供され
る。
According to the present invention, RE-B
a-Cu-O superconductor (however, RE is Y, Sm, E
It represents one or more elements selected from the group of elements consisting of u, Gd, Dy, Ho, Er and Yb. ) And a silver layer are combined into a superconducting bulk body, wherein the silver layer is
There is provided a rare earth-based superconductor, characterized in that the bulk body is arranged at intervals so as not to impede the flow of Meissner current induced by an external magnetic field.

【0007】[0007]

【作用】本発明は上記のように構成され、RE−Ba−C
u−O系超電導体、特に溶融法により形成されるRE−B
a−Cu−O系超電導バルク体が銀層とが、通常交互に
配置されて複合化され、例えば、複数のRE−Ba−Cu
−O系超電導層と銀層とが多層に積層された構造、銀層
が所定間隔で超電導体を仕切るため、複合化された銀層
により内部応力が緩和されクラックが生じ難くなると同
時に、クラックが生じた場合でも生じたクラックが、上
下方向、または径方向に進展するのを防止することがで
きる。このため、該バルク体内のクラックは激減してピ
ン止め効果による磁気反発力が増大する。各RE−Ba−
Cu−O系超電導層は銀層で隔離・仕切られた構造とな
るが、外部磁場により該バルク体に誘起されるマイスナ
ー電流は途中で中断されることなく流れることができる
多層構造を採るため、また、必要に応じ銀層に貫通孔を
設けることができるため、マイスナー電流は阻害される
ことがない。従って、RE−Ba−Cu−O系超電導バル
ク体は一体的な超電導体として機能することができる。
The present invention is constructed as described above, and has RE-Ba-C
u-O superconductor, especially RE-B formed by melting method
The a-Cu-O-based superconducting bulk body and the silver layers are usually alternately arranged to form a composite, for example, a plurality of RE-Ba-Cu.
A structure in which an -O-based superconducting layer and a silver layer are laminated in multiple layers, and the silver layer partitions the superconductor at a predetermined interval, the internal stress is relaxed by the compounded silver layer and cracks are less likely to occur, and at the same time, cracks are generated. Even if it occurs, it is possible to prevent the generated crack from propagating in the vertical direction or the radial direction. Therefore, the cracks in the bulk body are drastically reduced, and the magnetic repulsive force due to the pinning effect is increased. Each RE-Ba-
The Cu-O-based superconducting layer has a structure in which it is separated and partitioned by a silver layer, but since the Meissner current induced in the bulk body by an external magnetic field has a multilayer structure in which it can flow without interruption in the middle, Moreover, since a through hole can be provided in the silver layer if necessary, the Meissner current is not hindered. Therefore, the RE-Ba-Cu-O-based superconducting bulk body can function as an integral superconductor.

【0008】以下、本発明を更に詳細に説明する。本発
明のRE−Ba−Cu−O系超電導体は、REがY、Sm、
Eu、Gd、Dy、Ho、Er及びYbからなる元素群
から選ばれた1または2以上の希土類元素を含む多層ペ
ロブスカイト構造を有する酸化物超電導体である。例え
ば、YBa 2 Cu37 等の組成を有する希土類系酸化
物超電導体である。特に、本発明のRE−Ba−Cu−O
系超電導体は、従来から公知または提案されるいわゆる
溶融法及びその改良溶融法により、原料粉末を分解溶
融、徐冷、熱処理、酸素アニーリング等の一連の工程で
処理して得ることができる。
The present invention will be described in more detail below. Starting
Ming's RE-Ba-Cu-O superconductor has RE of Y, Sm,
Element group consisting of Eu, Gd, Dy, Ho, Er and Yb
Multilayer PET containing one or more rare earth elements selected from
It is an oxide superconductor having a rovskite structure. example
For example, YBa 2 Cu3 O7 -Earth oxides with different compositions
It is a superconductor. In particular, the RE-Ba-Cu-O of the present invention
System superconductors are so-called conventionally known or proposed so-called
Raw material powder is decomposed and melted by the melting method and its improved melting method.
In a series of processes such as melting, slow cooling, heat treatment, oxygen annealing
It can be obtained by processing.

【0009】本発明におけるRE−Ba−Cu−O系超電
導体を、上記溶融法等で製造するための原料粉末として
は、RE、Ba及びCuの各成分をRE−Ba−Cu−O系
超電導体を構成するように配合した混合粉末を用いるこ
とができる。例えば、RE、即ち、Y、Sm、Eu、G
d、Dy、Ho、Er、Ybからなる群から選ばれた1
または2以上の元素の酸化物、Baの炭酸塩または酸化
物、及びCuの酸化物を混合した酸化物等混合粉末、該
酸化物等混合粉末の仮焼粉末、該酸化物等混合粉末のフ
リット粉末等を、焼成後に超電導相REBa2 Cu3y
及び非超電導相RE2 BaCuO5 を構成するように配合
して用いることができる。また、上記のRE、Ba及びC
uの各成分の配合粉末に、好ましくは、上記MPMG法
で提案されている銀粉末または/及び銀酸化物を適宜添
加混合して用いることができる。原料粉末は、通常、粒
径2〜20μmの粉末を用いるが好ましい。
As raw material powders for producing the RE-Ba-Cu-O-based superconductor in the present invention by the above-mentioned melting method or the like, RE, Ba and Cu components are RE-Ba-Cu-O-based superconductors. It is possible to use a mixed powder that is blended to form the body. For example, RE, that is, Y, Sm, Eu, G
1 selected from the group consisting of d, Dy, Ho, Er and Yb
Alternatively, a mixed powder of oxides such as an oxide of two or more elements, a carbonate or oxide of Ba, and an oxide of Cu, a calcined powder of the mixed powder of the oxide, or a frit of the mixed powder of the oxide. After firing the powder, etc., the superconducting phase REBa 2 Cu 3 O y
And a non-superconducting phase RE 2 BaCuO 5 can be compounded and used. In addition, the above RE, Ba and C
The silver powder and / or silver oxide proposed by the MPMG method may be appropriately added to and mixed with the compounded powder of each component of u. As the raw material powder, it is usually preferable to use a powder having a particle size of 2 to 20 μm.

【0010】本発明の銀層は特に制限されるものでない
が、好ましくは100μm〜1mmの銀箔や銀板を用い
ることができる。本発明におけるRE−Ba−Cu−O系
超電導体と銀層との複合化は、磁気反発力を生じさせる
ために超電導バルク体に外部磁場を印加したとき、その
外部磁場により誘起されるマイスナー電流の流れが阻害
されないような配置構造を採ればよく、特に制限されな
い。好ましくは、超電導層と銀層とが、交互に所定間隔
で配置されるようにする。例えば、図1に示した説明図
のように、超電導バルク体1における超電導層Aと銀層
Bとの軸方向に多層的な積層構造、または、図2に示し
た説明図のように超電導バルク体1における超電導層A
と銀層Bとの同心的な多重構造、即ち、径方向の積層構
造で、RE−Ba−Cu−O系超電導層と銀層とを配置す
ることができる。この場合、各RE−Ba−Cu−O系超
電導層と銀層との間隔は、特に制限されないが、超電導
結晶相に沿って生じるクラックが進展することにより所
望のピン止め効果が低減しない範囲内で、複合化方法、
バルク体の使用条件や、また、後記する貫通孔の有無及
び形態に応じ、適宜選択された所定間隔で配置されるの
が好ましい。通常、約1〜10mmの間隔で、交互に配
置される。またこの場合、ほぼ同一間隔での配置や、あ
る方向に間隔幅を増減させた配置や、全くの任意の間隔
での配置等を上記したように条件に合わせて選択するこ
とができる。
The silver layer of the present invention is not particularly limited, but a silver foil or a silver plate having a thickness of 100 μm to 1 mm can be preferably used. The composite of the RE-Ba-Cu-O-based superconductor and the silver layer in the present invention is a Meissner current induced by an external magnetic field when an external magnetic field is applied to the superconducting bulk body to generate a magnetic repulsive force. There is no particular limitation as long as it has an arrangement structure that does not hinder the flow of. Preferably, the superconducting layers and the silver layers are alternately arranged at a predetermined interval. For example, as shown in the explanatory view shown in FIG. 1, a multilayered laminated structure of the superconducting layer A and the silver layer B in the superconducting bulk body 1 in the axial direction, or as shown in the explanatory diagram shown in FIG. Superconducting layer A in body 1
The RE-Ba-Cu-O-based superconducting layer and the silver layer can be arranged in a concentric multiple structure of the silver layer B and the silver layer B, that is, a laminated structure in the radial direction. In this case, the distance between each RE-Ba-Cu-O-based superconducting layer and the silver layer is not particularly limited, but within a range in which a desired pinning effect is not reduced due to the development of cracks along the superconducting crystal phase. Then, the compounding method,
It is preferable that the bulk bodies are arranged at predetermined intervals that are appropriately selected according to the usage conditions of the bulk body and the presence or absence and the form of through holes described below. Usually, they are alternately arranged at intervals of about 1 to 10 mm. Further, in this case, the arrangement at substantially the same intervals, the arrangement in which the interval width is increased or decreased in a certain direction, the arrangement at completely arbitrary intervals, and the like can be selected according to the conditions as described above.

【0011】本発明における銀層は、貫通孔を設けるこ
とができる。貫通孔を設ける場合、各貫通孔の大きさ、
設置間隔等は、複合化方法やバルク体の使用条件等に応
じて適宜選択することができる。一般的には、円形の貫
通孔を、各銀層における貫通孔の総面積比率が、約30
%以下となるようにして、銀層全体に均一にバランスさ
せ配置するのが好ましい。貫通孔は、通常、銀層を形成
する銀箔や銀板に適宜に孔を穿設して用いることができ
る。
The silver layer in the present invention may be provided with through holes. When providing through holes, the size of each through hole,
The installation interval and the like can be appropriately selected depending on the compounding method, the usage conditions of the bulk body, and the like. Generally, the circular through-holes have a total area ratio of the through-holes in each silver layer of about 30.
It is preferable that the silver layer be uniformly balanced and arranged so as to be not more than%. The through-hole can be used by generally forming a hole in a silver foil or a silver plate forming a silver layer.

【0012】本発明の希土類系超電導体は、前記原料混
合粉末を用いて成形した超電導体層と貫通孔を予め穿設
した銀箔とを、順次、積層成形し、または、配置してプ
レス成形し、その後、前記の分解溶融、徐冷等の一連の
工程を経てバルク体として製造することができる。
In the rare earth-based superconductor of the present invention, a superconductor layer formed by using the raw material mixed powder and a silver foil in which through holes are preliminarily formed are sequentially laminated or arranged and press-formed. After that, it can be manufactured as a bulk body through a series of steps such as the above-described decomposition and melting, and gradual cooling.

【0013】[0013]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。 実施例1 Y23 、BaCO3 、CuO粉末を、Y、Ba及びC
uの原子比が1.8:2.4:3.4となるように秤量
した。更にAgを外配で20重量%となるように混合し
た。混合はボールミルを用い、エタノールを溶媒に用い
て5時間行った。得られた粉末を、酸素気流中950℃
で24時間仮焼した後、乾式粉砕器により粉砕して原料
混合粉末とした。得られた原料混合粉末25gを、直径
50mmφの金型プレスにより0.1t/cm2 の圧力
で円板状に成形した。次いで、図3に示した説明図の形
態で貫通孔Cを穿設した厚さ300μmの銀板を載せ、
その上に、更に原料混合粉末20gを同様に0.1t/
cm2 の圧力でプレス成形した。上記の操作を繰り返
し、図1に示したY−Ba−Cu−O系超電導層と貫通
孔を有する銀層が積層された円柱積層超電導成形体を得
た。
EXAMPLES The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples. Example 1 Y 2 O 3 , BaCO 3 , and CuO powder were mixed with Y, Ba and C.
It was weighed so that the atomic ratio of u was 1.8: 2.4: 3.4. Further, Ag was mixed so as to be 20% by weight by external distribution. The mixing was performed for 5 hours using a ball mill and ethanol as a solvent. The powder obtained is 950 ° C. in an oxygen stream.
After being calcined for 24 hours, the raw material mixed powder was pulverized by a dry pulverizer. 25 g of the obtained raw material mixed powder was molded into a disc shape with a pressure of 0.1 t / cm 2 by a die press having a diameter of 50 mmφ. Then, a silver plate having a thickness of 300 μm and having a through hole C formed thereon in the form of the explanatory view shown in FIG.
On top of that, 20 g of the raw material mixed powder is similarly added in an amount of 0.1 t /
Press molding was performed at a pressure of cm 2 . The above operation was repeated to obtain a cylindrical laminated superconducting molded body in which the Y—Ba—Cu—O based superconducting layer shown in FIG. 1 and the silver layer having the through holes were laminated.

【0014】得られた成形体を、窒素雰囲気の電気炉内
の緻密質のアルミナセッター上に載置し、6時間で11
50℃まで昇温し、その温度で30分保持し、次いで1
000℃まで1時間で降温し、更に1000℃から90
0℃まで冷却速度1℃/時で徐冷した。その後、炉内雰
囲気を純酸素として450℃まで冷却後、450℃で4
8時間熱処理した後、炉内で100℃以下まで放置し
て、Y−Ba−Cu−O系超電導層と貫通孔を有する銀
層が積層複合化された円柱積層焼結体を得た。得られた
焼結体について、永久磁石との磁気反発力(g)を、図
5に示した装置を用いて測定した。図5において、焼結
体1を容器中の液体窒素2に浸漬し、希土類永久磁石3
(表面磁界4000ガウス)をロッド4に取付けた後、
クロスヘッド5を10mm/分の速度で下降させ、焼結
体1と希土類永久磁石3との間隔が0.1mmとなった
ときの磁気反発力を測定した。その結果、得られた円柱
積層焼結体は、1500gの磁気反発力を示した。磁気
反発力を測定した円柱焼結体を、円柱中心を通るように
垂直に縦切断した。切断面を研磨後目視観察し、目視可
能なクラックの長さを測定した。その結果、測定された
クラックの総合計長さは45mmであった。
The molded body thus obtained was placed on a dense alumina setter in an electric furnace in a nitrogen atmosphere, and after 11 hours in 6 hours.
Raise to 50 ° C., hold at that temperature for 30 minutes, then 1
The temperature is lowered to 000 ° C in 1 hour, and then 1000 ° C to 90 ° C.
The mixture was gradually cooled to 0 ° C at a cooling rate of 1 ° C / hour. After that, the atmosphere in the furnace was cooled to 450 ° C with pure oxygen, and then the temperature was changed to 450 ° C.
After heat treatment for 8 hours, it was left in a furnace to 100 ° C. or lower to obtain a cylindrical laminated sintered body in which a Y—Ba—Cu—O-based superconducting layer and a silver layer having a through hole were laminated and composited. With respect to the obtained sintered body, the magnetic repulsive force (g) with the permanent magnet was measured using the apparatus shown in FIG. In FIG. 5, the sintered body 1 was dipped in liquid nitrogen 2 in a container, and the rare earth permanent magnet 3
After attaching (surface magnetic field 4000 gauss) to the rod 4,
The magnetic repulsion force was measured when the crosshead 5 was lowered at a speed of 10 mm / min and the distance between the sintered body 1 and the rare earth permanent magnet 3 was 0.1 mm. As a result, the obtained cylindrical laminated sintered body exhibited a magnetic repulsion force of 1500 g. The cylindrical sintered body whose magnetic repulsion force was measured was vertically cut vertically so as to pass through the center of the cylindrical body. The cut surface was visually observed after polishing, and the length of a visible crack was measured. As a result, the total length of the measured cracks was 45 mm.

【0015】比較例1 実施例1と同様にして得られた原料混合粉末85gを用
い、銀板を挟むことなく、直径30mmφの円形金型プ
レスでプレス成形して、円柱成形体を得た。得られた成
形体を実施例1と全く同様に処理して、焼結体を得た。
得られた焼結体について、実施例1と同様にして磁気反
発力と、切断面におけるクラック長さを目視観察した。
その結果、磁気反発力は600gであり、クラックの総
合計長さは160mmであった。
Comparative Example 1 85 g of the raw material mixed powder obtained in the same manner as in Example 1 was used to press-mold with a circular die press having a diameter of 30 mmφ without sandwiching a silver plate to obtain a cylindrical molded body. The obtained molded body was treated in the same manner as in Example 1 to obtain a sintered body.
With respect to the obtained sintered body, the magnetic repulsion force and the crack length on the cut surface were visually observed in the same manner as in Example 1.
As a result, the magnetic repulsion force was 600 g, and the total crack length was 160 mm.

【0016】実施例2 実施例1と同様にして原料混合粉末を得た。一方、厚さ
300μmの銀板を用い、図4に示した説明図の形態で
貫通孔Cを穿設した各直径が、40mm、30mm、1
5mmの円筒体をそれぞれ作製した。内径50mmφ、
高さ40mmのラバープレス用ゴム型に、作製した各銀
円筒体を図2に示したように同心多重構造に配置すると
共に、原料混合粉末100gを充填して、2.5tで静
水圧プレスを行い、多重円柱超電導成形体を得た。得ら
れた成形体を、実施例1と同様に処理して、貫通孔を有
する銀円筒体とY−Ba−Cu−O系超電導体とが複合
化された多重円柱焼結体を得た。得られた焼結体につい
て、実施例1と同様にして磁気反発力と、切断面におけ
るクラック長さを目視観察した。その結果、磁気反発力
は1200gであり、クラックの総合計長さは65mm
であった。
Example 2 A raw material mixed powder was obtained in the same manner as in Example 1. On the other hand, using a silver plate having a thickness of 300 μm, the diameters of the through holes C formed in the form of the explanatory view shown in FIG. 4 are 40 mm, 30 mm, 1
5 mm cylinders were produced respectively. Inner diameter 50 mmφ,
In a rubber mold for rubber press having a height of 40 mm, the produced silver cylinders were arranged in a concentric multiple structure as shown in FIG. 2, 100 g of raw material mixed powder was filled, and a hydrostatic press was performed at 2.5 t. Then, a multi-cylinder superconducting compact was obtained. The obtained molded body was treated in the same manner as in Example 1 to obtain a multi-cylinder sintered body in which a silver cylinder having a through hole and a Y-Ba-Cu-O-based superconductor were composited. With respect to the obtained sintered body, the magnetic repulsion force and the crack length on the cut surface were visually observed in the same manner as in Example 1. As a result, the magnetic repulsive force was 1200 g, and the total crack length was 65 mm.
Met.

【0017】比較例2 実施例2において、銀円筒体を複合化しない以外は同様
にして、Y−Ba−Cu−O系超電導円柱焼結体を得
た。得られた円柱焼結体について、実施例1と同様にし
て磁気反発力と、切断面におけるクラック長さを目視観
察した。その結果、磁気反発力は600gであり、クラ
ックの総合計長さは130mmであった。
Comparative Example 2 A Y-Ba-Cu-O type superconducting cylinder sintered body was obtained in the same manner as in Example 2 except that the silver cylinder was not compounded. With respect to the obtained cylindrical sintered body, the magnetic repulsion force and the crack length on the cut surface were visually observed in the same manner as in Example 1. As a result, the magnetic repulsion force was 600 g, and the total crack length was 130 mm.

【0018】上記実施例で得られた貫通孔を有する銀板
を積層して複合化したY−Ba−Cu−O系超電導体
は、比較例の従来法による超電導体に比し、著しくクラ
ックが低減し、磁気反発力が2倍以上となることが明ら
かである。
The Y-Ba-Cu-O-based superconductor obtained by laminating the silver plates having the through holes obtained in the above-mentioned embodiment and forming a composite has significantly more cracks than the conventional superconductor of the comparative example. It is clear that the magnetic repulsion force is reduced to more than double.

【0019】[0019]

【発明の効果】本発明の希土類系超電導体は、クラック
が極めて少なく優れた磁気反発力を有し、超電導体を利
用した磁気ベアリングの実用化に有用である。
The rare earth-based superconductor of the present invention has excellent magnetic repulsion with very few cracks, and is useful for the practical application of magnetic bearings using the superconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す説明図FIG. 2 is an explanatory view showing another embodiment of the present invention.

【図3】本発明の貫通孔を有する銀層の一例を示す説明
FIG. 3 is an explanatory view showing an example of a silver layer having through holes according to the present invention.

【図4】本発明の貫通孔を有する銀層の他の例を示す説
明図
FIG. 4 is an explanatory view showing another example of a silver layer having through holes according to the present invention.

【図5】本発明の実施例で用いた磁気反発力の測定に用
いた装置の説明図
FIG. 5 is an explanatory view of an apparatus used for measuring magnetic repulsive force used in the examples of the present invention.

【符号の説明】[Explanation of symbols]

A 超電導層 B 銀層 C 貫通孔 1 超電導バルク体 2 液体窒素 3 希土類永久磁石 4 ロッド 5 クロスヘッド A superconducting layer B silver layer C through hole 1 superconducting bulk body 2 liquid nitrogen 3 rare earth permanent magnet 4 rod 5 crosshead

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 RE−Ba−Cu−O系超電導体(但し、
REは、Y、Sm、Eu、Gd、Dy、Ho、Er及びY
bからなる元素群から選ばれた1または2以上の元素を
表す。)と銀層とが複合化されてなる超電導バルク体で
あって、該銀層が、該バルク体において外部磁場により
誘起されるマイスナー電流の流れを阻害しないように間
隔を有して配置されてなることを特徴とする希土類系超
電導体。
1. A RE-Ba-Cu-O-based superconductor (however,
RE is Y, Sm, Eu, Gd, Dy, Ho, Er and Y
Represents one or more elements selected from the element group consisting of b. ) And a silver layer are combined to form a superconducting bulk body, and the silver layer is arranged at intervals so as not to impede the flow of Meissner current induced by an external magnetic field in the bulk body. A rare earth-based superconductor characterized by:
【請求項2】 該銀層が、貫通孔を有する請求項1記載
の希土類系超電導体。
2. The rare earth-based superconductor according to claim 1, wherein the silver layer has through holes.
【請求項3】 該RE−Ba−Cu−O系超電導体が溶融
法で形成されてなる請求項1または2記載の希土類系超
電導体。
3. The rare earth-based superconductor according to claim 1, wherein the RE-Ba-Cu-O-based superconductor is formed by a melting method.
JP6562592A 1992-03-24 1992-03-24 Rare earth superconductor Withdrawn JPH05270828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6562592A JPH05270828A (en) 1992-03-24 1992-03-24 Rare earth superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6562592A JPH05270828A (en) 1992-03-24 1992-03-24 Rare earth superconductor

Publications (1)

Publication Number Publication Date
JPH05270828A true JPH05270828A (en) 1993-10-19

Family

ID=13292393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6562592A Withdrawn JPH05270828A (en) 1992-03-24 1992-03-24 Rare earth superconductor

Country Status (1)

Country Link
JP (1) JPH05270828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071071A1 (en) * 2009-12-08 2011-06-16 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071071A1 (en) * 2009-12-08 2011-06-16 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
US8948829B2 (en) 2009-12-08 2015-02-03 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet member

Similar Documents

Publication Publication Date Title
US5306700A (en) Dense melt-based ceramic superconductors
JPH02133367A (en) Oriented polycrystalline superconductor
EP0495677B1 (en) Oxide superconducting material and process for producing the same
Bock et al. Melt cast processed (MCP)-BSCCO 2212 tubes for power applications up to 10 kA
KR100524466B1 (en) Method of joining oxide superconductor and oxide superconductor joiner
EP0537363B1 (en) Oxide superconductor and production thereof
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH05270828A (en) Rare earth superconductor
EP0564279B1 (en) Rare earth superconducting body and process for production thereof
US5958843A (en) Oxygen annealing process for bulk superconductors
CA2024806C (en) Method of producing ceramics-type superconductor wire
JP5098802B2 (en) Bulk oxide superconducting material and manufacturing method thereof
JP4142801B2 (en) Manufacturing method of oxide bulk superconductor
JP2519742B2 (en) Manufacturing method of superconducting material
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JPH05279031A (en) Rare earth oxide superconductor and its production
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JP2519741B2 (en) Manufacturing method of superconducting material
JPH05279027A (en) Rare-earth superconductor
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP2590370B2 (en) Superconducting material and manufacturing method thereof
KR960006240B1 (en) Process for the preparation of high critical-temperature superconductive coil
JPH03137050A (en) Manufacture of oxide superconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608