JPS63155706A - Magnetic levitation apparatus - Google Patents

Magnetic levitation apparatus

Info

Publication number
JPS63155706A
JPS63155706A JP30344686A JP30344686A JPS63155706A JP S63155706 A JPS63155706 A JP S63155706A JP 30344686 A JP30344686 A JP 30344686A JP 30344686 A JP30344686 A JP 30344686A JP S63155706 A JPS63155706 A JP S63155706A
Authority
JP
Japan
Prior art keywords
unit
levitation
magnetic
magnet
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30344686A
Other languages
Japanese (ja)
Other versions
JPH0752691B2 (en
Inventor
Wataru Mizutani
亘 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61303446A priority Critical patent/JPH0752691B2/en
Publication of JPS63155706A publication Critical patent/JPS63155706A/en
Publication of JPH0752691B2 publication Critical patent/JPH0752691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize a magnetic levitation without contact without using an external control circuit by providing a ferromagnetic unit and a diamagnetic unit to either of a levitation unit and a means for levitating the levitation unit, and providing a magnet having a pole capable of magnetically saturating the ferromagnetic unit in a saturation range to the other. CONSTITUTION:Since a ferromagnetic unit 3 provided at a levitation unit by the magnetic field of a magnet 1 is attracted to an opposite pole, a levitating force is generated at the levitation unit 4. However, when the unit 3 approaches the pole 2 in some degree, it is magnetically saturated, and even if it approaches nearer, the attracting force is not increased. Then, when a diamagnetic unit 5 is disposed around the unit 3, a repelling force is generated even if the unit 5 is weakened by the magnet 1, it increases as the unit 5 approaches the opposite pole 2, and it cancels the increase of the attracting force of the unit 3 at a predetermined approaching point. Then, when the repelling force of the unit 5 and the attracting force of the unit 3 of magnetically saturated state are balanced, the levitation unit is stably levitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気浮上装置に関し、詳しくは、磁場を利用し
て、物体を無接触で浮揚状態に支持可能な自己制御型の
磁気浮上装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic levitation device, and more particularly to a self-controlled magnetic levitation device that can support an object in a levitating state without contact using a magnetic field. .

〔従来の技術〕[Conventional technology]

磁場を利用して物体を無接触で浮上させる場合、磁石の
みて吸引しようとすると、磁極と浮上体との間の距離が
短かくなるほど吸引力か強くなって、最終的には、磁極
と物体とか接触してしまう。そこで、これを防くため、
従来は、距離センサで物体と磁極の間のすきまを測定し
、制御回路を用いて、電磁石の電流を加減し、物体か、
磁極と一定の距離を保って浮上するようにしている。(
学献社r基tifi 磁気工学J(山田−他著)P 1
53参照) また、超伝導体の完全反磁性効果を用い、磁場の反発力
を利用して、外部の制御なして磁気浮上させる方法も知
られている。(東京大学出版会r低温技術J(小林俊−
店)P 78参照)〔発明か解決しj;うとする問題点
〕 しかしながら、従来の上述したような制御型磁気?”l
上装置は、外部回路による制御か複雑で、高価につく。
When using a magnetic field to levitate an object without contact, if you try to attract it using the magnet alone, the shorter the distance between the magnetic poles and the levitating object, the stronger the attraction force will be, and eventually the magnetic poles and the object will be attracted to each other. Or come into contact. Therefore, to prevent this,
Conventionally, a distance sensor measures the gap between an object and a magnetic pole, and a control circuit is used to adjust the current of the electromagnet to determine if the object is
It levitates while maintaining a certain distance from the magnetic pole. (
Gakukensha r base tifi Magnetic Engineering J (Yamada et al.) P 1
53) Also known is a method of magnetic levitation without external control, using the perfect diamagnetic effect of a superconductor and the repulsive force of a magnetic field. (University of Tokyo Press r Low Temperature Technology J (Shun Kobayashi)
(Refer to page 78) [Problems to be solved by invention] However, the conventional controlled magnetism as described above? "l
The above device is controlled by an external circuit and is complicated and expensive.

また、真空装置内で使用する場合なとては、センサのリ
ート線や、電磁石のり−1−線のためにボー1−か必要
となる。また、移動装置に適用しようとすると、これら
のり−ト糸泉か、邪魔になる。
Furthermore, when used in a vacuum device, a wire is required for the Riet wire of the sensor and the wire for the electromagnet. Moreover, when trying to apply it to a mobile device, these glue threads become a nuisance.

一方の超伝導型磁気浮子装置では、制御回路か不要な反
面、低温に保つため液体ヘリウムを用いる冷却装置か必
要であるので、高価になる上に、取扱いかやっかいであ
る。
Superconducting magnetic float devices, on the other hand, do not require a control circuit, but require a cooling device that uses liquid helium to keep them at low temperatures, making them expensive and difficult to handle.

それノ1らは、常温にお(づる反磁性体による反発型磁
気7字上は可能かというと、常温反磁性の最も強いビス
マスやグラフアイl−等ても反磁性を示す帯磁率(磁化
率)のXかx>>−10−’程度であり、超伝導体の帯
磁率x=−1に比へて1万分の1程度ノざので、常温反
磁性体のみて反発磁気浮上させるには、浮十力か小さず
きる。
Part 1: Is it possible to create repulsive magnetism using diamagnetic materials at room temperature? However, even with bismuth, which has the strongest diamagnetic properties at room temperature, and graphite l-, magnetic susceptibility (magnetization Since the magnetic susceptibility of superconductors is approximately 1/10,000 times smaller than the magnetic susceptibility of superconductors x = -1, repulsive magnetic levitation can only be achieved using room-temperature diamagnetic materials. It's Ukijuriki or Kozukiru.

本発明の目的は、上述の問題点に鑑みて、電気的制御回
路か木質的には不用であり、しかも浮上刃の安定、1、
ハが得られて、リート線を要ゼず磁気浮上が達成てきる
磁気浮上装置を提供することにある。
In view of the above-mentioned problems, an object of the present invention is to eliminate the need for an electrical control circuit or a mechanical structure, and to stabilize the floating blade.
It is an object of the present invention to provide a magnetic levitation device in which magnetic levitation can be achieved without requiring a Riet wire.

〔問題点を解決するための手段) かかる目的を達成するために、本発明は、浮上体および
浮−に体を浮揚させる手段のいずれか一方に強磁性体と
反磁+’t一体とを配設し、他方に強磁性体を飽和領域
において磁気飽和可能な磁極を有する磁石を設け、飽和
領域において、磁石により強611性体を吸引させると
共に磁性体を反発させて、浮」二体を浮揚状態に保つよ
うにしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention incorporates a ferromagnetic material and a diamagnetic material in either one of the floating body and the means for levitating the body. A magnet with a magnetic pole capable of magnetically saturating a ferromagnetic material in the saturation region is provided on the other hand, and in the saturation region, the magnet attracts the strong 611-magnetic material and repels the magnetic material to form a floating two-body. It is characterized by being kept in a floating state.

〔作 用〕[For production]

本発明磁気浮上装置によれば、浮上体の有する強磁性体
および反磁性体と、浮上体を浮揚させるために設ζづた
強力な磁場を発生さ−Hる磁石との間に吸引力および反
発力かそれぞれ発生するので、強磁性体の飽和領域にお
いて、吸引力と浮上体の全自重および反発力の合力とか
均合うように磁石による磁場勾配と、強磁性体対反磁性
体の体積および浮上体の全自重を適切に設定して、浮上
体を浮揚状態に保つことかできる。
According to the magnetic levitation device of the present invention, an attractive force is created between the ferromagnetic material and diamagnetic material of the levitation object and the magnet that generates a strong magnetic field, which is installed to levitate the levitation object. Since a repulsive force is generated, the magnetic field gradient due to the magnet, the volume of the ferromagnetic material and the diamagnetic material, and the volume of the ferromagnetic material and the diamagnetic material are It is possible to maintain the floating object in a floating state by appropriately setting the total weight of the floating object.

〔実施例〕〔Example〕

以下に、図面に基ついて本発明の実施例を詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示し、本例は浮上体側に一
組の反磁性体と強磁性体とを組合せて配置した例である
。ここて、1は浮上体をン7揚させるための磁界を発生
させる磁石であり、磁石1としCは、永久磁石か電磁石
かのいすねであってもよい。2はその磁極であり、磁極
2の構成いかんによって発生する磁場の勾配等を適切に
調整することかできる。なお、磁石1は不図示の支持体
によって支持されるものとする。
FIG. 1 shows an embodiment of the present invention, in which a pair of diamagnetic material and ferromagnetic material are combined and arranged on the floating body side. Here, 1 is a magnet that generates a magnetic field for lifting the floating object, and magnets 1 and C may be permanent magnets or electromagnets. Reference numeral 2 denotes the magnetic pole, and depending on the configuration of the magnetic pole 2, the gradient of the generated magnetic field, etc. can be adjusted appropriately. It is assumed that the magnet 1 is supported by a support body (not shown).

これに対して、3は浮上体側に設けられる強磁性体であ
り、強磁性体3としては、軟鉄、コバルト等の金属ある
いはパーマロイ、スーパーマロイ等の強磁性合金を使用
する。すなわち、磁石1の磁場によって強磁性体3が対
向する磁極2に吸引されるので、その吸引力により浮上
体4の側に浮揚力を発生させるものであるが、この場合
、強磁性体3は磁極2にある程度近接すると磁気的に飽
和し、それJu上は磁極2に近ついても吸引力か増加し
なくなる。
On the other hand, 3 is a ferromagnetic material provided on the floating body side, and the ferromagnetic material 3 is a metal such as soft iron or cobalt, or a ferromagnetic alloy such as permalloy or supermalloy. That is, the ferromagnetic material 3 is attracted to the opposing magnetic pole 2 by the magnetic field of the magnet 1, and the levitation force is generated on the side of the floating body 4 due to the attractive force, but in this case, the ferromagnetic material 3 When it comes close to the magnetic pole 2 to a certain extent, it becomes magnetically saturated, and above that, even if it approaches the magnetic pole 2, the attractive force does not increase.

5は強磁性体3の周囲に配設された反磁性体てあり、又
磁性体5としてはヒスマス、グラファイト、燐やニオブ
、Nb3Sn 、Nb−Ti更には特殊な有機化合物等
を用いることができる。一方の反磁性体5は磁石1によ
って弱いながらも反発力を生しており、この反発力は反
磁性体5か対向磁極2に近づくに連れて増大し、後述す
るようにしである近接点て強1i1?性休3の吸引力の
増加を打消すようになる。そこて、この反磁性体5によ
る反発力と、浮上体4の自重との合力が強hj性体3の
飽和磁化状態における吸引力と均合った状態となると浮
上体4が安定し浮揚する。
5 is a diamagnetic material arranged around the ferromagnetic material 3, and as the magnetic material 5, hismuth, graphite, phosphorus, niobium, Nb3Sn, Nb-Ti, or special organic compounds can be used. . On the other hand, the diamagnetic material 5 generates a weak repulsive force due to the magnet 1, and this repulsive force increases as it approaches the diamagnetic material 5 or the opposing magnetic pole 2, and as will be described later, Strong 1i1? Now cancels the increase in suction power of Sex Vacation 3. Then, when the resultant force of the repulsion by the diamagnetic body 5 and the weight of the floating body 4 becomes balanced with the attractive force of the strong hj body 3 in the saturated magnetization state, the floating body 4 stabilizes and floats.

なお、本例のように1個の磁石1によって上述したよう
な浮上体4の浮揚動作を行わせるためには、強磁性体3
と反磁性体5とを積層状どするかあるいは双方を粒子状
にして混合成形するか、またはいずれかな他方に埋め込
んだり、互いに接着させるようにすれはよい。
In addition, in order to perform the above-described levitation operation of the floating object 4 with one magnet 1 as in this example, the ferromagnetic material 3
The diamagnetic material 5 and the diamagnetic material 5 may be laminated, or they may be mixed and molded into particles, or they may be embedded in one of the other, or they may be adhered to each other.

第2図は本発明の他の実施例を示し 本例は、複数の磁
石10を支持側に配設し、浮上体4の方には中央の磁石
10の磁棒夕4向位置に強磁性体3を、また、周辺部の
磁石10の磁極対向位置に反磁性体5を配置するように
したものであって、全体的に吸引力と反発力どな適切に
調整することか可能となり、特に7?上体の横方向のず
れを補正することか可能となる。
FIG. 2 shows another embodiment of the present invention. In this embodiment, a plurality of magnets 10 are arranged on the support side, and a ferromagnetic magnet is attached to the magnetic bar of the central magnet 10 toward the floating body 4. The diamagnetic material 5 is arranged in the body 3 at a position facing the magnetic pole of the magnet 10 in the peripheral part, and it is possible to appropriately adjust the attractive force and repulsive force as a whole. Especially 7? It becomes possible to correct the lateral deviation of the upper body.

ついて、このように構成した磁気ン?上装置によりて浮
上体の浮揚動作を実施することか可能な原理を、その作
用とあわせて説明する。
So, is there a magnet configured like this? The principle by which the floating body can be floated by the upper device will be explained together with its operation.

いま、強l1TJ性体の場合その磁界の強さHと磁化M
どの間には第3図に示すような特性のあることか知られ
ており、磁界の強さ■1か所定の値Hcを超えると、そ
れ以上では磁化Mの値か一定の飽和値M3て飽和するよ
うにノする。
Now, in the case of a strong l1TJ material, the magnetic field strength H and magnetization M
It is known that there is a characteristic shown in Figure 3 between the magnetic fields, and when the strength of the magnetic field exceeds a predetermined value Hc, the value of magnetization M or a certain saturation value M3 is reached. Noise until saturation.

また、磁場のエネルギーUmは、 Un、=−H・ M          −・・■で表
わされるので物体に働く力Fは F = −gradLJ m =grad(H・M)    °・・■となる。
Also, the energy Um of the magnetic field is expressed as Un, = -H.

なお磁場の形成にあたっては、近年、希土類コバルト磁
石のように強力な磁石か使用可址てあり、臂通の電磁石
あるいは、超伝導マグネット等を用いてもよく、適切な
設計によって強磁性体を飽和させることかできる。
In order to form the magnetic field, in recent years, strong magnets such as rare earth cobalt magnets have become available, and it is also possible to use Otsutsu's electromagnets or superconducting magnets, which can saturate the ferromagnetic material with appropriate design. I can do it.

しかしてその時の磁化Mは M=M5 (一定) となるので吸引力F+は式■から F+ −(Ms grad) H−■ 一方、反磁性体による反発力F−は、 F−=grad(H・xAH)=xAgrad(H2)
= 2 XA  (Hgl’ad ) H”−■なおこ
こて、xA−−10−″<Oてあり、式■と■とは、羊
位体積あたりに働く力を示す。
However, the magnetization M at that time is M=M5 (constant), so the attractive force F+ is calculated from the equation・xAH)=xAgrad(H2)
= 2

そこで、強磁性体と反磁性体の体積比および、磁場勾配
を調整することにより、安定点を作り出すことか可能と
なるもので、以下に第4A図及び第4B図を参照して説
明する。
Therefore, by adjusting the volume ratio of the ferromagnetic material and the diamagnetic material and the magnetic field gradient, it is possible to create a stable point, which will be explained below with reference to FIGS. 4A and 4B.

第4A図において垂直方向を2釉とし、Z軸方向の磁界
の強さH7#’;H2==)(oXZと直線的に強くな
ると仮定する。なお、力Fと磁化Mおよび磁界の強さH
におりるZ軸方向の成分のみを取上げると、 F+−F、Ho        ・・・■F−=2xA
H8′Z     ・・・■なおここて式■は吸引力F
、か飽和領域ては距離に関係なく一定になることを示し
、弐〇は、反発力F−か磁極に近つくにつれて増加する
ことを示す。なお飽和領域より以前では吸引力Fやは第
4B図に示すように磁極に近接するに従い急激に増加す
る。
In Fig. 4A, the vertical direction is assumed to be 2 glazes, and the strength of the magnetic field in the Z-axis direction H7#'; H2==) (assuming that it increases linearly with o H
Taking only the component in the Z-axis direction, F+-F, Ho...■F-=2xA
H8'Z ・・・■The equation here■ is the suction force F
, indicates that the saturation region remains constant regardless of the distance, and 2 indicates that the repulsive force F- increases as it approaches the magnetic pole. Note that before the saturation region, the attractive force F increases rapidly as it approaches the magnetic pole, as shown in FIG. 4B.

そこで、強磁性体および反磁性体の体積をそれぞれV+
および■−とすると、浮上体に使用する力Fは、 F=Vや×Fや+V−xF−・・・■ よって浮上体の垂部−をWとすると、第4B図に示すよ
うにグラフ−にのA点において安定点か存在することに
t2す、これより磁極に近つくと、カFか減少し遠ざか
ると力Fか増えるので、浮上体はこの安定点Aに保持さ
れることに7する。
Therefore, the volumes of the ferromagnetic material and the diamagnetic material are each V+
and ■-, then the force F used on the floating object is F=V, xF, +V-xF-...■ Therefore, if the vertical part of the floating object is W, then the graph shown in Figure 4B is as follows. -There is a stable point at point A at t2.As you get closer to the magnetic pole, the force F decreases, and as you move away from it, the force F increases, so the floating object will be held at this stable point A. 7.

〔発明の効果] 以上詳述したように、未発明によれは、外部制御回路を
用いることなく、無接触で磁気浮上を実現することかで
きる。
[Effects of the Invention] As described in detail above, according to the present invention, magnetic levitation can be realized without using an external control circuit and without contact.

なお、以上の説明では浮上体側に強磁性体と反磁性体と
を設けるようにしたか、これとは反対に浮」二体側に磁
石を設けるようになして浮上体と支持体との関係を逆転
させ、磁石を設りた浮上体側を浮上させることもてきる
。この場合は、強磁性体と反磁性体とによるレール状の
支持体を用いることにより同様にしてリート線の不要な
磁気浮上搬送装置を構成することかできる。
In addition, in the above explanation, the relationship between the floating body and the supporting body is changed by providing a ferromagnetic material and a diamagnetic material on the floating body side, or, conversely, by providing a magnet on the floating body side. It is also possible to reverse the rotation and levitate the floating body side equipped with magnets. In this case, by using a rail-shaped support made of a ferromagnetic material and a diamagnetic material, a magnetically levitated conveyance device that does not require a leet wire can be constructed in the same manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明磁気浮上装置の概要を示す模式図、 第2図は本発明の他の実施例の模式図、第3図は強磁性
体の磁気的特性を示すH−M特性曲線図、 第4A図番J、強磁性体および反bn性体に働く吸引力
F4および反発力F−とその距離との関係を磁界の強さ
■]に関連して示す説明図、第4B図は第4A図に示す
Z軸方向に作用する力FやおよびF−によって、強磁性
体の飽和領域において安定点か得られることを示す説明
図である。 1.10・・・磁石、 2・・・磁極、 3・・・強磁性体、 4・・・浮上体、 5・・・反磁性体。 指定代理人 工業技術院電子技術総合研究所長第1図
Fig. 1 is a schematic diagram showing an overview of the magnetic levitation device of the present invention, Fig. 2 is a schematic diagram of another embodiment of the invention, and Fig. 3 is an H-M characteristic curve showing the magnetic characteristics of a ferromagnetic material. Figure 4A Figure No. J, Explanatory diagram showing the relationship between the attractive force F4 and repulsive force F- acting on ferromagnetic materials and anti-BN materials and their distances in relation to the magnetic field strength ■], Figure 4B FIG. 4A is an explanatory diagram showing that a stable point can be obtained in the saturation region of a ferromagnetic material by the forces F and F- acting in the Z-axis direction shown in FIG. 4A. 1.10... Magnet, 2... Magnetic pole, 3... Ferromagnetic material, 4... Levitating body, 5... Diamagnetic material. Designated Agent Director, Electronics Technology Research Institute, Agency of Industrial Science and Technology Figure 1

Claims (1)

【特許請求の範囲】[Claims]  浮上体および該浮上体を浮揚させる手段のいずれか一
方に強磁性体と反磁性体とを配設し、他方に前記強磁性
体を飽和領域において磁気飽和可能な磁極を有する磁石
を設け、前記飽和領域において、前記磁石により前記強
磁性体を吸引させると共に前記磁性体を反発させて、前
記浮上体を浮揚状態に保つようにしたことを特徴とする
磁気浮上装置。
A ferromagnetic material and a diamagnetic material are disposed on one of the floating body and a means for levitating the floating body, and a magnet having a magnetic pole that can magnetically saturate the ferromagnetic body in a saturation region is disposed on the other, A magnetic levitation device, characterized in that, in a saturation region, the magnet attracts the ferromagnetic material and repels the magnetic material to maintain the floating object in a levitating state.
JP61303446A 1986-12-19 1986-12-19 Magnetic levitation device Expired - Lifetime JPH0752691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61303446A JPH0752691B2 (en) 1986-12-19 1986-12-19 Magnetic levitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61303446A JPH0752691B2 (en) 1986-12-19 1986-12-19 Magnetic levitation device

Publications (2)

Publication Number Publication Date
JPS63155706A true JPS63155706A (en) 1988-06-28
JPH0752691B2 JPH0752691B2 (en) 1995-06-05

Family

ID=17921091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61303446A Expired - Lifetime JPH0752691B2 (en) 1986-12-19 1986-12-19 Magnetic levitation device

Country Status (1)

Country Link
JP (1) JPH0752691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114451749A (en) * 2022-02-21 2022-05-10 深圳市金士吉康复用品科技有限公司 Non-contact type magnetic limiting device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183312A (en) * 1975-01-17 1976-07-21 Mitsubishi Electric Corp Jikikidosochino denjishakusochi
JPS553643A (en) * 1978-06-23 1980-01-11 Sony Corp Object floating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183312A (en) * 1975-01-17 1976-07-21 Mitsubishi Electric Corp Jikikidosochino denjishakusochi
JPS553643A (en) * 1978-06-23 1980-01-11 Sony Corp Object floating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114451749A (en) * 2022-02-21 2022-05-10 深圳市金士吉康复用品科技有限公司 Non-contact type magnetic limiting device and manufacturing method thereof
CN114451749B (en) * 2022-02-21 2024-01-16 深圳市金士吉康复用品科技有限公司 Non-contact magnetic limiting device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0752691B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JP2968999B2 (en) High thrust and high stability magnet-superconductor system
US7859157B2 (en) Magnetic levitation system
CN101115930A (en) Method for stabilising a magnetically levitated object
US6799462B1 (en) Gravimetric measurement method and system
Shirazee et al. Electropermanent suspension system for acquiring large air-gaps to suspend loads
JP3554070B2 (en) Superconducting magnetic bearing device
Kustler Extraordinary levitation height in a weight compensated diamagnetic levitation system with permanent magnets
JPS63155706A (en) Magnetic levitation apparatus
JP4940428B2 (en) Non-contact magnetic levitation method using magnetic material and non-contact magnetic levitation apparatus using the same
JP2801190B2 (en) Magnetic levitation device
Takase et al. Basic study on magnetic levitation system using superconducting coil
JP3185270B2 (en) Magnetic levitation device
JPH02237485A (en) Magnetic levitating apparatus
JP3595567B2 (en) Magnetic levitation device
JPH0745429A (en) Magnetic levitating device
JP2636268B2 (en) Magnetic levitation device
JPH05272539A (en) Superconducting magnetic bearing device
KR102429302B1 (en) A linear active magnetic bearing
Sumida et al. Propulsion characteristics using pinned flux of the HTS in the permanent magnet–HTS hybrid magnetically levitated conveyance system
JPH0530328Y2 (en)
Murakami Applications of bulk high temperature superconductors
JPS63310304A (en) Magnetic levitation device
JP2646510B2 (en) Oxide superconducting magnet
JPH05336614A (en) Superconducting magnetic bearing carrier
RU1340519C (en) Method of magnetic suspending superconducting turn

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term