JPH01219057A - Oxide superconductor and its production - Google Patents
Oxide superconductor and its productionInfo
- Publication number
- JPH01219057A JPH01219057A JP63046458A JP4645888A JPH01219057A JP H01219057 A JPH01219057 A JP H01219057A JP 63046458 A JP63046458 A JP 63046458A JP 4645888 A JP4645888 A JP 4645888A JP H01219057 A JPH01219057 A JP H01219057A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- raw material
- superconductor
- single crystal
- crystallites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000013078 crystal Substances 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 238000000634 powder X-ray diffraction Methods 0.000 claims abstract description 6
- 238000010304 firing Methods 0.000 claims description 10
- 239000011812 mixed powder Substances 0.000 claims description 4
- 238000001354 calcination Methods 0.000 abstract description 13
- 239000000843 powder Substances 0.000 abstract description 13
- 239000011148 porous material Substances 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 9
- 238000005452 bending Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000013081 microcrystal Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば磁気浮上列車および粒子加速器等の磁
気コイル部分や電子デバイスおよびジョセフソンコンピ
ュータの回路基板等に使用される酸化物超電導体に関す
るものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an oxide superconductor used, for example, in magnetic coil parts of magnetic levitation trains and particle accelerators, electronic devices, and circuit boards of Josephson computers. It is something.
〔先行技術及び発明が解決しようとする問題点〕高密度
体で臨界電流密度(Jc)が103A/co+2以上を
示す酸化物超電導体の例としては、例えばATT、BE
L研究所が“Melt−Textured Grout
h ” (MTG)法により得られた相対密度100χ
で高い臨界電流密度(JC)を有する超電導体が得られ
たという報告書例があるが、MTG法では一旦焼結した
サンプルを酸素ガス中1300℃で溶融後室温迄徐冷し
、さらに900℃迄加熱後1晩かけて徐冷するという極
めて複雑な工程をとる必要があり実用的ではなかった。[Prior art and problems to be solved by the invention] Examples of oxide superconductors that are high-density bodies and exhibit a critical current density (Jc) of 103 A/co+2 or more include ATT, BE, etc.
L Laboratory is “Melt-Textured Grout”
Relative density 100χ obtained by h” (MTG) method
There are reports that superconductors with high critical current density (JC) were obtained using the MTG method, but in the MTG method, the sintered sample is melted at 1300°C in oxygen gas, then slowly cooled to room temperature, and then further heated to 900°C. This was not practical as it required an extremely complicated process of heating until temperature and then slowly cooling it overnight.
そのため、従来より粉末の調整や、仮焼・本焼成条件の
改善により何かと相対密度及び臨界電流密度の向上を図
ろうと努力されてきたが、未だ充分な特性が得られてい
なかった。Therefore, efforts have been made to improve the relative density and critical current density by adjusting the powder and improving the calcination and main sintering conditions, but sufficient characteristics have not yet been obtained.
本発明者等は上記の点に鑑み鋭意研究の結果、仮焼・本
焼成といった通常のセラミックス材料の製法でありなが
ら、仮焼後の未反応物の制御と焼成条件を適正化するこ
とにより比較的容易に95%以上の相対密度と1.I
X 10’A/cm”以上、好ましくは1.6 X 1
0’A/cm”以上の臨界電流密度が得られることが分
かった。In view of the above points, the inventors of the present invention have conducted extensive research, and have developed a method for manufacturing ceramic materials, such as calcination and final firing, by controlling unreacted substances after calcination and optimizing the firing conditions. The relative density is easily over 95% and 1. I
X 10'A/cm" or more, preferably 1.6 X 1
It has been found that a critical current density of 0'A/cm'' or more can be obtained.
本発明においては、RE−Ba−Cu−0系組成(RE
=希土類元素)で、仮焼・本焼成といった通常のセラミ
ックの焼成法により得られる超電導体及びその製法であ
って、その相対密度を上昇させて機械的強度(3点曲げ
抗折強度)及び臨界電流密度Uc)を向上させることを
目的とする。In the present invention, RE-Ba-Cu-0 system composition (RE
= rare earth elements), which are obtained by normal ceramic firing methods such as calcination and final firing, and their manufacturing method, which improves mechanical strength (three-point bending strength) and criticality by increasing its relative density. The purpose is to improve the current density Uc).
本発明によれば、REt Baz Cu5O4−/ (
RE==希土類元素)の板状単結晶と1μm以下の微小
な単結晶が混在した結晶組織を呈し、前記板状単結晶を
X、微小な単結晶をYとした場合、単位面積当たりに占
めるX、Yの面積割合がX/Y≧0.05である相対密
度が95%以上、臨界電流密度(Jc)が1.lX10
3 A/cm2である酸化物超電導体が提供される。According to the present invention, REt Baz Cu5O4-/ (
It exhibits a crystal structure in which a plate-like single crystal of RE== rare earth element) and a minute single crystal of 1 μm or less are mixed, and if the plate-like single crystal is X and the minute single crystal is Y, the The area ratio of X and Y is X/Y≧0.05, the relative density is 95% or more, and the critical current density (Jc) is 1. lX10
An oxide superconductor is provided that is 3 A/cm2.
また、REI Bag Cu、0.−/(RE=希土類
元素)の組成の混合粉末もしくは合成原料を800〜9
20℃の温度で大気中または酸素中で仮焼し、未反応生
成物を粉末X線回折強度比で0.03≦I/ Io≦3
.0の範囲におさえた2次原料を焼成することを特徴と
する酸化物超電導体の製法が提供される。Also, REI Bag Cu, 0. - / (RE = rare earth element) mixed powder or synthetic raw material with a composition of 800 to 9
Calcined in air or oxygen at a temperature of 20°C, the unreacted product has a powder X-ray diffraction intensity ratio of 0.03≦I/Io≦3
.. A method for producing an oxide superconductor is provided, which is characterized by firing a secondary raw material kept in a range of zero.
即ち、REI Baz Cu30?−/ (RE:希土
類元素)の板状結晶(好ましくは5μm以上)と、1μ
m以下の微結晶が混在するため、板状単結晶の粒間を微
結晶が埋め、気孔の少ない組織となる。その結果粒と粒
の接触面積が増加し、単位断面積当たりに流すところの
可能な臨界電流、即ち臨界電流密度(Jc)が向上する
。また本組織は緻密化されているにも拘わらず、微結晶
から成る多数の粒界を通して酸素の拡散が行われるため
、焼結体内部まで良好な超電導体特性が得られる。前記
板状単結晶をX、微小な単結晶をVとした場合、単位面
積当たりに占めるX、Yの面積割合がX/Y≧0.05
であることが必要である。X/Y <0.05であると
上記の効果が得られない。このような超電導体(バルク
)を得るための製法は例えば原料粉末としてREJs+
BaCO3,CuOとかうなるREt Baz Cu3
07−lを混合した粉末、あるいは共沈法、ゾル・ゲル
法によりRE。That is, REI Baz Cu30? -/ (RE: rare earth element) plate-shaped crystal (preferably 5 μm or more) and 1 μm
Since microcrystals with a size of m or less are mixed, the microcrystals fill the spaces between the grains of the plate-like single crystals, resulting in a structure with few pores. As a result, the contact area between grains increases, and the critical current that can be passed per unit cross-sectional area, that is, the critical current density (Jc), increases. In addition, although this structure is dense, oxygen is diffused through many grain boundaries made of microcrystals, so that good superconducting properties can be obtained to the inside of the sintered body. When the plate-shaped single crystal is X and the minute single crystal is V, the area ratio of X and Y per unit area is X/Y≧0.05.
It is necessary that If X/Y <0.05, the above effect cannot be obtained. The manufacturing method for obtaining such a superconductor (bulk) is, for example, using REJs+ as a raw material powder.
BaCO3, CuO, etc. REt Baz Cu3
RE by powder mixed with 07-l, coprecipitation method, or sol-gel method.
Bag Cu1Ot−/ の組成比となるように合成
された粉末を作製し、800〜920℃の温度で1〜1
0時間、大気中または酸素中で1〜10回仮焼を行い、
BaC0:1やCuO等の未反応生成物の粉末X線回折
による最大ピーク (1) とRFi+ Bat Cu
30.−/の(1,1,0)面のピーク(■。)との強
度比が0.03≦I/ Io≦3.0の範囲となるよう
に未反応生成物の量を制御する必要がある。I/ Io
< 0.03ではREt Bat Cu1OyJ成が
充分に反応生成し凝集している状態であり、焼成後には
ある程度成長しているため、上記に示す如き微粒は得ら
れない。またI/ Io > 3.0では仮焼の効果が
消失する。また、仮焼温度が800℃より低いとREI
Baz C1+30?−/組成の反応が殆ど進行せず
、920℃を超えるとCuO5YJaCu05等の?容
出が起る。また、仮焼時間は1〜10時間が好ましく、
1時間より短いと反応が不十分であり、10時間以上で
は凝集が起こり始める。仮焼の回数は何回でも良いが1
0の1以上は効果が殆ど変わらない。またこの仮焼方法
によって製作された粉末を加工して得られた成形体の本
焼成は先ず最初の設定温度(T、)として例えば820
〜940℃まで昇温後、昇温速度0.1〜4.0℃/時
間で最高温度(Tz)860〜1020℃までの昇温を
大気中または酸素中で行うことにより密度はさらに高ま
り、臨界電流密度(Jc)の向上がより可能となる。即
ち、上記の様な一定昇温の焼成パターンにおいては、一
部の粒成長は促進されるが、微粒は成長速度が遅く、そ
のまま粒間の気泡を埋める形で残されるため緻密化する
。A powder synthesized to have a composition ratio of Bag Cu1Ot−/
Calcinate 1 to 10 times in air or oxygen for 0 hours,
Maximum peak by powder X-ray diffraction of unreacted products such as BaC0:1 and CuO (1) and RFi+ Bat Cu
30. It is necessary to control the amount of unreacted products so that the intensity ratio of −/ to the peak (■.) of the (1,1,0) plane is in the range of 0.03≦I/Io≦3.0. be. I/Io
< 0.03, the REt Bat Cu1OyJ formation is sufficiently reacted and aggregated, and has grown to some extent after firing, so that fine particles as shown above cannot be obtained. Further, when I/Io > 3.0, the effect of calcination disappears. Also, if the calcination temperature is lower than 800℃, REI
Baz C1+30? -/The reaction of the composition hardly progresses, and when the temperature exceeds 920°C, CuO5YJaCu05 etc. Ejection occurs. Further, the calcination time is preferably 1 to 10 hours,
If the reaction time is shorter than 1 hour, the reaction will be insufficient, and if the reaction time is 10 hours or more, aggregation will begin to occur. The number of times of calcination may be any number of times, but 1
If the value is 0 to 1 or more, the effect will hardly change. In addition, in the main firing of the compact obtained by processing the powder produced by this calcination method, the initial set temperature (T) is set to 820, for example.
After raising the temperature to ~940°C, the density is further increased by raising the temperature to a maximum temperature (Tz) of 860~1020°C in air or oxygen at a heating rate of 0.1~4.0°C/hour. It becomes possible to further improve the critical current density (Jc). That is, in the firing pattern of constant temperature rise as described above, although some grain growth is promoted, the growth rate of fine grains is slow and they are left as they are to fill the air bubbles between the grains, resulting in densification.
ここで、最初の設定温度(T1)が820℃より低いと
反応が生じないため効果がなく 、940℃以上では微
粒が1μmよりも大きく成長するため緻密化しないこと
がら昇温速度は4.0℃/時間までが望ましい。また最
高温度(T2)は860℃未満であると焼結が不十分で
あり、1020℃以上では溶出が起こることから860
〜1020℃の範囲が望ましい。Here, if the initial set temperature (T1) is lower than 820°C, the reaction will not occur and there will be no effect, and if it is higher than 940°C, the fine particles will grow larger than 1 μm and will not be densified, so the temperature increase rate will be 4.0°C. Preferably up to ℃/hour. Furthermore, if the maximum temperature (T2) is less than 860°C, sintering will be insufficient, and if it is higher than 1020°C, elution will occur.
A range of 1020°C is desirable.
Y2O3が約15重量%、BaC0,が約53重量%お
よびCuOが約32重量%となる混合粉末を湿式回転ボ
ールミルにより約24時間混合し、この混合粉末を大気
中での仮焼と乳鉢での解砕とを数回繰り返した。A mixed powder containing about 15% by weight of Y2O3, about 53% by weight of BaC0, and about 32% by weight of CuO was mixed in a wet rotary ball mill for about 24 hours, and this mixed powder was calcined in the air and dried in a mortar. The process of crushing was repeated several times.
この仮焼粉末を有機溶媒(エタノール)を用いて湿式回
転ボールミルにより約50時間粉砕を行い得られた微粉
末に成形用バインダー(ポリビニルアルコール)を均一
に混合した後、1cm”当たり約1000にgの圧力で
プレス成形した。この成形体を本焼成した後、約600
℃で酸素中熱処理を行い第1表に示す各測定用の試料片
を得た。粉末X線解析は最終仮焼終了後の粉体を解砕し
たものを用い、2θ:20〜60°までの回折角で比較
を行った。この際、I/ I。は粉末X線回折パターン
に現れる未反応物の最高ピーク強度/RE+ Baz
Cu307−/ の(1,1、O)メインピーク強度
である。上記試料片を得るための仮焼条件及び本焼成条
件は第2表に示した。This calcined powder was pulverized for about 50 hours in a wet rotary ball mill using an organic solvent (ethanol), and a molding binder (polyvinyl alcohol) was uniformly mixed with the resulting fine powder, and the powder was mixed with a molding binder (polyvinyl alcohol) at a concentration of about 1,000 g per 1 cm. The molded body was press-molded at a pressure of about 600 mm after main firing.
Heat treatment was performed in oxygen at ℃ to obtain sample pieces for each measurement shown in Table 1. Powder X-ray analysis was performed using the crushed powder after the final calcination, and comparisons were made at diffraction angles of 2θ: 20 to 60°. At this time, I/I. is the highest peak intensity of unreacted substances appearing in the powder X-ray diffraction pattern/RE+ Baz
This is the (1,1,O) main peak intensity of Cu307-/. The calcination conditions and main calcination conditions for obtaining the above sample pieces are shown in Table 2.
(以下、空白)
第1表
上記により得られた各第1表に示す試料片につき相対密
度(χ)、臨界電流密度(Jc)、耐候性および抗折強
度を測定しそれらの結果を第2表の評価欄に示す。相対
密度はアルキメデス法によるカサ比重/理論密度、臨界
電流密度(Jc)は4端子法による実測値(0,047
の磁場中)、耐候性は湿式試験(40℃×90χ×60
分)後の2端子法による室温抵抗ρ及び抗折強度(Mp
a)は3点曲げ抗折強度を夫々測定した。また、各試料
番号のサンプル表面を金属顕微鏡により800倍の倍率
で組織の形態および板状単結晶Xと微小単結晶Yとの単
位面積当たりに占める面積割合を観測した。(Hereafter, blank) Table 1 Relative density (χ), critical current density (Jc), weather resistance, and bending strength were measured for each sample piece shown in Table 1 obtained above. Shown in the evaluation column of the table. The relative density is the bulk specific gravity/theoretical density by the Archimedes method, and the critical current density (Jc) is the actual value (0,047
(in a magnetic field), weather resistance was tested in a wet test (40°C
room temperature resistance ρ and bending strength (Mp
For a), the three-point bending strength was measured. In addition, the sample surface of each sample number was observed using a metallurgical microscope at a magnification of 800 times to observe the morphology of the structure and the area ratio of plate-like single crystals X and minute single crystals Y per unit area.
(以下、空白)
第2表から理解されるように試料番号1および11は本
発明の範囲外のものであり、いずれも仮焼粉末の粉末X
線回折におけるピーク強度比(I/I。(Hereinafter, blank) As understood from Table 2, sample numbers 1 and 11 are outside the scope of the present invention, and both are calcined powder powder
Peak intensity ratio (I/I) in line diffraction.
)が0.03〜3.0の範囲をはずれており相対密度が
低り、臨界電流密度、抵抗率及び抗折強度のいずれもが
劣っている。これに対し、試料番号2〜10.12〜2
3は夫々本発明の範囲内のものであり、相対密度が94
%以上、臨界電流密度(Jc)が1110以上、抗折強
度(Mpa)が45Mpa以上であり、特に試料番号2
〜10.14.16〜21については相対密度が95%
以上、臨界電流密度Uc)が1620以上、常温抵抗値
が4.6mΩ−cm以下、抗折強度が52.3Mpa以
上と優れている。) is out of the range of 0.03 to 3.0, the relative density is low, and the critical current density, resistivity, and bending strength are all poor. On the other hand, sample number 2-10.12-2
3 are within the scope of the present invention, and the relative density is 94.
% or more, critical current density (Jc) is 1110 or more, bending strength (Mpa) is 45 Mpa or more, especially sample number 2.
~10.14.16~21 Relative density is 95%
As mentioned above, the critical current density (Uc) is 1620 or more, the room temperature resistance value is 4.6 mΩ-cm or less, and the bending strength is 52.3 Mpa or more, which are excellent.
尚、第1図及び第2図は上記試料番号1と20とのサン
プル表面を金属顕微鏡により800倍の倍率で観測した
Mi織写真の模写図であり、本発明の範囲内の試料番号
20の組織は第1回に示す如く板状単結晶のまわりを1
μm以下の微小な結晶が取囲んでおり、気孔の少ない緻
密化した組織を呈し、板状単結晶Xと微小単結晶Yの単
位面積当たりに占める面積割合がX/Y≧0.05であ
る第2表中の試料番号2〜10.12〜19.21〜2
3も同様の結晶組織である。これに対し本発明の範囲外
の試料番号1の組織は第2図に示す如く一様に成長した
粒Vからなる組織を呈し、板状単結晶Xと微小単結晶Y
との単位面積当たりに占める面積割合がX/Y<0.0
5であり、気孔Zが多く緻密化していない。試料番号1
1も同様である。In addition, FIGS. 1 and 2 are reproductions of Mi weave photographs obtained by observing the sample surfaces of sample numbers 1 and 20 with a metallurgical microscope at a magnification of 800 times, and are within the scope of the present invention. As shown in Part 1, the structure is one around a plate-like single crystal.
It is surrounded by micro crystals of μm or less, exhibiting a dense structure with few pores, and the area ratio of plate-like single crystals X and micro single crystals Y per unit area is X/Y ≧ 0.05. Sample number 2-10.12-19.21-2 in Table 2
3 also has a similar crystal structure. On the other hand, the structure of sample number 1, which is outside the scope of the present invention, exhibits a structure consisting of uniformly grown grains V as shown in FIG.
The area ratio per unit area is X/Y<0.0
5, and there are many pores Z and it is not dense. Sample number 1
The same applies to 1.
以上詳述した通り、本発明の酸化物超電導体はRE+
Bag Cu+07−/系酸化物超電導体の組織を緻密
化し、臨界電流密度および抗折強度を向上させることが
でき、また、本超電導体の製法は比較的容易に再現可能
な方法で実用的である。As detailed above, the oxide superconductor of the present invention has RE+
The structure of the Bag Cu+07-/based oxide superconductor can be densified and the critical current density and bending strength can be improved, and the manufacturing method of the present superconductor is relatively easily reproducible and practical. .
第1図は本発明の実施例に於ける試料番号20のサンプ
ル表面800倍の金属顕微鏡組織写真の模写図、第2図
は実施例に於ける試料番号1の第1図と同様の組織写真
の模写図である。Figure 1 is a replica of a metallurgical microscopic photograph of the surface of sample No. 20 in an example of the present invention magnified 800 times, and Figure 2 is a photograph of the same structure as in Figure 1 of sample No. 1 in an example. This is a copy of the figure.
Claims (2)
=希土類元素)の板状単結晶と1μm以下の微小な単結
晶が混在した結晶組織を呈し、前記板状単結晶をX、微
小な単結晶をYとした場合、単位面積当たりに占めるX
、Yの面積割合がX/Y≧0.05である相対密度が9
5%以上、臨界電流密度(Jc)が1.1×10^3A
/cm^2である酸化物超電導体。(1) RE_1Ba_2Cu_3O_7_-_δ(RE
= rare earth element) exhibits a crystal structure in which a plate-like single crystal and a minute single crystal of 1 μm or less are mixed, and if the plate-like single crystal is X and the minute single crystal is Y, the X occupied per unit area is
, the relative density where the area ratio of Y is X/Y≧0.05 is 9
5% or more, critical current density (Jc) is 1.1×10^3A
/cm^2 oxide superconductor.
=希土類元素)の組成の混合粉末もしくは合成原料を8
00〜920℃の温度で大気中または酸素中で仮焼し、
未反応生成物を粉末X線回折強度比で0.03≦I/I
_o≦3.0の範囲におさえた2次原料を焼成すること
を特徴とする酸化物超電導体の製法。(2) RE_1Ba_2Cu_3O_7_-_δ(RE
= rare earth elements) mixed powder or synthetic raw material with a composition of 8
Calcined in air or oxygen at a temperature of 00 to 920°C,
The powder X-ray diffraction intensity ratio of unreacted products is 0.03≦I/I
A method for producing an oxide superconductor, characterized by firing a secondary raw material kept in the range of _o≦3.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63046458A JP2881423B2 (en) | 1988-02-29 | 1988-02-29 | Oxide superconductor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63046458A JP2881423B2 (en) | 1988-02-29 | 1988-02-29 | Oxide superconductor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01219057A true JPH01219057A (en) | 1989-09-01 |
JP2881423B2 JP2881423B2 (en) | 1999-04-12 |
Family
ID=12747717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63046458A Expired - Lifetime JP2881423B2 (en) | 1988-02-29 | 1988-02-29 | Oxide superconductor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2881423B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006062897A (en) * | 2004-08-25 | 2006-03-09 | Nippon Steel Corp | Superconducting oxide material and its manufacturing method |
-
1988
- 1988-02-29 JP JP63046458A patent/JP2881423B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006062897A (en) * | 2004-08-25 | 2006-03-09 | Nippon Steel Corp | Superconducting oxide material and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2881423B2 (en) | 1999-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Sintering of YBa2Cu3O7− x compacts | |
KR970007765B1 (en) | Superconducting wire and method of manufacturing the same | |
JPH082962A (en) | Sintering ceramics for highly stable thermistor and its preparation | |
CN116768626B (en) | PbNb (PbNb) material 2 O 6 Base piezoelectric ceramic material and preparation method thereof | |
CN114560698B (en) | Method for enhancing performance of calcium bismuth niobate high-temperature piezoelectric ceramic by inducing texture through oxide sintering aid | |
JPH01219057A (en) | Oxide superconductor and its production | |
Greuter et al. | Preparation and microstructure of high density Y1Ba2Cu3O7− δ | |
CN108793993A (en) | A kind of one-component ceramic target and its preparation method and application | |
CN107253859A (en) | Luminous ferroelectric ceramic material of the Eu Bi codopes tungsten bronze structure of photo and thermal stability occurred frequently and preparation method thereof | |
JP2969220B2 (en) | Manufacturing method of oxide superconductor | |
JP2969221B2 (en) | Manufacturing method of oxide superconductor | |
JP3164640B2 (en) | Manufacturing method of oxide superconductor | |
EP0500966A1 (en) | Oxide superconductor and method of manufacturing said superconductor | |
JP2866484B2 (en) | Manufacturing method of oxide superconductor | |
KR0174385B1 (en) | Process for preparing the higg temperature superconductor having anisotropy | |
JPH07242424A (en) | Oxide superconducting structure and production thereof | |
JPS60141669A (en) | Manufacture of high density spinel ferrite sintered body | |
JP3285646B2 (en) | Manufacturing method of oxide superconducting structure | |
JPH02204358A (en) | Oxide superconductor and production thereof | |
CN110734286A (en) | iron-based garnet ceramic material, preparation and application thereof | |
JP2791408B2 (en) | Method for manufacturing high-density and highly-oriented oxide superconductor | |
JP2013063906A (en) | METHOD OF MANUFACTURING ORIENTATION-CONTROLLED Co OXIDE POLYCRYSTAL | |
Bongkarn et al. | Microstructure, Piezoelectric Properties and Phase Transition of (Pb 0.90 Ba 0.10) ZrO 3 Ceramics Prepared by Solid State Reaction Method | |
Knickerbocker | Orientation of Ceramic Microstructures by Hot-Forming Methods | |
Wentworth | A low drive material for monolithic ferrite memories |