JPS63242921A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPS63242921A
JPS63242921A JP62077196A JP7719687A JPS63242921A JP S63242921 A JPS63242921 A JP S63242921A JP 62077196 A JP62077196 A JP 62077196A JP 7719687 A JP7719687 A JP 7719687A JP S63242921 A JPS63242921 A JP S63242921A
Authority
JP
Japan
Prior art keywords
superconductor
ceramic
ybacuo
yttrium
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077196A
Other languages
Japanese (ja)
Inventor
Satoshi Tanda
聡 丹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62077196A priority Critical patent/JPS63242921A/en
Publication of JPS63242921A publication Critical patent/JPS63242921A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a stable superconductor having high critical temperature and reliability, by replacing part of Y in YBaCuO based ceramic by a trivalent metal element having ion radius smaller than that of Y. CONSTITUTION:The aimed superconductor is formed by replacing part of Y in YBaCuO based ceramic by a trivalent metal element (Ga, Sc or In) having ion radius smaller than that of Y. Therefore in the superconductor the gap is increased and grain boundaries exists in large numbers. The above-mentioned YBaCuO based ceramic has provskite structure and is expressed by the formula YxBa1-xCuO3 (x is 0-1).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導体に係り、特に超電導セラミックの構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to superconductors, and particularly to the structure of superconducting ceramics.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

超電導現象は、物質の示すさまざまな電磁気的性質の中
で最も特異な性質であるといわれており、完全導電性、
完全反磁性、磁束の量子化等、夫々の性質を利用し応用
面での今後の発展が期待されている。
Superconductivity is said to be the most unique property among the various electromagnetic properties exhibited by substances, including complete conductivity,
Future developments in applications are expected by utilizing the respective properties such as perfect diamagnetism and quantization of magnetic flux.

応用面では、超電導現象を示す臨界温度が高いことが望
ましいが、性能が良好であるとされているのはプラズマ
スパッター法で得られるNb3 Geである。この臨界
温度は高々23”Kであり、液体ヘリウム温度でしか使
用できないものである。
In terms of applications, it is desirable that the critical temperature at which superconductivity occurs is high, but Nb3Ge obtained by plasma sputtering is said to have good performance. This critical temperature is at most 23''K and can only be used at liquid helium temperatures.

液体ヘリウムの使用は、液化・冷却付帯設備の必要性に
伴う冷却コストおよび技術的負担の増大、更には、ヘリ
ウム資源が極めて少ないこと等の理由から、産業および
民生分野での超電導体の実用化をはばむ大きな問題とな
っていた。
The use of liquid helium has hindered the practical application of superconductors in industrial and consumer fields due to the increased cooling costs and technical burden associated with the need for liquefaction and cooling equipment, and the fact that helium resources are extremely scarce. This had become a major problem that hindered

そこで、高臨界温度の超電導体を得るためにさまざまな
試みがなされており、特に、最近の研究にはめざましい
ものがある。
Therefore, various attempts have been made to obtain superconductors with high critical temperatures, and recent research in particular has been remarkable.

従来、金属系超電導材料やセラミック系超7rsiX材
料については、粒界が存在するとそこで電子が散乱され
、抵抗が高くなるという理論に基づき、組成は均一で結
晶構造が一定である多結晶又は単結晶となるように、す
なわち粒界をできる限り少なくする方向で研究がなされ
ていた。
Conventionally, metal-based superconducting materials and ceramic-based super-7rsiX materials are based on the theory that when grain boundaries exist, electrons are scattered there and the resistance increases. In other words, research has been conducted in the direction of reducing the number of grain boundaries as much as possible.

しかしながら、臨界温度の高い超電導材料は得られてい
なかった。
However, a superconducting material with a high critical temperature has not been obtained.

本発明は、前記実情に鑑みてなされたもので、臨界温度
が高く信頼性の高い超電導体を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a superconductor having a high critical temperature and high reliability.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、YBaCuO系セラミック超電導材
料において、イツトリウム(Y)の少なくとも一部をイ
ツトリウムよりイオン半径の小さい+3価の金属元素で
置き換えるようにしている。
Therefore, in the present invention, in the YBaCuO ceramic superconducting material, at least a portion of yttrium (Y) is replaced with a +trivalent metal element having a smaller ionic radius than yttrium.

〔作用〕[Effect]

すなわち、本発明では、従来の方向とは逆に前記粒界を
増大せしめこれを電子の通路にしようとするものでYB
aCuO系セラミック超電導材料において、イツトリウ
ムの少なくとも一部をイツトリウムよりイオン半径の小
さい+3価の金属元素で置き換えることにより、隙間が
増大し、粒界が多数存在するようになる。
That is, in the present invention, the grain boundaries are increased in the opposite direction to the conventional direction, and the grain boundaries are used as paths for electrons.
In the aCuO-based ceramic superconducting material, by replacing at least a portion of yttrium with a +trivalent metal element having a smaller ionic radius than yttrium, the gaps are increased and a large number of grain boundaries are present.

界面はエネルギー活性状態にあるため、電子密度も高く
なっており、クーパーベアを作り易い状態になるため、
高い臨界温度で超電導状態を得ることができるものと考
えられる。
Since the interface is in an energy active state, the electron density is also high, making it easy to form a Cooper bear.
It is thought that a superconducting state can be obtained at a high critical temperature.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

まず、酸化イツトリウム(Y20g ) 、酸化スカン
ジウム(Sc202 ) 、炭酸バリウム(BaCO3
)、酸化第2銅(Cub)、フッ化鋼(CuF2)、硫
化鋼(Cu S)の粉末を秤量し、混合粉砕せしめる。
First, yttrium oxide (Y20g), scandium oxide (Sc202), barium carbonate (BaCO3)
), cupric oxide (Cub), fluoride steel (CuF2), and sulfide steel (CuS) powders are weighed and mixed and pulverized.

続いて、この混合粉砕を金型に詰め、50kg/mrr
rで加圧成型せしめる。
Next, this mixed pulverization was packed into a mold, and the weight was 50kg/mrr.
Pressure mold with r.

そして最後に、酸素雰囲気中で800〜900℃で24
時間焼結する。
And finally, at 800-900℃ in oxygen atmosphere for 24 hours.
Time to sinter.

このようにして、得られたセラミックは、次式(3)で
示される組成を有しており、臨界温度TCは95°にで
あった。また、転移幅ΔTcも極めて小さく安定なもの
となっている。
The ceramic thus obtained had a composition represented by the following formula (3), and had a critical temperature TC of 95°. Further, the transition width ΔTc is also extremely small and stable.

(Y   Sc   )   Ba   Cu207(
3)0゜9  0.1 1.8  1.2 また、電子顕微鏡を用いて見たこのセラミックの構造を
示す模式図を第1図に示す。
(Y Sc ) Ba Cu207 (
3) 0°9 0.1 1.8 1.2 Furthermore, a schematic diagram showing the structure of this ceramic as seen using an electron microscope is shown in FIG.

この図からも明らかなように、粒径の小さくなっている
結晶粒^わりに粒界Cが多数存在していることがわかる
As is clear from this figure, it can be seen that there are many grain boundaries C despite the crystal grains having smaller grain sizes.

更に、スカンジウムを含有しないYBaCuO系セラミ
ックである組成式(4)で示されるセラミックと Y   Ba   Cu20r      (4)t、
a   1.2 これにスカンジウムを加えた組成式(3)で示されるセ
ラミックとの温度(0K)と抵抗(任意抵抗)との関係
を第2図に夫々曲線a、bで示す。
Furthermore, a ceramic represented by compositional formula (4) which is a YBaCuO ceramic that does not contain scandium, and YBaCu20r (4)t,
a1.2 The relationship between temperature (0K) and resistance (arbitrary resistance) with the ceramic shown by the compositional formula (3) in which scandium is added is shown by curves a and b, respectively, in FIG.

この曲線a、bの比較からも明らかなように各臨界温度
はTC+ <Tc2となっており、スカンジウムを添加
することにより、臨界温度が高められることがわかる。
As is clear from the comparison of curves a and b, each critical temperature satisfies TC+<Tc2, and it can be seen that the critical temperature can be increased by adding scandium.

なお、実施例で用いた炭酸バリウム(BaC01)に代
えて酸化バリウム(Bad)を用いるようにしてもよい
Note that barium oxide (Bad) may be used instead of barium carbonate (BaC01) used in the examples.

また、添加するイツトリウムよりイオン半径の小さい3
価金属としては、スカンジウムの他、インジウム(In
)、ガリウム(Ga)等でもよい。
In addition, 3 has a smaller ionic radius than the added yttrium.
In addition to scandium, indium (In
), gallium (Ga), etc.

更に、実施例では、酸素の散逸を防ぐため、焼結炉内に
酸素を供給しつつ加熱するようにしたが、酸素の散逸を
防ぐため、焼結前に表面をシールするようにしてもよい
Furthermore, in the example, in order to prevent the dissipation of oxygen, the sintering furnace was heated while being supplied with oxygen, but the surface may be sealed before sintering to prevent the dissipation of oxygen. .

更に、焼結方法としても、粉末焼結法、加圧しながら加
熱するホットプレス法、静水圧下でのホットプレス法で
あるH、1.P法等から適宜選択可能である。
Furthermore, the sintering methods include a powder sintering method, a hot press method that heats while pressurizing, and a hot press method under hydrostatic pressure.1. It can be appropriately selected from the P method and the like.

また、焼結工程において、焼結工程を複数回にし、焼結
−微粉化を繰り返すようにしてもよい。
Moreover, in the sintering process, the sintering process may be performed multiple times, and the sintering and pulverization may be repeated.

[発明の効果] 以上説明してきたように、本発明によればYB a C
u O)系セラミック超電導体において、イツトリウム
の一部をイツトリウムよりもイオン半径の小さい3価の
金属元素で置き換えるようにしているため、臨界温度が
高く安定で信頼性の高いものとなっている。
[Effect of the invention] As explained above, according to the present invention, YB a C
In the uO)-based ceramic superconductor, a portion of yttrium is replaced with a trivalent metal element having a smaller ionic radius than yttrium, making it stable and highly reliable due to its high critical temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の超電導セラミックの構造を示
す模式図、第2図は、本発明の超電導セラミックと従来
のセラミックとの温度と抵抗値との関係を示す図である
。 C・・・粒界、P・・・結晶粒。
FIG. 1 is a schematic diagram showing the structure of a superconducting ceramic according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between temperature and resistance value between the superconducting ceramic of the present invention and a conventional ceramic. C...grain boundary, P...crystal grain.

Claims (5)

【特許請求の範囲】[Claims] (1)イットリウム−バリウム−銅−酸素(YBaCu
O)系セラミック超電導体においてイットリウムの少な
くとも一部をイットリウムよりもイオン半径の小さい3
価の金属元素で置き換えたことを特徴とする超電導体。
(1) Yttrium-barium-copper-oxygen (YBaCu
O) In the ceramic superconductor, at least a part of the yttrium has an ionic radius smaller than that of yttrium.
A superconductor characterized by replacing it with a valent metal element.
(2)前記YBaCuO系セラミック超電導体は組成式
Y_xBa_1_−_xCuO_3で示されるペロブス
カイト構造体であることを特徴とする特許請求の範囲第
(1)項記載の超電導体。
(2) The superconductor according to claim 1, wherein the YBaCuO ceramic superconductor is a perovskite structure represented by the compositional formula Y_xBa_1__xCuO_3.
(3)前記YBaCuO系セラミック超電導体は組成式
Y_xBa_3_−_xCu_2O_7で示される層状
ペロブスカイト構造体であることを特徴とする特許請求
の範囲第(1)項記載の超電導体。
(3) The superconductor according to claim (1), wherein the YBaCuO ceramic superconductor is a layered perovskite structure represented by the compositional formula Y_xBa_3_-_xCu_2O_7.
(4)前記YB_aCuO系セラミック超電導体は組成
式Y_xBa_1_−_xCuO_3(0≦x≦1)で
示されるペロブスカイト構造と組成式Y_xBa_3_
−_xCu_2O_7(0≦x≦3)で示される層状ペ
ロブスカイト構造の混合体であることを特徴とする特許
請求の範囲第(1)項記載の超電導体。
(4) The YB_aCuO-based ceramic superconductor has a perovskite structure represented by the compositional formula Y_xBa_1_-_xCuO_3 (0≦x≦1) and a compositional formula Y_xBa_3_
The superconductor according to claim 1, which is a mixture of layered perovskite structures represented by -_xCu_2O_7 (0≦x≦3).
(5)前記金属元素はガリウム(Ga)、スカンジウム
(Sc)、インジウム(In)のうちのいずれかである
ことを特徴とする特許請求の範囲第(1)項記載の超電
導体。
(5) The superconductor according to claim (1), wherein the metal element is one of gallium (Ga), scandium (Sc), and indium (In).
JP62077196A 1987-03-30 1987-03-30 Superconductor Pending JPS63242921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62077196A JPS63242921A (en) 1987-03-30 1987-03-30 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077196A JPS63242921A (en) 1987-03-30 1987-03-30 Superconductor

Publications (1)

Publication Number Publication Date
JPS63242921A true JPS63242921A (en) 1988-10-07

Family

ID=13627065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077196A Pending JPS63242921A (en) 1987-03-30 1987-03-30 Superconductor

Country Status (1)

Country Link
JP (1) JPS63242921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256566A (en) * 1987-04-15 1988-10-24 Kazuo Fueki Superconductive material
US5378682A (en) * 1989-03-25 1995-01-03 Hoechst Aktiengesellschaft Dense superconducting bodies with preferred orientation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256566A (en) * 1987-04-15 1988-10-24 Kazuo Fueki Superconductive material
US5378682A (en) * 1989-03-25 1995-01-03 Hoechst Aktiengesellschaft Dense superconducting bodies with preferred orientation

Similar Documents

Publication Publication Date Title
EP0301952B1 (en) Compound oxide superconducting material and method for preparing the same
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JP2571789B2 (en) Superconducting material and its manufacturing method
US6605569B2 (en) Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor
JPS63242921A (en) Superconductor
EP0315977A2 (en) Superconductor material comprising a three-component metallic oxide
EP0296893B1 (en) Superconducting material and a process for preparing the same
JPS63242920A (en) Superconductor
JPH0881221A (en) Oxide superconductor and its production
JPH01197321A (en) Oxide superconductor
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2966119B2 (en) Manufacturing method of oxide superconductor
JPS63230524A (en) Superconductive material
JPH03137050A (en) Manufacture of oxide superconductor
Kimura et al. Joining of YBa 2 Cu 3 O x with High Critical Current
JPH02107518A (en) Oxide superconducting material
JPH02133317A (en) Oxide superconducting material
JPS63303849A (en) Ceramic superconductor
JPH0769637A (en) Bi-based superconducting material
JPH01151169A (en) Oxide superconducting member
JPH01108149A (en) Oxide superconducting material
JPH0818111A (en) Laminar copper oxide and manufacture thereof
Köbel Bi₂Sr₂CaCu₂Ox superconducting thick films on MgO substrates
JPH04202013A (en) Oxide superconducting material and its production
JPH0226832A (en) Production of superconducting material