JP3844169B2 - Oxide superconductor and manufacturing method thereof - Google Patents

Oxide superconductor and manufacturing method thereof Download PDF

Info

Publication number
JP3844169B2
JP3844169B2 JP08195698A JP8195698A JP3844169B2 JP 3844169 B2 JP3844169 B2 JP 3844169B2 JP 08195698 A JP08195698 A JP 08195698A JP 8195698 A JP8195698 A JP 8195698A JP 3844169 B2 JP3844169 B2 JP 3844169B2
Authority
JP
Japan
Prior art keywords
hours
temperature
composition
sample
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08195698A
Other languages
Japanese (ja)
Other versions
JPH11278923A (en
Inventor
和也 山口
秀一 小早志
守 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP08195698A priority Critical patent/JP3844169B2/en
Publication of JPH11278923A publication Critical patent/JPH11278923A/en
Application granted granted Critical
Publication of JP3844169B2 publication Critical patent/JP3844169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は酸化物超電導部材に関するものであり、特に、電流リード、磁気軸受け、磁気シールド、バルクマグネット等に用いられる高磁場下においても高い臨界電流密度を有する酸化物超電導体およびその製造方法に関するものである。
【0002】
【従来の技術】
従来この種の酸化物超電導体の製造方法として、中間材により基盤との反応を抑える手法としては特願平6ー229416号公報に示されているような方法があった。これは、RE、Ba、Cuの化合物を所定のモル比で混合した原料混合体を仮焼し、プレス成形した後、少なくとも該成形体の融点より高い温度領域における焼成工程を含む処理を施してREーBaーCuーO系酸化物超電導体を製造する場合における上記焼成工程において前記成形体を支えるために該成形体に直接接触する介在物を、少なくともRE(REはYを含む希土類元素)を50モル%以上含み、かつ、このREを除いては前記超電導体を形成するための元素以外の原料を主な元素として含まない材料で構成したことにより、成形体と成形体及び介在物を支える支持体との反応を抑え、相互拡散を防止する事を可能にしたものである。
【0003】
【発明が解決しようとする課題】
しかしながら、上記手法によると、必然的に製造する酸化物超電導体の組成がRE元素の過剰側に組成がずれる。すると比較的イオン半径の大きなRE元素を用いてこの手法を行った場合、BaサイトにRE元素が過剰に置換して、超電導特性を著しく劣化させてしまうという欠点があった。
【0004】
本発明は、上述の背景のもとでなされたものであり、比較的イオン半径の大きなRE元素を用いた場合にも、大型でより高い臨界電流密度特性を有する酸化物超電導体及びその製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明にかかる酸化物超電導体は、
(構成1) REーBaーCuーO系超電導結晶間の方位のズレが±5゜以下となるように配向し、かつ、前記超電導結晶のc軸方向の平均的な方向のRE元素(REはYを含む希土類元素)の組成ズレが該方向の厚さ15mm以上に渡って±1.5モル%以内(ただし、組成はRE、Ba、Cuのみのモル比で示す)であることを特徴とする。
【0006】
また、本発明かかる酸化物超電導体の製造方法は、
(構成2) RE化合物(REはYを含む希土類元素)、Ba化合物及びCu化合物を含む原料混合体に、少なくとも該原料混合体の融点より高い温度領域における焼成工程を含む処理を施してREーBaーCuーO系酸化物超電導体を製造する酸化物超電導体の製造方法において、
前記焼成工程において前記原料混合体を支えるために該原料混合体に直接接触する介在物がBa化合物で構成されていて、且つ該介在物中にRE元素(REはYを含む希土類元素)を50モル%以上含まないことを特徴とし、
この構成2の態様として、
(構成3) 構成2の酸化物超電導体の製造方法において、
前記Ba化合物がBaZrO、BaSnO又はBaPtOであることを特徴とし、
(請求項4) 構成2又は3の酸化物超電導体の製造方法において、
前記原料混合体にさらにPt、Rh、Ceの金属又は各化合物の1種または2種以上の元素を0.05〜5wt%(化合物の場合はその金属のみの元素重量で示す)添加することを特徴とし、
(構成5) 構成2ないし4のいずれかの酸化物超電導体の製造方法において、
前記原料混合体にさらにAgの金属又は化合物がAg元素成分のみの重量で1〜60wt%添加することを特徴とし、
(請求項6) 構成2ないし5のいずれかの酸化物超電導体の製造方法において、
酸素分圧をP0=2×10−1〜1atmとして部分的に溶融する温度以上で溶融した後、室温まで必要に応じて保定及び徐冷行程を加えながら冷却する事を特徴とする。
【0007】
上述の構成によれば、超電導結晶間の方位のズレが±5゜以下であり、かつ、超電導結晶のc軸方向のRE元素の組成ズレが厚さ15mm以上に渡って±1.5モル%以内であることから、極めて高い臨界電流密度を有する酸化物超電導体が得られる。
【0008】
この場合、従来のように、REーBaーCuーO系超電導体を、アルミナもしくはMgO等の基板上でこの超電導体の融点温度以上で焼成すると、基板と激しく反応し、BaサイトやCuサイトへのMgやAlの置換がおこり、組成がBaおよびCuの少ない方へずれ、従って全体としてRE元素の過剰側に組成がずれる。さらに、c軸に配向した結晶を得るために、試料に温度勾配を加えて試料上部に種結晶を接触させ、試料上部から一方向に結晶化を行う場合、試料下部は比較的溶融状態が長くなるため基板との反応が特に激しく起こり、c軸方向に組成勾配を持つように組成ズレが発生する。すると比較的大きなイオン半径のRE元素の場合、Baのイオン半径に近くなるため、RE元素が過剰にBaサイトに置換してしまい、超電導特性を著しく劣化させる。そこで、本発明では、超電導体と基板との間に中間相として、Ba化合物で構成されている粉末、成形体、焼結体を用いることにより、Baの減少を抑え、相対的にREの組成ずれも抑制し、より臨界電流密度の高い超電導体を得ることを可能にしたものである。このBa化合物としては、BaZrOのほかに、BaSnO、BaPtO等を挙げることができる。
【0009】
さらに、Agが結晶中に微細に分散するとマイクロクラックが減少し、磁気特性、機械強度、耐水性が向上する。この際、1wt%より下ではその効果は低く、60wt%より多いと超電導電流が流れにくくなり特性が低下してしまう。
【0010】
(実施例1)
Nd、BaCO、CuOの各原料粉末をNd:Ba:Cu=18:24:34になるように秤量した後、BaCO、CuOのみを880℃で30時間保持する焼成をしてBaCuOとCuOの仮焼粉を得た(モル比でBaCuO:CuO=24:10)。この仮焼粉とあらかじめ秤量しておいたNdと更に全体に対して0.5wt%のPt粉末を加えて混合して880℃で10時間保持する焼成を行い、その後平均粒径約10μmに粉砕した。次にこの仮焼粉を直径53mm厚さ28mmのデイスク状に金型を用いて全圧2ton/cmで一軸プレス成形し、成形体を作製した。
【0011】
次に、BaZrOの粉末をアルミナ基板上に外径50mm厚さ2mmとなるように桝を使用して敷き、前記成形体をこの敷き粉の上にのせてガス置換を行える炉の中に設置した。ロータリーポンプで0.1Torrまで炉内を排気した後、大気圧になるまで酸素0.01%と窒素99.99%の混合ガスを流し込んだ。その後もこの混合ガスを0.5L/minの割合で流しながら以下の焼成工程を行った。
【0012】
まず、1150℃で前記成形体を半溶融状態にした後、上部が低温側となるように5℃/cmの温度勾配を加えて、成形体上部が1070℃となるまで10℃/minで降温し、予め溶融法で作製しておいたSm1.8(Ba0.75Sr0.252.4Cu3.4組成の種結晶を成長方向がc軸と平行になるように成形体の上部に接触させる。そこから0.5℃/hrの速度で1065℃まで降温した後20時間温度保持し、965℃まで100時間で降温し、そこから室温まで20時間かけて徐冷することによって結晶化を行った。
【0013】
作製した試料は焼き縮みのために直径45mm、厚さ24mmのデイスク状となっていた。結晶化した試料は別のガス置換を行える炉の中に設置される。まず、ロータリーポンプで0.1Torrまで炉内を排気した後、酸素ガスを流し込んで酸素分圧が95%以上である大気圧の酸素雰囲気にする。その後も0.5L/minの流量で酸素ガスを炉内に流しながら、室温から700℃まで10時間で昇温し、50時間保持した後、450℃まで100時間で降温しそこから250℃まで200時間かけて徐冷し、200℃から室温まで10時間で降温させることにより超電導体材料を製造した。
【0014】
得られた材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、それぞれを均一に粉砕して滴定法により組成分析を行った。分析結果を図1に示す。中間層としてBaZrOの粉末を用いたために、基盤との反応が抑えられ、且つNd元素の過剰側に大きく組成ズレしていなかった。
【0015】
次に、ミクロな部分の組織を観察するため、偏光顕微鏡及び電子線マイクロアナライザー(EPMA)でNd、Ba、Cuのみの組成比を何点か分析したところ、モル比で図2のような組成の部分が確認された。これらのそれぞれはA相:NdBaCu6.8相、B相:Nd0.9Ba2.1Cu6.75相、C相:Nd1.1Ba1.9Cu6.9相、D相:NdBaCu10相であると考えられる。ここで、D相はA,B,C相中に0.1〜50μm程度に微細に分散していた。
【0016】
また、育成表面の目視による観察によって、異方位の核発生の形跡が無い部分を選んで、背面反射ラウエ法により材料表面の中心付近および端付近を3mm間隔で各3点ずつ結晶の方位を測定したところ、種結晶を反映していずれもほぼc軸に配向し、隣接する結晶間の方位のズレが2゜程度であった。さらに、目視によって観察される異方位の核発生は試料表面の少なくとも80%以上について見られず、実質的に単結晶状の材料であることが確認された。
【0017】
得られたディスク状材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、中心付近における臨界温度(Tc)および外部磁場1T中の臨界電流密度を測定したところ、それぞれ図3のように厚さ方向に大きな組成ズレが無かったために、厚さ方向に上から15mmまで高い値を示していた。
【0018】
(実施例2)
Nd、BaCO、CuOの各原料粉末をNd:Ba:Cu=14:23:32になるように秤量した後、BaCO、CuOのみを880℃で30時間保持する焼成をしてBaCuOとCuOの仮焼粉を得た(モル比でBaCuO:CuO=23:10)。この仮焼粉とあらかじめ秤量しておいたNdと更に全体に対して0.5wt%のRh粉末を加えて混合して880℃で10時間保持する焼成を行い、その後平均粒径約10μmに粉砕した。次にこの仮焼粉を直径53mm厚さ28mmのデイスク状に金型を用いて全圧2ton/cmで一軸プレス成形し、成形体を作製した。
【0019】
次に、BaSnOの粉末をアルミナ基板上に外径50mm厚さ2mmとなるように桝を使用して敷き、前記成形体をこの敷き粉の上にのせてガス置換を行える炉の中に設置した。ロータリーポンプで0.1Torrまで炉内を排気した後、大気圧になるまで酸素0.01と窒素99.99%との混合ガスを流し込んだ。その後もこの混合ガスを0.5L/minの割合で流しながら以下の焼成工程を行った。
【0020】
まず、1150℃で前記成形体を半溶融状態にした後、上部が低温側となるように5℃/cmの温度勾配を加えて、成形体上部が1070℃となるまで10℃/minで降温し、予め溶融法で作製しておいたSm1.8(Ba0.75Sr0.252.4Cu3.4組成の種結晶を成長方向がc軸と平行になるように成形体の上部に接触させる。そこから0.5℃/hrの速度で1065℃まで降温した後20時間温度保持し、965℃まで100時間で降温し、そこから室温まで20時間かけて徐冷することによって結晶化を行った。
【0021】
作製した試料は焼き縮みのために直径45mm、厚さ24mmのデイスク状となっていた。結晶化した試料は別のガス置換を行える炉の中に設置される。まず、ロータリーポンプで0.1Torrまで炉内を排気した後、酸素ガスを流し込んで酸素分圧が95%以上である大気圧の酸素雰囲気にする。その後も0.5L/minの流量で酸素ガスを炉内に流しながら、室温から700℃まで10時間で昇温し、50時間保持した後、450℃まで100時間で降温しそこから250℃まで200時間かけて徐冷し、200℃から室温まで10時間で降温させることにより超電導体材料を製造した。
【0022】
得られた材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、それぞれを均一に粉砕して滴定法により組成分析を行った。分析結果を図4に示す。中間層としてBaSnOの粉末を用いたために、基盤との反応が抑えられ、且つNd元素の過剰側に大きく組成ズレしていなかった。
【0023】
次に、ミクロな部分の組織を観察するため、偏光顕微鏡及び電子線マイクロアナライザー(EPMA)でNd、Ba、Cuのみの組成比を何点か分析したところ、実施例1とほぼ同様な組成の部分が同様な状態で観察された。
【0024】
また、育成表面の目視による観察によって、異方位の核発生の形跡が無い部分を選んで、背面反射ラウエ法により材料表面の中心付近および端付近を3mm間隔で各3点ずつ結晶の方位を測定したところ、種結晶を反映していずれもほぼc軸に配向し、隣接する結晶間の方位のズレが2゜程度であった。さらに、目視によって観察される異方位の核発生は試料表面の少なくとも80%以上について見られず、実質的に単結晶状の材料であることが確認された。
【0025】
得られたディスク状材料を育成方向(ディスク状試料の厚さ方向)に上から垂直に上から5mm間隔でスライス加工し、中心付近における臨界温度(Tc)および外部磁場1T中の臨界電流密度を測定したところ、それぞれ図5のように厚さ方向に大きな組成ズレが無かったために、厚さ方向に上から15mmまで高い値を示していた。
【0026】
(実施例3)
Sm、BaCO、CuOの各原料粉末をSm:Ba:Cu=18:24:34になるように秤量した後、BaCO、CuOのみを880℃で30時間保持する焼成をしてBaCuOとCuOの仮焼粉を得た(モル比でBaCuO:CuO=24:10)。この仮焼粉とあらかじめ秤量しておいたSmと更に全体に対して0.5wt%のPt粉末を加えて混合して880℃で10時間保持する焼成を行い、その後平均粒径約10μmに粉砕した。
【0027】
次に、この仮焼粉を直径53mm厚さ28mmのデイスク状に金型を用いて全圧2ton/cm2で一軸プレス成形し、成形体を作製した。次に、BaZrOの粉末をアルミナ基板上に外径50mm厚さ2mmとなるように桝を使用して敷き、前記成形体をこの敷き粉の上にのせて、以下の焼成工程を行った。
【0028】
まず、1150℃で前記成形体を半溶融状態にした後、上部が低温側となるように5℃/cmの温度勾配を加えて、成形体上部が1065℃となるまで10℃/minで降温し、予め溶融法で作製しておいたSm1.8(Ba0.75Sr0.252.4Cu3.4組成の種結晶を成長方向がc軸と平行になるように成形体の上部に接触させる。そこから0.5℃/hrの速度で1060℃まで降温した後20時間温度保持し、960℃まで100時間で降温し、そこから室温まで20時間かけて徐冷することによって結晶化を行った。
【0029】
作製した試料は焼き縮みのために直径45mm、厚さ24mmのデイスク状となっていた。結晶化した試料は別のガス置換を行える炉の中に設置される。まず、ロータリーポンプで0.1Torrまで炉内を排気した後、酸素ガスを流し込んで酸素分圧が95%以上である大気圧の酸素雰囲気にする。その後も0.5L/minの流量で酸素ガスを炉内に流しながら、室温から450℃まで10時間で昇温し、そこから250℃まで200時間かけて徐冷し、200℃から室温まで10時間で降温させることにより超電導体材料を製造した。
【0030】
得られた材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、それぞれを均一に粉砕して滴定法により組成分析を行った。分析結果を図6に示す。中間層としてBaZrOの粉末を用いたために、基盤との反応が抑えられ、且つSm元素の過剰側に大きく組成ズレしていなかった。
【0031】
次に、ミクロな部分の組織を観察するため、偏光顕微鏡及び電子線マイクロアナライザー(EPMA)でSm、Ba、Cuのみの組成比を何点か分析したところ、モル比で図7のような組成の部分が確認された。これらのそれぞれはE相:SmBaCu6.8相、F相:Sm0.9Ba2.1Cu6.75相、G相:Sm1.1Ba1.9Cu6.9相、H相:SmBaCu10相であると考えられる。ここで、H相はE,F,G相中に0.1〜50μm程度に微細に分散していた。
【0032】
また、育成表面の目視による観察によって、異方位の核発生の形跡が無い部分を選んで、背面反射ラウエ法により材料表面の中心付近および端付近を3mm間隔で各3点ずつ結晶の方位を測定したところ、種結晶を反映していずれもほぼc軸に配向し、隣接する結晶間の方位のズレが2゜程度であった。さらに、目視によって観察される異方位の核発生は試料表面の少なくとも80%以上について見られず、実質的に単結晶状の材料であることが確認された。
【0033】
得られたディスク状材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、中心付近における臨界温度(Tc)および外部磁場1T中の臨界電流密度を測定したところ、それぞれ図8のように厚さ方向に大きな組成ズレが無かったために、厚さ方向に上から15mmまで高い値を示していた。
【0034】
(実施例4)
Nd、BaCO、CuOの各原料粉末をNd:Ba:Cu=18:24:34になるように秤量した後、BaCO、CuOのみを880℃で30時間保持する焼成をしてBaCuOとCuOの仮焼粉を得た(モル比でBaCuO:CuO=24:10)。この仮焼粉とあらかじめ秤量しておいたNdと更に全体に対して0.5wt%のPt粉末及び10wt%のAg粉末を加えて混合して880℃で10時間保持する焼成を行い、その後平均粒径約10μmに粉砕した。
【0035】
次に、この仮焼粉を直径53mm厚さ28mmのデイスク状に金型を用いて全圧2ton/cm2で一軸プレス成形し、成形体を作製した。次に、BaZrOの粉末をアルミナ基板上に外径50mm厚さ2mmとなるように桝を使用して敷き、前記成形体をこの敷き粉の上にのせて、以下の焼成工程を行った。
【0036】
まず、1100℃で前記成形体を半溶融状態にした後、上部が低温側となるように5℃/cmの温度勾配を加えて、成形体上部が1025℃となるまで10℃/minで降温し、予め溶融法で作製しておいたNd1.8Ba2.4Cu3.4組成の種結晶を成長方向がc軸と平行になるように成形体の上部に接触させる。そこから0.5℃/hrの速度で1020℃まで降温した後20時間温度保持し、920℃まで100時間で降温し、そこから室温まで20時間かけて徐冷することによって結晶化を行った。
【0037】
作製した試料は焼き縮みのために直径45mm、厚さ24mmのデイスク状となっていた。結晶化した試料は別のガス置換を行える炉の中に設置される。まず、ロータリーポンプで0.1Torrまで炉内を排気した後、酸素ガスを流し込んで酸素分圧が95%以上である大気圧の酸素雰囲気にする。その後も0.5L/minの流量で酸素ガスを炉内に流しながら、室温から700℃まで10時間で昇温し、50時間保持した後、450℃まで100時間で降温しそこから250℃まで200時間かけて徐冷し、200℃から室温まで10時間で降温させることにより超電導体材料を製造した。
【0038】
得られた材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、それぞれを均一に粉砕して滴定法により組成分析を行った。分析結果を図9に示す。中間層としてBaZrOの粉末を用いたために、基盤との反応が抑えられ、且つNd元素の過剰側に大きく組成ズレしていなかった。
【0039】
次に、ミクロな部分の組織を観察するため、偏光顕微鏡及び電子線マイクロアナライザー(EPMA)でNd、Ba、Cuのみの組成比を何点か分析したところ、実施例1とほぼ同様な組成の部分が同様な状態で観察された。さらに0.1〜100μm程度のAg粒子が微細に分散していた。
【0040】
また、育成表面の目視による観察によって、異方位の核発生の形跡が無い部分を選んで、背面反射ラウエ法により材料表面の中心付近および端付近を3mm間隔で各3点ずつ結晶の方位を測定したところ、種結晶を反映していずれもほぼc軸に配向し、隣接する結晶間の方位のズレが2゜程度であった。さらに、目視によって観察される異方位の核発生は試料表面の少なくとも80%以上について見られず、実質的に単結晶状の材料であることが確認された。
【0041】
得られたディスク状材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、中心付近における臨界温度(Tc)および外部磁場1T中の臨界電流密度を測定したところ、それぞれ図10のように厚さ方向に大きな組成ズレが無かったために、厚さ方向に上から15mmまで高い値を示していた。
【0042】
(比較例1)
Nd、BaCO、CuOの各原料粉末をNd:Ba:Cu=18:24:34になるように秤量した後、BaCO、CuOのみを880℃で30時間焼成してBaCuO2とCuOの仮焼粉を得た(モル比でBaCuO:CuO=24:10)。この仮焼粉とあらかじめ秤量しておいたNdと更に全体に対して0.5wt%のPt粉末を加えて混合して880℃で再度焼成し、その後平均粒径約10μmに粉砕した。
【0043】
次に、この仮焼粉を直径53mm厚さ28mmのデイスク状に金型を用いて全圧2ton/cmで一軸プレス成形し、成形体を作製した。この成形体を直接アルミナ基板上にのせてガス置換を行える炉の中に設置した。ロータリーポンプで0.1Torrまで炉内を排気した後、大気圧になるまで酸素0.01%と窒素99.99%との混合ガスを流し込んだ。その後もこの混合ガスを0.5L/minの割合で流しながら以下の焼成工程を行った。
【0044】
まず、1150℃で前記成形体を半溶融状態にした後、上部が低温側となるように5℃/cmの温度勾配を加えて、成形体上部が1070℃となるまで10℃/minで降温し、予め溶融法で作製しておいたSm1.8(Ba0.75Sr0.252.4Cu3.4組成の種結晶を成長方向がc軸と平行になるように成形体の上部に接触させる。そこから0.5℃/hrの速度で1065℃まで降温した後20時間温度保持し、965℃まで100時間で降温し、そこから室温まで20時間かけて徐冷することによって結晶化を行った。
【0045】
作製した試料は焼き縮みのために直径45mm、厚さ24mmのデイスク状となっていた。結晶化した試料は別のガス置換を行える炉の中に設置される。まず、ロータリーポンプで0.1Torrまで炉内を排気した後、酸素ガスを流し込んで酸素分圧が95%以上である大気圧の酸素雰囲気にする。その後も0.5L/minの流量で酸素ガスを炉内に流しながら、室温から700℃まで10時間で昇温し、50時間保持した後、450℃まで100時間で降温しそこから250℃まで200時間かけて徐冷し、200℃から室温まで10時間で降温させることにより超電導体材料を製造した。
【0046】
得られた材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、それぞれを均一に粉砕して滴定法により組成分析を行った。分析結果を図11に示す。中間層を使用しなかったたために、基盤との反応が激しく起こり、Nd元素の過剰側に大きく組成ズレしていた。
【0047】
次に、ミクロな部分の組織を観察するため、偏光顕微鏡及び電子線マイクロアナライザー(EPMA)でNd、Ba、Cuのみの組成比を何点か分析したところ、実施例1とほぼ同様な組成の部分が同様な状態で観察された。
【0048】
また、育成表面の目視による観察によって、異方位の核発生の形跡が無い部分を選んで、背面反射ラウエ法により材料表面の中心付近および端付近を3mm間隔で各3点ずつ結晶の方位を測定したところ、種結晶を反映していずれもほぼc軸に配向し、隣接する結晶間の方位のズレが2゜程度であった。さらに、目視によって観察される異方位の核発生は試料表面の少なくとも80%以上について見られず、実質的に単結晶状の材料であることが確認された。
【0049】
しかしながら、得られたディスク状材料を育成方向(ディスク状試料の厚さ方向)に垂直に上から5mm間隔でスライス加工し、中心付近における臨界温度(Tc)および外部磁場1T中の臨界電流密度を測定したところ、それぞれ図12のように厚さ方向に大きな組成ズレがあったために、試料上部から厚さ方向に上から15mmまで高い値を示していた。
【0050】
【発明の効果】
以上詳述したように、本発明は、RE化合物(REはYを含む希土類元素)、Ba化合物及びCu化合物を含む原料混合体に、少なくとも該原料混合体の融点より高い温度領域における焼成工程を含む処理を施してREーBaーCuーO系酸化物超電導体を製造する酸化物超電導体の製造方法において、前記原料混合体を成形した成形体を支えるために該原料混合体に直接接触する介在物がBa化合物で構成されていて、且つ該介在物中にRE元素(REはYを含む希土類元素)を50モル%以上含まない材料を用いることにより、基盤との反応を抑制し、組成ズレのない大型で高特性の酸化物超電導体を歩留まり良く製造することを可能にした。
【図面の簡単な説明】
【図1】実施例1で製造した材料の厚さ方向の組成分析結果を示す表である。
【図2】実施例1で製造した試料中に存在する主な結晶相を偏光顕微鏡及び電子線マイクロアナライザー(EPMA)によって分析した結果を示す表である。
【図3】実施例1で製造した試料の臨界温度(Tc)及び臨界電流密度の測定結果を示す表である。
【図4】実施例2で製造した試料の厚さ方向の組成分析結果を示す表である。
【図5】実施例2で製造した試料の臨界温度(Tc)及び臨界電流密度の測定結果を示す表である。
【図6】実施例3で製造した試料の厚さ方向の組成分析結果を示す表である。
【図7】実施例3で製造した試料中に存在する主な結晶相を偏光顕微鏡及び電子線マイクロアナライザー(EPMA)によって分析した結果を示す表である。
【図8】実施例3で製造した試料の臨界温度(Tc)及び臨界電流密度の測定結果を示す表である。
【図9】実施例4で製造した試料中に存在する主な結晶相を偏光顕微鏡及び電子線マイクロアナライザー(EPMA)によって分析した結果を示す表である。
【図10】実施例4で製造した試料の臨界温度(Tc)及び臨界電流密度の測定結果を示す表である。
【図11】比較例1で製造した試料の厚さ方向の組成分析結果を示す表である。
【図12】比較例1で製造した試料の臨界温度(Tc)及び臨界電流密度の測定結果を示す表である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxide superconducting member, and more particularly to an oxide superconductor having a high critical current density even in a high magnetic field used for a current lead, a magnetic bearing, a magnetic shield, a bulk magnet, and the like, and a method for manufacturing the same. It is.
[0002]
[Prior art]
Conventionally, as a method of manufacturing this kind of oxide superconductor, there has been a method as shown in Japanese Patent Application No. 6-229416 as a method of suppressing reaction with the substrate by an intermediate material. This is because a raw material mixture in which RE, Ba, and Cu compounds are mixed at a predetermined molar ratio is calcined, press-molded, and then subjected to a process including a firing step at least in a temperature region higher than the melting point of the molded body. In the case of manufacturing a RE-Ba-Cu-O-based oxide superconductor, inclusions that are in direct contact with the molded body in order to support the molded body in the firing step are at least RE (RE is a rare earth element including Y). Is formed of a material that does not contain raw materials other than the elements for forming the superconductor as a main element except for the RE, thereby forming a molded body, a molded body, and inclusions. It is possible to suppress the reaction with the supporting substrate and prevent mutual diffusion.
[0003]
[Problems to be solved by the invention]
However, according to the above method, the composition of the oxide superconductor to be manufactured inevitably shifts to the excess side of the RE element. Then, when this method is performed using an RE element having a relatively large ionic radius, there is a disadvantage that the RE element is excessively substituted at the Ba site and the superconducting characteristics are remarkably deteriorated.
[0004]
The present invention has been made under the above-mentioned background. Even when an RE element having a relatively large ionic radius is used, a large oxide superconductor having higher critical current density characteristics and a method for manufacturing the same The purpose is to provide.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the oxide superconductor according to the present invention is:
(Configuration 1) An RE element (RE) oriented so that a deviation in orientation between RE-Ba-Cu-O-based superconducting crystals is ± 5 ° or less, and having an average direction in the c-axis direction of the superconducting crystals. Is a composition deviation of a rare earth element including Y) within ± 1.5 mol% over a thickness of 15 mm or more in the direction (however, the composition is represented by a molar ratio of only RE, Ba, and Cu). And
[0006]
In addition, the method for producing the oxide superconductor according to the present invention includes:
(Configuration 2) A raw material mixture containing an RE compound (RE is a rare earth element including Y), a Ba compound and a Cu compound is subjected to a treatment including a firing step in a temperature range higher than the melting point of the raw material mixture. In the method for producing an oxide superconductor for producing a Ba-Cu-O-based oxide superconductor,
In order to support the raw material mixture in the firing step, inclusions that are in direct contact with the raw material mixture are composed of Ba compounds, and 50 RE elements (RE is a rare earth element including Y) are included in the inclusions. It is characterized by not containing more than mol%,
As an aspect of this configuration 2,
(Configuration 3) In the method for manufacturing the oxide superconductor of Configuration 2,
The Ba compound is BaZrO. 3 , BaSnO 3 Or BaPtO 3 It is characterized by
(Claim 4) In the manufacturing method of the oxide superconductor of composition 2 or 3,
Further adding 0.05 to 5 wt% of one or more elements of Pt, Rh, and Ce metals or each compound (in the case of a compound, indicated by the element weight of only the metal) to the raw material mixture As a feature,
(Configuration 5) In the method for producing an oxide superconductor according to any one of configurations 2 to 4,
1 to 60 wt% of Ag metal or compound is further added to the raw material mixture by the weight of Ag element component only,
(Claim 6) In the method for producing an oxide superconductor according to any one of Structures 2 to 5,
The oxygen partial pressure is P0 = 2 × 10 -1 After melting at a temperature of partially melting as ˜1 atm or more, it is cooled to room temperature while adding a holding and gradual cooling process as necessary.
[0007]
According to the above configuration, the deviation of the orientation between the superconducting crystals is ± 5 ° or less, and the composition deviation of the RE element in the c-axis direction of the superconducting crystal is ± 1.5 mol% over a thickness of 15 mm or more. Therefore, an oxide superconductor having a very high critical current density can be obtained.
[0008]
In this case, when a RE-Ba-Cu-O-based superconductor is baked at a temperature equal to or higher than the melting point of the superconductor on a substrate such as alumina or MgO as in the prior art, it reacts violently with the substrate, resulting in a Ba site or Cu site. Substitution of Mg or Al occurs in the composition, and the composition shifts to a smaller amount of Ba and Cu. Therefore, the composition shifts to the excess side of the RE element as a whole. Furthermore, in order to obtain a crystal oriented in the c-axis, when a temperature gradient is applied to the sample and a seed crystal is brought into contact with the upper part of the sample and crystallization is performed in one direction from the upper part of the sample, the lower part of the sample is relatively in a molten state. Therefore, the reaction with the substrate occurs particularly vigorously, and composition deviation occurs so as to have a composition gradient in the c-axis direction. Then, in the case of the RE element having a relatively large ionic radius, the RE element is close to the ionic radius of Ba, so that the RE element is excessively replaced with the Ba site, and the superconducting characteristics are remarkably deteriorated. Therefore, in the present invention, by using a powder, a molded body, and a sintered body made of a Ba compound as an intermediate phase between the superconductor and the substrate, the decrease in Ba is suppressed and the composition of the RE is relatively increased. The deviation is also suppressed, and a superconductor having a higher critical current density can be obtained. As this Ba compound, BaZrO 3 In addition to BaSnO 3 , BaPtO 3 Etc. can be mentioned.
[0009]
Furthermore, when Ag is finely dispersed in the crystal, microcracks are reduced, and magnetic properties, mechanical strength, and water resistance are improved. In this case, the effect is low below 1 wt%, and if it exceeds 60 wt%, the superconducting current hardly flows and the characteristics are deteriorated.
[0010]
Example 1
Nd 2 O 3 , BaCO 3 , CuO raw powders were weighed so that Nd: Ba: Cu = 18: 24: 34, and then BaCO 3 BaCuO is fired by holding only CuO at 880 ° C. for 30 hours. 2 And CuO calcined powder was obtained (in terms of molar ratio BaCuO 2 : CuO = 24: 10). This calcined powder and Nd weighed in advance 2 O 3 Further, 0.5 wt% Pt powder was added to the whole and mixed, followed by baking at 880 ° C. for 10 hours, and then pulverized to an average particle size of about 10 μm. Next, this calcined powder is formed into a disk shape having a diameter of 53 mm and a thickness of 28 mm using a mold, and the total pressure is 2 ton / cm. 2 Was uniaxial press-molded to produce a compact.
[0011]
Next, BaZrO 3 Was placed on an alumina substrate using a scissors so that the outer diameter was 50 mm and the thickness was 2 mm, and the molded body was placed on the floor powder and placed in a furnace capable of gas replacement. After evacuating the inside of the furnace to 0.1 Torr with a rotary pump, a mixed gas of oxygen 0.01% and nitrogen 99.99% was flowed to atmospheric pressure. Thereafter, the following firing process was performed while flowing the mixed gas at a rate of 0.5 L / min.
[0012]
First, after the molded body was made into a semi-molten state at 1150 ° C., a temperature gradient of 5 ° C./cm was applied so that the upper part was on the low temperature side, and the temperature was lowered at 10 ° C./min until the upper part of the molded body reached 1070 ° C. Sm prepared in advance by the melting method 1.8 (Ba 0.75 Sr 0.25 ) 2.4 Cu 3.4 O x The seed crystal of the composition is brought into contact with the upper part of the compact so that the growth direction is parallel to the c-axis. Then, the temperature was lowered to 1065 ° C. at a rate of 0.5 ° C./hr, held for 20 hours, lowered to 965 ° C. in 100 hours, and then gradually cooled to room temperature over 20 hours for crystallization. .
[0013]
The produced sample was disk-shaped having a diameter of 45 mm and a thickness of 24 mm due to shrinkage by baking. The crystallized sample is placed in a furnace where another gas replacement is possible. First, the inside of the furnace is evacuated to 0.1 Torr with a rotary pump, and then an oxygen gas is flowed into an atmospheric pressure oxygen atmosphere having an oxygen partial pressure of 95% or more. After that, while oxygen gas was flowed into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 700 ° C. in 10 hours, held for 50 hours, then lowered to 450 ° C. in 100 hours and then to 250 ° C. The superconductor material was manufactured by gradually cooling over 200 hours and lowering the temperature from 200 ° C. to room temperature in 10 hours.
[0014]
The obtained material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and each was pulverized uniformly and subjected to composition analysis by a titration method. The analysis results are shown in FIG. BaZrO as an intermediate layer 3 Therefore, the reaction with the substrate was suppressed, and the composition was not greatly shifted to the excess side of the Nd element.
[0015]
Next, in order to observe the microstructure of the micro portion, the composition ratio of only Nd, Ba, and Cu was analyzed with a polarizing microscope and an electron beam microanalyzer (EPMA). The part of was confirmed. Each of these is A phase: NdBa 2 Cu 3 O 6.8 Phase, B phase: Nd 0.9 Ba 2.1 Cu 3 O 6.75 Phase, C phase: Nd 1.1 Ba 1.9 Cu 3 O 6.9 Phase, D phase: Nd 4 Ba 2 Cu 2 O 10 Is considered a phase. Here, the D phase was finely dispersed in the A, B, and C phases to about 0.1 to 50 μm.
[0016]
Also, by visually observing the growth surface, select the part where there is no evidence of nucleation of different orientations, and measure the crystal orientation by 3 points at 3 mm intervals near the center and edge of the material surface by the back reflection Laue method. As a result, all of them were oriented in the c-axis reflecting the seed crystal, and the deviation of the orientation between adjacent crystals was about 2 °. Furthermore, nucleation of different orientations observed visually was not observed on at least 80% or more of the sample surface, and it was confirmed that the material was substantially a single crystal material.
[0017]
The obtained disk-shaped material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and the critical temperature (Tc) near the center and the critical current density in the external magnetic field 1T were measured. However, since there was no large compositional deviation in the thickness direction as shown in FIG. 3, the values were high up to 15 mm from the top in the thickness direction.
[0018]
(Example 2)
Nd 2 O 3 , BaCO 3 , CuO raw powders were weighed so that Nd: Ba: Cu = 14: 23: 32, and then BaCO 3 BaCuO is fired by holding only CuO at 880 ° C. for 30 hours. 2 And CuO calcined powder was obtained (in terms of molar ratio BaCuO 2 : CuO = 23: 10). This calcined powder and Nd weighed in advance 2 O 3 Further, 0.5 wt% Rh powder was added to the whole and mixed, followed by baking at 880 ° C. for 10 hours, and then pulverized to an average particle size of about 10 μm. Next, this calcined powder is formed into a disk shape having a diameter of 53 mm and a thickness of 28 mm using a mold, and the total pressure is 2 ton / cm. 2 Was uniaxial press-molded to produce a compact.
[0019]
Next, BaSnO 3 Was placed on an alumina substrate using a scissors so that the outer diameter was 50 mm and the thickness was 2 mm, and the molded body was placed on the floor powder and placed in a furnace capable of gas replacement. After exhausting the inside of the furnace to 0.1 Torr with a rotary pump, a mixed gas of oxygen 0.01 and nitrogen 99.99% was flowed until atmospheric pressure was reached. Thereafter, the following firing process was performed while flowing the mixed gas at a rate of 0.5 L / min.
[0020]
First, after the molded body was made into a semi-molten state at 1150 ° C., a temperature gradient of 5 ° C./cm was applied so that the upper part was on the low temperature side, and the temperature was lowered at 10 ° C./min until the upper part of the molded body reached 1070 ° C. Sm prepared in advance by the melting method 1.8 (Ba 0.75 Sr 0.25 ) 2.4 Cu 3.4 O x The seed crystal of the composition is brought into contact with the upper part of the compact so that the growth direction is parallel to the c-axis. Then, the temperature was lowered to 1065 ° C. at a rate of 0.5 ° C./hr, held for 20 hours, lowered to 965 ° C. in 100 hours, and then gradually cooled to room temperature over 20 hours for crystallization. .
[0021]
The produced sample was disk-shaped having a diameter of 45 mm and a thickness of 24 mm due to shrinkage by baking. The crystallized sample is placed in a furnace where another gas replacement is possible. First, the inside of the furnace is evacuated to 0.1 Torr with a rotary pump, and then an oxygen gas is flowed into an atmospheric pressure oxygen atmosphere having an oxygen partial pressure of 95% or more. After that, while oxygen gas was flowed into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 700 ° C. in 10 hours, held for 50 hours, then lowered to 450 ° C. in 100 hours and then to 250 ° C. The superconductor material was manufactured by gradually cooling over 200 hours and lowering the temperature from 200 ° C. to room temperature in 10 hours.
[0022]
The obtained material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and each was pulverized uniformly and subjected to composition analysis by a titration method. The analysis results are shown in FIG. BaSnO as intermediate layer 3 Therefore, the reaction with the substrate was suppressed, and the composition was not greatly shifted to the excess side of the Nd element.
[0023]
Next, in order to observe the microstructure of the micro portion, the composition ratio of only Nd, Ba, and Cu was analyzed with a polarizing microscope and an electron beam microanalyzer (EPMA). Parts were observed in a similar state.
[0024]
Also, by visually observing the growth surface, select the part where there is no evidence of nucleation of different orientations, and measure the crystal orientation by 3 points at 3 mm intervals near the center and edge of the material surface by the back reflection Laue method. As a result, all of them were oriented in the c-axis reflecting the seed crystal, and the deviation of the orientation between adjacent crystals was about 2 °. Furthermore, nucleation of different orientations observed visually was not observed on at least 80% or more of the sample surface, and it was confirmed that the material was substantially a single crystal material.
[0025]
The obtained disk-shaped material is sliced at an interval of 5 mm vertically from above in the growth direction (thickness direction of the disk-shaped sample), and the critical temperature (Tc) near the center and the critical current density in the external magnetic field 1T are determined. As a result of measurement, there was no large compositional deviation in the thickness direction as shown in FIG. 5, and thus a high value from the top to 15 mm was shown in the thickness direction.
[0026]
Example 3
Sm 2 O 3 , BaCO 3 , CuO raw powders were weighed so that Sm: Ba: Cu = 18: 24: 34, and then BaCO 3 BaCuO is fired by holding only CuO at 880 ° C. for 30 hours. 2 And CuO calcined powder was obtained (in terms of molar ratio BaCuO 2 : CuO = 24: 10). Sm previously weighed with this calcined powder 2 O 3 Further, 0.5 wt% Pt powder was added to the whole and mixed, followed by baking at 880 ° C. for 10 hours, and then pulverized to an average particle size of about 10 μm.
[0027]
Next, this calcined powder was uniaxially press-molded into a disk shape having a diameter of 53 mm and a thickness of 28 mm using a mold at a total pressure of 2 ton / cm 2 to produce a compact. Next, BaZrO 3 The powder was spread on an alumina substrate using a scissors so that the outer diameter was 50 mm and the thickness was 2 mm, and the molded body was placed on the spread powder, and the following firing process was performed.
[0028]
First, after the molded body was made into a semi-molten state at 1150 ° C., a temperature gradient of 5 ° C./cm was applied so that the upper part was on the low temperature side, and the temperature was lowered at 10 ° C./min until the upper part of the molded body reached 1065 ° C. Sm prepared in advance by the melting method 1.8 (Ba 0.75 Sr 0.25 ) 2.4 Cu 3.4 O x The seed crystal of the composition is brought into contact with the upper part of the compact so that the growth direction is parallel to the c-axis. Then, the temperature was lowered to 1060 ° C. at a rate of 0.5 ° C./hr, held for 20 hours, lowered to 960 ° C. in 100 hours, and then gradually cooled to room temperature over 20 hours for crystallization. .
[0029]
The produced sample was disk-shaped having a diameter of 45 mm and a thickness of 24 mm due to shrinkage by baking. The crystallized sample is placed in a furnace where another gas replacement is possible. First, the inside of the furnace is evacuated to 0.1 Torr with a rotary pump, and then an oxygen gas is flowed into an atmospheric pressure oxygen atmosphere having an oxygen partial pressure of 95% or more. Thereafter, while oxygen gas is flowed into the furnace at a flow rate of 0.5 L / min, the temperature is raised from room temperature to 450 ° C. over 10 hours, and then gradually cooled to 250 ° C. over 200 hours. The superconductor material was manufactured by lowering the temperature over time.
[0030]
The obtained material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and each was pulverized uniformly and subjected to composition analysis by a titration method. The analysis results are shown in FIG. BaZrO as an intermediate layer 3 Therefore, the reaction with the substrate was suppressed, and the composition was not significantly shifted to the excess side of the Sm element.
[0031]
Next, in order to observe the structure of the micro portion, the composition ratio of only Sm, Ba, and Cu was analyzed with a polarizing microscope and an electron beam microanalyzer (EPMA). The part of was confirmed. Each of these is phase E: SmBa 2 Cu 3 O 6.8 Phase, F phase: Sm 0.9 Ba 2.1 Cu 3 O 6.75 Phase, G phase: Sm 1.1 Ba 1.9 Cu 3 O 6.9 Phase, H phase: Sm 4 Ba 2 Cu 2 O 10 Is considered a phase. Here, the H phase was finely dispersed in the E, F, and G phases to about 0.1 to 50 μm.
[0032]
Also, by visually observing the growth surface, select the part where there is no evidence of nucleation of different orientations, and measure the crystal orientation by 3 points at 3 mm intervals near the center and edge of the material surface by the back reflection Laue method. As a result, all of them were oriented in the c-axis reflecting the seed crystal, and the deviation of the orientation between adjacent crystals was about 2 °. Furthermore, nucleation of different orientations observed visually was not observed on at least 80% or more of the sample surface, and it was confirmed that the material was substantially a single crystal material.
[0033]
The obtained disk-shaped material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and the critical temperature (Tc) near the center and the critical current density in the external magnetic field 1T were measured. However, since there was no large compositional deviation in the thickness direction as shown in FIG. 8, a high value from the top to 15 mm was shown in the thickness direction.
[0034]
Example 4
Nd 2 O 3 , BaCO 3 , CuO raw powders were weighed so that Nd: Ba: Cu = 18: 24: 34, and then BaCO 3 BaCuO is fired by holding only CuO at 880 ° C. for 30 hours. 2 And CuO calcined powder was obtained (in terms of molar ratio BaCuO 2 : CuO = 24: 10). This calcined powder and Nd weighed in advance 2 O 3 Further, 0.5 wt% Pt powder and 10 wt% Ag powder were added to the whole, mixed and fired by holding at 880 ° C. for 10 hours, and then pulverized to an average particle size of about 10 μm.
[0035]
Next, this calcined powder was uniaxially press-molded into a disk shape having a diameter of 53 mm and a thickness of 28 mm using a mold at a total pressure of 2 ton / cm 2 to produce a compact. Next, BaZrO 3 The powder was spread on an alumina substrate using a scissors so that the outer diameter was 50 mm and the thickness was 2 mm, and the molded body was placed on the spread powder, and the following firing process was performed.
[0036]
First, after the molded body was made into a semi-molten state at 1100 ° C., a temperature gradient of 5 ° C./cm was applied so that the upper part was on the low temperature side, and the temperature was lowered at 10 ° C./min until the upper part of the molded body reached 1025 ° C. Nd previously prepared by the melting method 1.8 Ba 2.4 Cu 3.4 O x The seed crystal of the composition is brought into contact with the upper part of the compact so that the growth direction is parallel to the c-axis. From there, the temperature was lowered to 1020 ° C. at a rate of 0.5 ° C./hr, held for 20 hours, lowered to 920 ° C. in 100 hours, and then gradually cooled to room temperature over 20 hours for crystallization. .
[0037]
The produced sample was disk-shaped having a diameter of 45 mm and a thickness of 24 mm due to shrinkage by baking. The crystallized sample is placed in a furnace where another gas replacement is possible. First, the inside of the furnace is evacuated to 0.1 Torr with a rotary pump, and then an oxygen gas is flowed into an atmospheric pressure oxygen atmosphere having an oxygen partial pressure of 95% or more. After that, while oxygen gas was flowed into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 700 ° C. in 10 hours, held for 50 hours, then lowered to 450 ° C. in 100 hours and then to 250 ° C. The superconductor material was manufactured by gradually cooling over 200 hours and lowering the temperature from 200 ° C. to room temperature in 10 hours.
[0038]
The obtained material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and each was pulverized uniformly and subjected to composition analysis by a titration method. The analysis results are shown in FIG. BaZrO as an intermediate layer 3 Therefore, the reaction with the substrate was suppressed, and the composition was not greatly shifted to the excess side of the Nd element.
[0039]
Next, in order to observe the microstructure of the micro portion, the composition ratio of only Nd, Ba, and Cu was analyzed with a polarizing microscope and an electron beam microanalyzer (EPMA). Parts were observed in a similar state. Further, Ag particles of about 0.1 to 100 μm were finely dispersed.
[0040]
Also, by visually observing the growth surface, select the part where there is no evidence of nucleation of different orientations, and measure the crystal orientation by 3 points at 3 mm intervals near the center and edge of the material surface by the back reflection Laue method. As a result, all of them were oriented in the c-axis reflecting the seed crystal, and the deviation of the orientation between adjacent crystals was about 2 °. Furthermore, nucleation of different orientations observed visually was not observed on at least 80% or more of the sample surface, and it was confirmed that the material was substantially a single crystal material.
[0041]
The obtained disk-shaped material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and the critical temperature (Tc) near the center and the critical current density in the external magnetic field 1T were measured. However, since there was no large compositional deviation in the thickness direction as shown in FIG. 10, the values were high up to 15 mm from the top in the thickness direction.
[0042]
(Comparative Example 1)
Nd 2 O 3 , BaCO 3 , CuO raw powders were weighed so that Nd: Ba: Cu = 18: 24: 34, and then BaCO 3 Then, only CuO was calcined at 880 ° C. for 30 hours to obtain BaCuO 2 and CuO calcined powder (in terms of molar ratio BaCuO 2 : CuO = 24: 10). This calcined powder and Nd weighed in advance 2 O 3 Further, 0.5 wt% Pt powder was added to the whole, mixed, fired again at 880 ° C., and then pulverized to an average particle size of about 10 μm.
[0043]
Next, the calcined powder is formed into a disk shape having a diameter of 53 mm and a thickness of 28 mm using a mold, and the total pressure is 2 ton / cm. 2 Was uniaxial press-molded to produce a compact. This compact was placed directly on an alumina substrate and placed in a furnace capable of gas replacement. After exhausting the inside of the furnace to 0.1 Torr with a rotary pump, a mixed gas of oxygen 0.01% and nitrogen 99.99% was flowed until atmospheric pressure was reached. Thereafter, the following firing step was performed while flowing the mixed gas at a rate of 0.5 L / min.
[0044]
First, after the molded body was made into a semi-molten state at 1150 ° C., a temperature gradient of 5 ° C./cm was applied so that the upper part was on the low temperature side, and the temperature was lowered at 10 ° C./min until the upper part of the molded body reached 1070 ° C. Sm prepared in advance by the melting method 1.8 (Ba 0.75 Sr 0.25 ) 2.4 Cu 3.4 O x The seed crystal of the composition is brought into contact with the upper part of the compact so that the growth direction is parallel to the c-axis. Then, the temperature was lowered to 1065 ° C. at a rate of 0.5 ° C./hr, held for 20 hours, lowered to 965 ° C. in 100 hours, and then gradually cooled to room temperature over 20 hours for crystallization. .
[0045]
The produced sample was disk-shaped having a diameter of 45 mm and a thickness of 24 mm due to shrinkage by baking. The crystallized sample is placed in a furnace where another gas replacement is possible. First, the inside of the furnace is evacuated to 0.1 Torr with a rotary pump, and then an oxygen gas is flowed into an atmospheric pressure oxygen atmosphere having an oxygen partial pressure of 95% or more. After that, while oxygen gas was flowed into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 700 ° C. in 10 hours, held for 50 hours, then lowered to 450 ° C. in 100 hours and then to 250 ° C. The superconductor material was manufactured by gradually cooling over 200 hours and lowering the temperature from 200 ° C. to room temperature in 10 hours.
[0046]
The obtained material was sliced at intervals of 5 mm perpendicularly to the growth direction (thickness direction of the disk-shaped sample), and each was pulverized uniformly and subjected to composition analysis by a titration method. The analysis results are shown in FIG. Since the intermediate layer was not used, the reaction with the substrate occurred vigorously, and the composition was greatly shifted to the excess side of the Nd element.
[0047]
Next, in order to observe the microstructure of the micro portion, the composition ratio of only Nd, Ba, and Cu was analyzed with a polarizing microscope and an electron beam microanalyzer (EPMA). Parts were observed in a similar state.
[0048]
Also, by visually observing the growth surface, select the part where there is no evidence of nucleation of different orientations, and measure the crystal orientation by 3 points at 3 mm intervals near the center and edge of the material surface by the back reflection Laue method. As a result, all of them were oriented in the c-axis reflecting the seed crystal, and the deviation of the orientation between adjacent crystals was about 2 °. Furthermore, nucleation of different orientations observed visually was not observed on at least 80% or more of the sample surface, and it was confirmed that the material was substantially a single crystal material.
[0049]
However, the obtained disk-shaped material is sliced at intervals of 5 mm from the top perpendicular to the growth direction (thickness direction of the disk-shaped sample), and the critical temperature (Tc) near the center and the critical current density in the external magnetic field 1T are determined. As a result of measurement, there was a large composition shift in the thickness direction as shown in FIG.
[0050]
【The invention's effect】
As described in detail above, the present invention provides a raw material mixture containing an RE compound (RE is a rare earth element including Y), a Ba compound and a Cu compound, at least in a temperature range higher than the melting point of the raw material mixture. In an oxide superconductor manufacturing method for manufacturing a RE-Ba-Cu-O-based oxide superconductor by performing a treatment including a direct contact with the raw material mixture in order to support a molded body obtained by molding the raw material mixture By using a material in which the inclusion is composed of a Ba compound and the inclusion does not contain 50 mol% or more of RE element (RE is a rare earth element including Y), the reaction with the substrate is suppressed, and the composition We have made it possible to manufacture large-size, high-performance oxide superconductors with good yield without deviation.
[Brief description of the drawings]
1 is a table showing a composition analysis result in a thickness direction of a material manufactured in Example 1. FIG.
FIG. 2 is a table showing the results of analyzing main crystal phases present in the sample produced in Example 1 using a polarizing microscope and an electron beam microanalyzer (EPMA).
FIG. 3 is a table showing the measurement results of critical temperature (Tc) and critical current density of the sample manufactured in Example 1.
4 is a table showing the composition analysis results in the thickness direction of the samples manufactured in Example 2. FIG.
5 is a table showing the measurement results of critical temperature (Tc) and critical current density of the sample manufactured in Example 2. FIG.
6 is a table showing the composition analysis results in the thickness direction of the samples manufactured in Example 3. FIG.
7 is a table showing the results of analyzing the main crystal phase present in the sample produced in Example 3 with a polarizing microscope and an electron beam microanalyzer (EPMA). FIG.
8 is a table showing the measurement results of critical temperature (Tc) and critical current density of the sample manufactured in Example 3. FIG.
9 is a table showing the results of analyzing main crystal phases present in the sample produced in Example 4 using a polarizing microscope and an electron beam microanalyzer (EPMA). FIG.
10 is a table showing the measurement results of critical temperature (Tc) and critical current density of the sample manufactured in Example 4. FIG.
11 is a table showing the composition analysis results in the thickness direction of the sample manufactured in Comparative Example 1. FIG.
12 is a table showing the measurement results of critical temperature (Tc) and critical current density of the sample manufactured in Comparative Example 1. FIG.

Claims (2)

RE−Ba−Cu−O系超電導結晶であって、RE Ba Cu 中に0.1〜50μmのRE Ba Cu 10 が分散し、かつ、RE−Ba−Cu−O系超電導結晶間の方位のズレが±5゜以下となるように配向し、かつ、前記超電導結晶のc軸方向の平均的な方向のRE元素(REはYを含む希土類元素)の組成ズレが該方向の厚さ15mm以上に渡って±1.5モル%以内(ただし、組成はRE、Ba、Cuのみのモル比で示す)であることを特徴とする酸化物超電導体。A RE-Ba-Cu-O superconducting crystal, RE 1 Ba 2 Cu 3 O RE of X 0.1 to 50 [mu] m in the phase 4 Ba 2 Cu 2 O 10 phase is dispersed, and, RE-Ba- The orientation of the RE element (RE is a rare earth element including Y) which is oriented so that the deviation of the orientation between the Cu-O-based superconducting crystals is ± 5 ° or less and is in the average direction of the c-axis direction of the superconducting crystal. An oxide superconductor characterized in that the composition deviation is within ± 1.5 mol% over a thickness of 15 mm or more in the direction (however, the composition is represented by a molar ratio of only RE, Ba, and Cu). 前記RE−Ba−Cu−O系超電導結晶中に、1〜60wt%のAgが0.1〜100μmの粒子となって分散して含まれていることを特徴とする請求項1に記載の酸化物超電導体。 2. The oxidation according to claim 1, wherein 1 to 60 wt% of Ag is dispersed and contained as particles of 0.1 to 100 μm in the RE-Ba—Cu—O-based superconducting crystal. Superconductor.
JP08195698A 1998-03-27 1998-03-27 Oxide superconductor and manufacturing method thereof Expired - Fee Related JP3844169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08195698A JP3844169B2 (en) 1998-03-27 1998-03-27 Oxide superconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08195698A JP3844169B2 (en) 1998-03-27 1998-03-27 Oxide superconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11278923A JPH11278923A (en) 1999-10-12
JP3844169B2 true JP3844169B2 (en) 2006-11-08

Family

ID=13760963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08195698A Expired - Fee Related JP3844169B2 (en) 1998-03-27 1998-03-27 Oxide superconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3844169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114642B2 (en) * 2001-09-21 2013-01-09 Dowaエレクトロニクス株式会社 Oxide superconductor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11278923A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
Strobel et al. Variations of stoichiometry and cell symmetry in YBa2Cu3O7− x with temperature and oxygen pressure
US5240903A (en) Oxide superconductor comprising babo3 dispersions (where b is zr, sn, ce or ti)
JP4470008B2 (en) Target material, manufacturing method thereof, and oxide superconductor thin film
JP3844169B2 (en) Oxide superconductor and manufacturing method thereof
US7718573B2 (en) Method for producing oxide superconductor, oxide superconductor and substrate material for supporting precursor of the same
US5547921A (en) Rare earth superconducting composition and process for production thereof
US5958840A (en) Oxide superconductor containing Ag and having substantially same crystal orientation, and method for manufacturing the same
JP4101903B2 (en) Oxide superconducting bulk material and manufacturing method thereof
EP1770190B1 (en) METHOD OF FABRICATING RE-Ba-Cu-O SUPERCONDUCTOR
US5849668A (en) Oxide superconductor and method for manufacturing the same
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
JP2001114576A (en) Joined body and oxide superconductor used therein
US6172007B1 (en) Oxide superconductor
JP5114642B2 (en) Oxide superconductor and manufacturing method thereof
US6255255B1 (en) Oxide superconducting material and method of producing the same
JP3217660B2 (en) Manufacturing method of oxide superconductor
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JPH0791057B2 (en) Rare earth oxide superconductor
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP3912890B2 (en) Oxide superconductor laminate and method for producing the same
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP4951790B2 (en) Manufacturing method of oxide superconductivity
JPH05279031A (en) Rare earth oxide superconductor and its production
JP2001114595A (en) High temperature oxide superconductive material and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees