JP2001210519A - Method for magnetizing oxide superconducting material and magnetizing device - Google Patents

Method for magnetizing oxide superconducting material and magnetizing device

Info

Publication number
JP2001210519A
JP2001210519A JP2000018475A JP2000018475A JP2001210519A JP 2001210519 A JP2001210519 A JP 2001210519A JP 2000018475 A JP2000018475 A JP 2000018475A JP 2000018475 A JP2000018475 A JP 2000018475A JP 2001210519 A JP2001210519 A JP 2001210519A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetizing
superconductor
superconducting
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000018475A
Other languages
Japanese (ja)
Other versions
JP4283406B2 (en
Inventor
Mitsuru Morita
充 森田
Yoshio Hirano
芳生 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000018475A priority Critical patent/JP4283406B2/en
Publication of JP2001210519A publication Critical patent/JP2001210519A/en
Application granted granted Critical
Publication of JP4283406B2 publication Critical patent/JP4283406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device that readily magnetizes an oxide superconducting bulk magnet. SOLUTION: The magnetizing method and magnetizing device that magnetizes by removing the external magnetic field after having realized a superconducting state, in a state such that an external magnetic field is concentrated on the central part of an oxide superconducting bulk material, or the external magnetic field is concentrated on the inside of a ring-shaped oxide superconducting bulk material. As a result, a high magnetic flux density is acquired inside the oxide superconducting material, and a bulk magnet generating a strong magnetic field is readily realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バルク形態を有す
る超伝導体マグネットの着磁方法およびその着磁装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for magnetizing a superconductor magnet having a bulk form and a magnetizing apparatus therefor.

【0002】[0002]

【従来の技術】溶融法で製造されるRE系バルク超伝導材
料は、高い臨界電流密度を有するために、磁場中冷却や
パルス着磁により励磁され、バルクマグネットととして
使用され、超伝導モーター(Y,Itoh等,Jpn J. Appl. Ph
ys., Vol.34, 5574(1995))、超伝導磁場発生装置等へ
の応用が検討されている。
2. Description of the Related Art RE-based bulk superconducting materials produced by a melting method are excited by cooling in a magnetic field or pulse magnetization, and used as a bulk magnet because of having a high critical current density. Y, Itoh et al., Jpn J. Appl. Ph
ys., Vol. 34, 5574 (1995)), and applications to superconducting magnetic field generators and the like are being studied.

【0003】生田らは、磁場中冷却により着磁した直径
36mmの円柱形Sm系バルク超伝導体を用いて、最大1.5T
程度の磁場を発生できるバルクマグネットについて報告
している(日本磁気学会誌 Vol.23, No.4-1(1999))。
また、Y.Itoh等は、Y系バルク超伝導材料を用い、パル
ス着磁と磁場中冷却による着磁を比較検討している(Jp
n J. Appl. Phys., Vol.34, 5574(1995))。森田らは、
超伝導マグネット中で直径約60mmのバルク材料を用い、
40Kにおいて約4.5Tの磁場を発生させている(日本応用
磁気学会誌Vol.19, No.3 (1995))。
[0003] Ikuta et al. Reported that the diameter was
1.5T maximum using 36mm cylindrical Sm-based bulk superconductor
We report a bulk magnet that can generate a magnetic field of about the same level (Journal of the Magnetic Society of Japan, Vol.23, No.4-1 (1999)).
Y. Itoh et al. Also compared pulse magnetization and magnetization by cooling in a magnetic field using Y-based bulk superconducting materials (Jp.
n J. Appl. Phys., Vol. 34, 5574 (1995)). Morita et al.
Using a bulk material with a diameter of about 60 mm in a superconducting magnet,
A magnetic field of about 4.5 T is generated at 40 K (Journal of the Japan Society of Applied Magnetics, Vol. 19, No. 3 (1995)).

【0004】RE系バルク材料のパルス着磁に関しては、
特開平6-20837において磁束跳躍をともなうパルス着磁
が、また特開平6-168823、特開平10-12429等においては
冷却方法も含めた着磁方法について記載されている。以
上のように、RE系バルク超伝導体は、超伝導および常伝
導電磁石やパルスマグネットにより着磁され、マグネッ
トとしての応用が検討されている。
[0004] Regarding pulse magnetization of RE bulk material,
JP-A-6-20837 describes pulse magnetization with magnetic flux jumping, and JP-A-6-168823 and JP-A-10-12429 describe a magnetization method including a cooling method. As described above, RE-based bulk superconductors are magnetized by superconducting and normal conducting electromagnets or pulse magnets, and their application as magnets is being studied.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、着磁の
ための超伝導マグネットやパルス着磁装置は、高価であ
り、かつ、取り扱い方法も容易ではないと言う問題があ
った。そこで、本発明は、常伝導電磁石や永久磁石のよ
うに比較的安価で取り扱いも容易な磁場発生装置を用い
たとしても比較的容易に着磁できる方法および着磁装置
を提供することを目的とする。
However, there is a problem that a superconducting magnet or a pulse magnetizing device for magnetizing is expensive and the handling method is not easy. Accordingly, an object of the present invention is to provide a method and a magnetizing device that can be magnetized relatively easily even when a relatively inexpensive and easy-to-handle magnetic field generator such as a normal conducting electromagnet or a permanent magnet is used. I do.

【0006】[0006]

【課題を解決するための手段】通常、磁場発生用電磁石
は均一磁場を発生するために、ポールピースの形状が工
夫されている。また、パルス磁場マグネットは、ソレノ
イドコイルになっており、ソレノイドコイルの内側はほ
ぼ均一磁場になっているが、幾分外側の磁場が強くなる
傾向にある。
Generally, the shape of a pole piece of a magnetic field generating electromagnet is devised in order to generate a uniform magnetic field. Further, the pulse magnetic field magnet is a solenoid coil. The inside of the solenoid coil has a substantially uniform magnetic field, but the outside magnetic field tends to be somewhat strong.

【0007】前述の問題点を解決するために鋭意検討し
た結果、均一磁場中に超伝導体を配置して着磁するので
はなく、強い磁束密度を発生する超伝導体の中心部分に
極端に磁束を集中させることによって、着磁がより容易
にかつ効果的に行えることを見出し、本発明を完成させ
たものである。
As a result of intensive studies to solve the above-mentioned problems, the superconductor is not arranged in a uniform magnetic field and magnetized, but is extremely positioned at the center of the superconductor which generates a strong magnetic flux density. It has been found that the magnetization can be more easily and effectively performed by concentrating the magnetic flux, and the present invention has been completed.

【0008】即ち、本発明は、以下の内容を要旨とする
ものである。 (1) 超伝導体の着磁方法において、超伝導体の中心
部(内側)に外部磁場を集中させた不均一磁場中で、超
伝導状態を実現した後、外部磁場を取り除き着磁を行う
ことで、磁束密度が高くなる超伝導体の中心部に効率よ
く着磁させることができる。不均一磁場の目安として
は、通常の電磁石のポールピース形状では得られない不
均一のレベルとして、超伝導体の外周部分の磁束密度と
中心部分の磁束密度の比が2:3以上であることが望まし
い。さらに望ましくは、1:2以上である。
That is, the present invention has the following contents. (1) In a superconductor magnetizing method, after realizing a superconducting state in a non-uniform magnetic field in which an external magnetic field is concentrated at the center (inside) of the superconductor, the external magnetic field is removed and magnetization is performed. Thereby, it is possible to efficiently magnetize the central portion of the superconductor having a high magnetic flux density. As a guideline for the inhomogeneous magnetic field, the ratio of the magnetic flux density at the outer peripheral part to the magnetic flux density at the central part of the superconductor is 2: 3 or more as an inhomogeneous level that cannot be obtained with the pole piece shape of ordinary electromagnet Is desirable. More preferably, it is 1: 2 or more.

【0009】(2) リング形状を有する超伝導体の着
磁方法においては、リング状超伝導の内側に外部磁場を
集中させた不均一磁場中で、超伝導状態を実現した後、
外部磁場を取り除くことでより効率よく着磁を行える。
リング形状の超伝導バルクマグネットは、リング内部に
比較的均一な磁場分布を実現しやすいことから、その有
用性は特に大きい。不均一磁場の目安としては、通常の
電磁石のポールピース形状では得られない不均一のレベ
ルとして、リング状超伝導体の外周部分の磁束密度とリ
ングの内側部分の磁束密度の比が2:3以上であることが
望ましい。さらに望ましくは、1:2以上である。
(2) In the method of magnetizing a superconductor having a ring shape, a superconducting state is realized in an inhomogeneous magnetic field in which an external magnetic field is concentrated inside a ring-shaped superconductor.
By removing the external magnetic field, the magnetization can be performed more efficiently.
The usefulness of the ring-shaped superconducting bulk magnet is particularly large because it is easy to realize a relatively uniform magnetic field distribution inside the ring. As a guide for the inhomogeneous magnetic field, the ratio of the magnetic flux density of the outer peripheral part of the ring-shaped superconductor to the magnetic flux density of the inner part of the ring is 2: 3. It is desirable that this is the case. More preferably, it is 1: 2 or more.

【0010】(3) 上記(1)または(2)の着磁方
法において、超伝導体の外径よりも細い強磁性体を超伝
導体の対向する側面(表裏両側面)、または、リング状
の超伝導体の場合、リングの内側に配置することによ
り、外部磁場を集中させることによって容易に上記不均
一磁場を形成することが可能となる。
(3) In the magnetizing method according to the above (1) or (2), the ferromagnetic material thinner than the outer diameter of the superconductor is formed by opposing side surfaces (both front and back surfaces) or a ring shape of the superconductor. In the case of the superconductor described above, by disposing it inside the ring, it is possible to easily form the above-mentioned inhomogeneous magnetic field by concentrating the external magnetic field.

【0011】(4) 上記(3)のような着磁方法を行
うことで、磁気回路である強磁性体と超伝導体とが実質
的に鎖交した状態で超伝導体を冷却することにより超伝
導状態を実現することで、効果的な着磁が可能となる。
また、リング形状のバルク超伝導材料の内側に強磁性体
を挿入し閉磁気回路を構成することによって、十分な鎖
交状態が実現できる。
(4) By performing the magnetization method as described in (3) above, the superconductor is cooled in a state where the ferromagnetic material as the magnetic circuit and the superconductor are substantially linked. The realization of the superconducting state enables effective magnetization.
Further, by inserting a ferromagnetic material inside the ring-shaped bulk superconducting material to form a closed magnetic circuit, a sufficient interlinked state can be realized.

【0012】(5) 着磁する超伝導体が臨界電流密度
の高いREBa2Cu3O7-x系超伝導体(ここでREはYを含む希
土類元素の1種類又はその組み合わせ)である(1)〜
(4)記載の着磁方法より高性能のバルクマグネットが
実現できる。
(5) The superconductor to be magnetized is a REBa 2 Cu 3 O 7-x superconductor having a high critical current density (here, RE is one kind of rare earth element including Y or a combination thereof) ( 1) ~
(4) A bulk magnet with higher performance than the magnetizing method described can be realized.

【0013】(6) 強磁性体からなる磁気回路とポー
ルピースを有し、超伝導体の挿入を可能とするためのポ
ールピース間のギャップの調整機構があり、かつポール
ピース中央部に凸部を有することで、この凸部に磁束を
集中させ不均一磁場を発生させうる磁場発生装置は、上
記(1)〜(5)記載の不均一磁場を発生させるための
磁場発生装置として適している。
(6) It has a magnetic circuit made of a ferromagnetic material and a pole piece, has a mechanism for adjusting the gap between the pole pieces to enable insertion of a superconductor, and has a projection at the center of the pole piece. The magnetic field generator capable of generating a non-uniform magnetic field by concentrating the magnetic flux on the protrusion by having the magnetic field is suitable as the magnetic field generator for generating the non-uniform magnetic field described in the above (1) to (5). .

【0014】(7) また、上記(6)の磁場発生装置
の中でも、磁気回路が実質的に閉回路を構成しうること
を特徴とする着磁装置は、磁気抵抗が小さいため高い磁
束密度を実現しやすく、特にリング形状のバルクマグネ
ットの着磁に適している。 (8) 磁気回路が永久磁石と強磁性体から構成された
上記(7)の磁場発生装置は、電源を必要とせず、安価
に着磁装置が実現できる。
(7) Among the magnetic field generators of the above (6), the magnetizing device characterized in that the magnetic circuit can substantially constitute a closed circuit has a high magnetic flux density due to its small magnetic resistance. It is easy to realize, and is particularly suitable for magnetizing a ring-shaped bulk magnet. (8) The magnetic field generator of the above (7), in which the magnetic circuit is composed of a permanent magnet and a ferromagnetic material, does not require a power source and can realize a magnetizing device at low cost.

【0015】[0015]

【発明の実施の形態】バルクマグネットとなる超伝導体
は、REBa2Cu3O7-x相(ここでREはYを含む希土類元素の
1種類又はその組み合わせ)中に、RE2BaCuO5またはRE4
Ba2Cu2O10が分散した微細組織を有する酸化物超伝導材
料であり、かつ結晶粒界を含まない単一粒の材料を用い
ることが望ましい。さらに、大きな超伝導電流が流せる
REBa2Cu3O7-x相のa-b面に対し、垂直に磁束が貫くよう
な配置で着磁することが望ましい。リング形状材料の場
合、リングの軸とc軸および磁束の方向が一致すること
が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A superconductor serving as a bulk magnet contains RE 2 BaCuO 5 or RE 2 BaCuO 5 in a REBa 2 Cu 3 O 7-x phase (where RE is one or a combination of rare earth elements including Y). RE 4
It is desirable to use a single-grain material that is an oxide superconducting material having a microstructure in which Ba 2 Cu 2 O 10 is dispersed and does not include a crystal grain boundary. In addition, large superconducting current can flow
It is desirable to magnetize the REBa 2 Cu 3 O 7-x phase in such an arrangement that the magnetic flux penetrates perpendicularly to the ab plane. In the case of a ring-shaped material, it is desirable that the axis of the ring coincides with the c-axis and the direction of the magnetic flux.

【0016】磁気回路を構成する強磁性体および超伝導
体の中心部に不均一磁場を形成するための強磁性体に
は、純鉄、珪素鋼等の鉄系合金や、Co系合金、Ni系合金
等が挙げられる。磁場発生装置としては電磁石だけでな
く永久磁石も使用できる。この場合の永久磁石には、Sm
Co系磁石やNdFeB系の磁石があげられる。
The ferromagnetic material constituting the magnetic circuit and the ferromagnetic material for forming an inhomogeneous magnetic field at the center of the superconductor include iron-based alloys such as pure iron and silicon steel, Co-based alloys, and Ni-based alloys. Alloys and the like. As the magnetic field generator, not only an electromagnet but also a permanent magnet can be used. In this case, the permanent magnet
Co-based magnets and NdFeB-based magnets can be used.

【0017】本発明は、超伝導マグネットやパルス着磁
装置等の着磁装置に対しても有効であり、それらの性能
をより着磁に適するようにする働きを有する。したがっ
て、本発明は、常伝導電磁石や永久磁石のように比較的
安価で取り扱いも容易な磁場発生装置に限定されるもの
ではない。
The present invention is also effective for magnetizing devices such as superconducting magnets and pulse magnetizing devices, and has a function of making their performance more suitable for magnetizing. Therefore, the present invention is not limited to a relatively inexpensive and easy-to-handle magnetic field generator, such as a normal electromagnet or a permanent magnet.

【0018】[0018]

【実施例】(実施例1)SmBa2Cu3O7-x相中に1μm程度の
Sm2BaCuO5相および50〜500μmの銀が分散した組織を有
する円柱状(外径58mm、厚さ15mm)のY系超伝導バルク
材料を用い、常伝導電磁石を用いて着磁実験を行った。
円柱の軸と123相のc軸は、ほぼ一致させ た。電磁石の
ポールピース間のギャップは39mmに設定し、直径28mm、
長さ10mmの純鉄製の円柱をポールピース中央部に配置
し、磁気回路構成した。着磁用電磁石1、超伝導体4、
保冷容器5、純鉄製円柱3およびポールピース2との位
置関係を図1に示す。矢印はポールピースのギャップを
調節するための移動個所を示す。
EXAMPLES (Example 1) About 1 μm of SmBa 2 Cu 3 O 7-x phase
Magnetization experiments were performed using a normal-conducting electromagnet using a cylindrical (58 mm outside diameter, 15 mm thick) Y-based superconducting bulk material having a structure in which Sm 2 BaCuO 5 phase and 50 to 500 μm silver were dispersed. .
The axis of the cylinder and the c-axis of the 123 phase almost coincided. The gap between the pole pieces of the electromagnet is set to 39 mm, the diameter is 28 mm,
A pure iron cylinder with a length of 10 mm was placed in the center of the pole piece to form a magnetic circuit. Magnetizing electromagnet 1, superconductor 4,
FIG. 1 shows the positional relationship between the cold storage container 5, the pure iron column 3, and the pole piece 2. The arrow indicates the moving point for adjusting the gap of the pole piece.

【0019】この状態で磁束分布を測定したところ、試
料中心部で磁束密度が1.8T程度であり、超伝導リングの
外周付近では1.3Tであることから、超伝導体の中心部
分に磁束が集中した不均一磁場ができていることが分か
る。この様な磁場中で、上記超伝導体を液体窒素を用い
約77Kに冷却し、しかる後、外部磁場を除去し、さらに
ポールピースのギャップを開き、超伝導体を取り出し
た。続いて、超伝導体の中央部で磁束密度を測定したと
ころ、約1.7Tの磁場を発生していることが分かった。
When the magnetic flux distribution was measured in this state, the magnetic flux density was about 1.8 T at the center of the sample and 1.3 T near the outer periphery of the superconducting ring. Therefore, the magnetic flux was concentrated at the center of the superconductor. It can be seen that an inhomogeneous magnetic field is formed. In such a magnetic field, the above-mentioned superconductor was cooled to about 77K using liquid nitrogen. Thereafter, the external magnetic field was removed, the gap of the pole piece was opened, and the superconductor was taken out. Subsequently, when the magnetic flux density was measured at the center of the superconductor, it was found that a magnetic field of about 1.7 T was generated.

【0020】次に比較例として、同じ超伝導体および常
伝導電磁石を用いて、電磁石のポールピース間のギャッ
プを19mmとし、純鉄製円柱を用いずに同様の着磁実験を
行った。着磁後、超伝導リング材料の内部中央部で磁束
密度を測定したところ、約1.55Tの磁場を発生している
ことが分かった。上記実験結果から、純鉄製円柱を用い
て磁場を中心部に集中させて着磁することにより、より
強力な磁場を発生することができる超伝導バルクマグネ
ットができることが確認できた。
Next, as a comparative example, a similar magnetizing experiment was performed using the same superconductor and normal electromagnet, with the gap between the pole pieces of the electromagnet set to 19 mm, and without using a pure iron cylinder. After magnetization, the magnetic flux density was measured at the center of the superconducting ring material, and it was found that a magnetic field of about 1.55T was generated. From the above experimental results, it was confirmed that a superconducting bulk magnet capable of generating a stronger magnetic field can be obtained by concentrating and magnetizing the magnetic field at the center using a pure iron cylinder.

【0021】(実施例2)YBa2Cu3O7-x相中に1μm程度
のY2BaCuO5相が分散した組織を有するリング形状(外径
48mm、内径20mm、厚さ15mm)のY系超伝導バルク材料を
用い常伝導電磁石を用いて着磁実験を行った。リングの
軸と123相のc軸は、ほぼ一致しており、直 径14mm、長
さ25mmの純鉄製の円柱をリング内に挿入し、かつポール
ピース間のギャップが可変である電磁石のポールピース
間に配置し、磁気的な閉回路構成しかつ、超伝導材料と
磁束がほとんど鎖交するようにした。着磁用電磁石1、
超伝導リング6、保冷容器5、純鉄製円柱3およびポー
ルピースとの位置関係を図2に示す。
Example 2 A ring shape (outer diameter) having a structure in which a Y 2 BaCuO 5 phase of about 1 μm is dispersed in a YBa 2 Cu 3 O 7-x phase
Magnetization experiments were performed using a Y-type superconducting bulk material (48 mm, inner diameter 20 mm, thickness 15 mm) using a normal conduction electromagnet. The axis of the ring and the c-axis of the 123 phase are almost coincident, a pure iron cylinder with a diameter of 14 mm and a length of 25 mm is inserted into the ring, and the gap between the pole pieces is variable. A magnetically closed circuit was arranged between them, and the superconducting material and the magnetic flux almost interlinked. Magnetizing electromagnet 1,
FIG. 2 shows the positional relationship among the superconducting ring 6, the cool container 5, the pure iron cylinder 3, and the pole piece.

【0022】また、図2中記載の磁束密度測定点7で
の、軸方向成分磁束密度分布を図3に示す。この磁束分
布からリング内部で平均磁束密度が2.5T程度であり、超
伝導リングの外周付近では1.0Tであることから、超伝
導体の中心部分に磁束が集中した不均一磁場ができてい
ることが分かる。この様な磁場中で、上記超伝導体を液
体窒素を用い減圧することで約67Kに冷却し、しかる
後、外部磁場を除去し、さらにポールピースのギャップ
を開き、超伝導リング材を取り出した。続いて、純鉄製
円柱を取り除き超伝導リング材料の内部中央部で磁束密
度を測定したところ、約2.2Tの磁場を発生していること
が分かった。
FIG. 3 shows the axial component magnetic flux density distribution at the magnetic flux density measuring point 7 shown in FIG. From this magnetic flux distribution, the average magnetic flux density is about 2.5T inside the ring and 1.0T near the outer circumference of the superconducting ring, so that an inhomogeneous magnetic field where the magnetic flux is concentrated at the center of the superconductor is created. I understand. In such a magnetic field, the superconductor was cooled down to about 67K by decompressing it using liquid nitrogen.After that, the external magnetic field was removed, the gap of the pole piece was opened, and the superconducting ring material was taken out. . Subsequently, the pure iron cylinder was removed, and the magnetic flux density was measured at the center of the superconducting ring material. As a result, it was found that a magnetic field of about 2.2 T was generated.

【0023】次に比較例として、同じリング材料および
常伝導電磁石を用いて、純鉄製円柱を用いずに同様の着
磁実験を行った。着磁後、超伝導リング材料の内部中央
部で磁束密度を測定したところ、約1.1Tの磁場を発生し
ていることが分かった。上記実験結果から、純鉄製円柱
をリング形状超伝導材料中に挿入して着磁することによ
り、より強力な磁場を発生することができる超伝導バル
クマグネットができることが確認できた。
Next, as a comparative example, a similar magnetization experiment was performed using the same ring material and normal-conducting electromagnet without using a pure iron cylinder. After magnetization, the magnetic flux density was measured at the center of the inside of the superconducting ring material, and it was found that a magnetic field of about 1.1 T was generated. From the above experimental results, it was confirmed that a superconducting bulk magnet capable of generating a stronger magnetic field can be obtained by inserting a pure iron cylinder into a ring-shaped superconducting material and magnetizing it.

【0024】(実施例3)SmBa2Cu3O7-x相中に1μm程度
のSm2BaCuO5相および50〜500μmの銀が分散した組織を
有するリング形状(外径52mm、内径22mm、厚さ12mm)の
Sm系超伝導バルク材料を用い常伝導電磁石を用いて着磁
実験を行った。リングの軸と123相のc軸は、ほぼ一致
しており、直径12mm、長さ20mmの純鉄製の円柱をリング
内に挿入し、かつポールピース間のギャップが可変であ
る電磁石のポールピース間に配置し、磁気的な閉回路構
成しかつ、超伝導材料と磁束がほとんど鎖交するように
した。
(Example 3) A ring shape having a structure in which Sm 2 BaCuO 5 phase of about 1 μm and silver of 50 to 500 μm are dispersed in the SmBa 2 Cu 3 O 7-x phase (outer diameter 52 mm, inner diameter 22 mm, thickness 12mm)
Magnetization experiments were performed using Sm-based superconducting bulk materials and normal-conducting electromagnets. The axis of the ring and the c-axis of the 123 phase are almost coincident. Insert a pure iron cylinder with a diameter of 12 mm and a length of 20 mm into the ring, and change the gap between the pole pieces. And a magnetic closed circuit is formed, and the superconducting material and the magnetic flux almost interlink.

【0025】着磁用電磁石、超伝導リング、保冷容器お
よび純鉄製円柱との位置関係は図2とほぼ同じである。
また、図2中記載の磁束密度測定点での、軸方向成分磁
束密度は、リング内部で平均2.7T程度であり、超伝導リ
ングの外周付近では1.3Tであることから、超伝導体の中
心部分に磁束が集中した不均一磁場ができていることが
分かる。この様な磁場中で、冷凍機により保冷容器中の
上記超伝導体を約50Kに冷却し、しかる後、外部磁場を
除去し、さらにポールピースのギャップを開き、超伝導
リング材を取り出した。続いて、純鉄製円柱を取り除き
超伝導リング材料の内部中央部で磁束密度を測定したと
ころ、約2.4Tの磁場を発生していることが分かった。
The positional relationship among the magnetizing electromagnet, the superconducting ring, the cold storage container, and the pure iron cylinder is substantially the same as in FIG.
In addition, the axial component magnetic flux density at the magnetic flux density measurement point shown in FIG. 2 is about 2.7 T on the average inside the ring and 1.3 T near the outer periphery of the superconducting ring. It can be seen that an inhomogeneous magnetic field in which the magnetic flux is concentrated at the portion is formed. In such a magnetic field, the superconductor in the cool container was cooled to about 50K by a refrigerator, and thereafter, the external magnetic field was removed, the gap of the pole piece was opened, and the superconducting ring material was taken out. Subsequently, the pure iron cylinder was removed, and the magnetic flux density was measured at the central part inside the superconducting ring material. As a result, it was found that a magnetic field of about 2.4 T was generated.

【0026】次に、比較例として、同じリング材料およ
び常伝導電磁石を用いて、純鉄製円柱を用いずに同様の
着磁実験を行った。着磁後、超伝導リング材料の内部中
央部で磁束密度を測定したところ、約1.3Tの磁場を発生
していることが分かった。上記実験結果から、純鉄製円
柱をリング形状超伝導材料中に挿入して着磁することに
より、より強力な磁場を発生することができる超伝導バ
ルクマグネットができることが確認できた。
Next, as a comparative example, a similar magnetization experiment was performed using the same ring material and normal electromagnet without using a pure iron cylinder. After magnetization, the magnetic flux density was measured at the center of the inside of the superconducting ring material, and it was found that a magnetic field of about 1.3 T was generated. From the above experimental results, it was confirmed that a superconducting bulk magnet capable of generating a stronger magnetic field can be obtained by inserting a pure iron cylinder into a ring-shaped superconducting material and magnetizing it.

【0027】(実施例4)(Gd0.5Sm0.5)Ba2Cu3O7-x相中
に1μm程度の(Gd0.5Sm0.5)2BaCuO5相および50〜500μm
の銀が分散した組織を有するリング形状(外径50mm、内
径16mm、厚さ10mm)のGd-Sm系超伝導バルク材料2個に対
して、永久磁石(FeNdB系)と磁気回路から構 成される常
伝導磁石を用いて、着磁実験を行った。このとき用いた
Gd-Sm系超伝 導バルク材料2個は、ほぼ同じ特性を有し
ていた。リングの軸と123相のc軸は、ほぼ一致してお
り、直径16mm、長さ25mmの純鉄製の円柱をリング内に挿
入し、かつポールピース間のギャップが可変である電磁
石のポールピース間に配置し、磁気的な閉回路構成し、
かつ、超伝導材料と磁束がほとんど鎖交するようにし
た。
(Example 4) In the (Gd 0.5 Sm 0.5 ) Ba 2 Cu 3 O 7-x phase, about 1 μm of (Gd 0.5 Sm 0.5 ) 2 BaCuO 5 phase and 50 to 500 μm
It consists of a permanent magnet (FeNdB system) and a magnetic circuit for two Gd-Sm-based superconducting bulk materials (50 mm outside diameter, 16 mm inside diameter, 10 mm thickness) with a structure in which silver is dispersed. A magnetizing experiment was performed using a normal magnet. Used at this time
The two Gd-Sm superconducting bulk materials had almost the same properties. The axis of the ring and the c-axis of the 123 phase are almost coincident. Insert a pure iron cylinder with a diameter of 16 mm and a length of 25 mm into the ring, and change the gap between the pole pieces. To form a magnetically closed circuit,
In addition, the superconducting material and the magnetic flux are almost linked.

【0028】着磁用電磁石、超伝導リング、保冷容器お
よび純鉄製円柱との位置関係は図2とほぼ同じである。
また、図2中記載の磁束密度測定点での、軸方向成分磁
束密度は、リング内部で平均1.8T程度であり、超伝導リ
ングの外周付近では0.7Tであることから、超伝導体の中
心部分に磁束が集中した不均一磁場ができていることが
分かる。この様な磁場中で、液体窒素を保冷容器中に投
入することにより、上記超伝導体を約77Kに冷却し、し
かる後、外部磁場を除去し、さらにポールピースのギャ
ップを開き、超伝導リング材を取り出した。続いて、純
鉄製円柱を取り除き超伝導リング材料の内部中央部で磁
束密度を測定したところ、約1.7Tの磁場を発生している
ことが分かった。
The positional relationship among the magnetizing electromagnet, the superconducting ring, the cool container, and the pure iron cylinder is almost the same as in FIG.
In addition, the axial component magnetic flux density at the magnetic flux density measurement point shown in FIG. 2 is about 1.8 T on the average inside the ring and 0.7 T near the outer periphery of the superconducting ring. It can be seen that an inhomogeneous magnetic field in which the magnetic flux is concentrated at the portion is formed. In such a magnetic field, liquid nitrogen is poured into a cold container to cool the superconductor to about 77K, and thereafter, the external magnetic field is removed, and the gap of the pole piece is further opened, and the superconducting ring is opened. The material was taken out. Subsequently, the pure iron cylinder was removed, and the magnetic flux density was measured at the central portion inside the superconducting ring material. As a result, it was found that a magnetic field of about 1.7 T was generated.

【0029】次に、比較例として、同じリング材料およ
び常伝導磁石を用いて、純鉄製円柱を用いずに同様の着
磁実験を行った。着磁後、超伝導リング材料の内部中央
部で磁束密度を測定したところ、約0.8Tの磁場を発生し
ていることが分かった。上記実験結果から、純鉄製円柱
をリング形状超伝導材料中に挿入して着磁することによ
り、より強力な磁場を発生することができる超伝導バル
クマグネットができることが確認できた。
Next, as a comparative example, a similar magnetization experiment was performed using the same ring material and normal magnet without using a pure iron cylinder. After magnetization, the magnetic flux density was measured at the center of the superconducting ring material, and it was found that a magnetic field of about 0.8 T was generated. From the above experimental results, it was confirmed that a superconducting bulk magnet capable of generating a stronger magnetic field can be obtained by inserting a pure iron cylinder into a ring-shaped superconducting material and magnetizing it.

【0030】[0030]

【発明の効果】本願発明は、簡便に効率よく超伝導体に
着磁をする方法および着磁する装置を提供するものであ
り、高磁界を発生するバルク超伝導マグネットをより簡
便に実現し得ることから、通常の永久磁石では得られな
い高磁界を発生でき、その工業的効果は甚大である。
The present invention provides a method and apparatus for easily and efficiently magnetizing a superconductor, and can more easily realize a bulk superconducting magnet that generates a high magnetic field. Therefore, a high magnetic field that cannot be obtained with a normal permanent magnet can be generated, and the industrial effect is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いた着磁装置の概略図FIG. 1 is a schematic diagram of a magnetizing device used in Example 1.

【図2】実施例2〜4で用いた着磁装置の概略図FIG. 2 is a schematic view of a magnetizing device used in Examples 2 to 4.

【図3】実施例2におけるポールピース間の磁束密度分
布図
FIG. 3 is a magnetic flux density distribution diagram between pole pieces according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 電磁石のコイル 2 ギャップ調整機構を有する磁石のポールピース 3 純鉄等の強磁性体製円柱 4 超伝導材料 5 保冷容器 6 リング形状の超伝導材料 7 磁束密度測定点 REFERENCE SIGNS LIST 1 Electromagnetic coil 2 Magnet pole piece having gap adjusting mechanism 3 Ferromagnetic cylinder such as pure iron 4 Superconducting material 5 Cooling container 6 Ring-shaped superconducting material 7 Magnetic flux density measurement point

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超伝導体の着磁方法において、超伝導体
の中心部(内側)に外部磁場を集中させた不均一磁場中
で、超伝導状態を実現した後、外部磁場を取り除くこと
で着磁を行うことを特徴とする着磁方法。
In a method for magnetizing a superconductor, a superconducting state is realized in an inhomogeneous magnetic field in which an external magnetic field is concentrated at the center (inside) of the superconductor, and then the external magnetic field is removed. A magnetization method characterized by performing magnetization.
【請求項2】 リング形状を有する超伝導体の着磁方法
において、リング状超伝導体の内側に外部磁場を集中さ
せた不均一磁場中で、超伝導状態を実現した後、外部磁
場を取り除くことで着磁を行うことを特徴とする着磁方
法。
2. A method for magnetizing a superconductor having a ring shape, wherein after the superconducting state is realized in a non-uniform magnetic field in which an external magnetic field is concentrated inside the ring-shaped superconductor, the external magnetic field is removed. A magnetizing method characterized in that the magnetizing is performed by the following.
【請求項3】 請求項1または2に記載の着磁方法にお
いて、超伝導体の外径よりも細い強磁性体を超伝導体の
側面または内部に配置することにより外部磁場を集中さ
せることを特徴とする着磁方法。
3. The magnetizing method according to claim 1, wherein an external magnetic field is concentrated by disposing a ferromagnetic material having a diameter smaller than the outer diameter of the superconductor on the side surface or inside the superconductor. Characteristic magnetization method.
【請求項4】 請求項3記載の着磁方法において、磁気
回路である強磁性体と超伝導体とが実質的に鎖交した状
態で超伝導状態を実現することを特徴とする着磁方法。
4. The magnetizing method according to claim 3, wherein the superconducting state is realized in a state where the ferromagnetic material and the superconductor, which are magnetic circuits, are substantially linked. .
【請求項5】 超伝導体がREBa2Cu3O7-x系超伝導体(こ
こでREはYを含む希土類元素の1種類又はその組み合わ
せ)であることを特徴とする請求項1〜4の何れかに記
載の着磁方法。
5. The superconductor is a REBa 2 Cu 3 O 7-x- based superconductor (where RE is one kind of rare earth element containing Y or a combination thereof). The magnetizing method according to any one of the above.
【請求項6】 超伝導体の着磁方法に用いる磁場発生装
置において、強磁性体からなる磁気回路とポールピース
を有し、被着磁体を挿入するためにポールピース間のギ
ャップが調整機構があり、かつポールピース中央部に凸
部を有することでこの凸部に磁束を集中させ不均一磁場
を発生させうることを特徴とする着磁装置。
6. A magnetic field generator for use in a method for magnetizing a superconductor, comprising a magnetic circuit made of a ferromagnetic material and a pole piece, wherein a gap between the pole pieces is adjusted by a mechanism for inserting a magnetic body. A magnetizing device characterized in that it has a convex portion in the center of the pole piece and can concentrate a magnetic flux on the convex portion to generate a non-uniform magnetic field.
【請求項7】 請求項6の着磁装置において、磁気回路
が実質的に閉回路を構成しうることを特徴とする着磁装
置。
7. The magnetizing device according to claim 6, wherein the magnetic circuit can form a substantially closed circuit.
【請求項8】 磁気回路が永久磁石と強磁性体から構成
された、請求項7記載の着磁装置。
8. The magnetizing device according to claim 7, wherein the magnetic circuit includes a permanent magnet and a ferromagnetic material.
JP2000018475A 2000-01-27 2000-01-27 Method and apparatus for magnetizing oxide superconducting material Expired - Fee Related JP4283406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018475A JP4283406B2 (en) 2000-01-27 2000-01-27 Method and apparatus for magnetizing oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018475A JP4283406B2 (en) 2000-01-27 2000-01-27 Method and apparatus for magnetizing oxide superconducting material

Publications (2)

Publication Number Publication Date
JP2001210519A true JP2001210519A (en) 2001-08-03
JP4283406B2 JP4283406B2 (en) 2009-06-24

Family

ID=18545321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018475A Expired - Fee Related JP4283406B2 (en) 2000-01-27 2000-01-27 Method and apparatus for magnetizing oxide superconducting material

Country Status (1)

Country Link
JP (1) JP4283406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111213A (en) * 1993-10-13 1995-04-25 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Composite body of high-temperature superconducting bulk body and coil magnet
JPH11284238A (en) * 1998-03-27 1999-10-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating element
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2000133849A (en) * 1998-10-27 2000-05-12 Aisin Seiki Co Ltd Magnetizing method of superconductor
JP3872751B2 (en) * 2002-12-13 2007-01-24 新日本製鐵株式会社 Superconducting magnet and its manufacturing method and magnetizing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111213A (en) * 1993-10-13 1995-04-25 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Composite body of high-temperature superconducting bulk body and coil magnet
JPH11284238A (en) * 1998-03-27 1999-10-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating element
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2000133849A (en) * 1998-10-27 2000-05-12 Aisin Seiki Co Ltd Magnetizing method of superconductor
JP3872751B2 (en) * 2002-12-13 2007-01-24 新日本製鐵株式会社 Superconducting magnet and its manufacturing method and magnetizing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus

Also Published As

Publication number Publication date
JP4283406B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
Campbell et al. Bulk high temperature superconductors for magnet applićations
Hull et al. Applications of bulk high-temperature superconductors
US3198994A (en) Superconductive magnetic-fieldtrapping device
US4190817A (en) Persistent current superconducting method and apparatus
Namburi et al. Pulsed-field magnetisation of Y-Ba-Cu-O bulk superconductors fabricated by the infiltration growth technique
Müller et al. New permanent magnets
Mizutani et al. Applications of superconducting permanent magnets driven by static and pulsed fields
Müller et al. Permanent magnet materials and applications
JP4283406B2 (en) Method and apparatus for magnetizing oxide superconducting material
US4861752A (en) High-field permanent-magnet structures
JP3727122B2 (en) Superconducting bulk magnet
US6005460A (en) High temperature superconductor magnetic clamps
Yokoyama et al. Evaluation of pulsed-field magnetization of a bulk superconductor with small holes
Oka et al. Magnetic field distribution of permanent magnet magnetized by static magnetic field generated by HTS bulk magnet
US5306701A (en) Superconducting magnet and fabrication method
Shiraishi et al. Macroscopic magnetic flux motion in Y-Ba-Cu-O bulk superconductor during pulsed field magnetization
Yokoyama et al. Development of a small-size superconducting bulk magnet system using a 13 K refrigerator
JP3025104B2 (en) Magnetization method of superconducting bulk magnet
Oka et al. A 3 T magnetic field generator using melt-processed bulk superconductors as trapped field magnets and its applications
Oka et al. Construction of a strong magnetic field generator with use of melt-processed bulk superconductors
Fujimoto Technical issues of a high-Tc superconducting bulk magnet
US6399011B1 (en) Method of biaxially aligning crystalline material
Fujishiro et al. Trapped field profiles on square GdBaCuO bulks with different arrangement of growth sector boundaries
Takemura et al. Yoke geometry study using pulsed field magnetization on superconducting joined bulk Gd-Ba-Cu-O
Zheng et al. Levitation capability of a bulk YBa2Cu3O7-x with NdFeB guideway by two magnetization methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R151 Written notification of patent or utility model registration

Ref document number: 4283406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees