JPH03242384A - Connection of bi-based oxide superconductor - Google Patents

Connection of bi-based oxide superconductor

Info

Publication number
JPH03242384A
JPH03242384A JP2033793A JP3379390A JPH03242384A JP H03242384 A JPH03242384 A JP H03242384A JP 2033793 A JP2033793 A JP 2033793A JP 3379390 A JP3379390 A JP 3379390A JP H03242384 A JPH03242384 A JP H03242384A
Authority
JP
Japan
Prior art keywords
based oxide
superconductor
oxide superconductor
calcined powder
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033793A
Other languages
Japanese (ja)
Inventor
Koichi Furukawa
古川 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2033793A priority Critical patent/JPH03242384A/en
Publication of JPH03242384A publication Critical patent/JPH03242384A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To maintain shape of superconductor and to make a long product in good workability by arranging a precursor or calcined powder of superconductor at fracture part or joint part of Bi-based oxide superconductor, heating, melting and integrating at >=a melt temperature. CONSTITUTION:A precursor or calcined powder of Bi-based oxide superconductor is sprinkled or piled on fracture part or mutual bond part produced in the Bi-based oxide superconductor, heated by a gas burner at the fracture part or the joint part, etc., at 800-920 deg.C, melted and integrated. Then, the part is molded and heat-treated (heated at about 10 deg.C/minute rate of heating up to about 940 deg.C cooled at the same rate of cooling to about 840 deg.C and then quenched) and bonded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、作業性等に優れたBi系酸化物超電導体の接
続方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for connecting Bi-based oxide superconductors with excellent workability.

(従来の技術) 一般にBi系酸化物超電導体の実用化に際してはそれら
の成形体の大型化あるいは長尺品化が必須のことである
(Prior Art) Generally, in order to put Bi-based oxide superconductors into practical use, it is essential to make their molded bodies larger or longer.

この場合、FXB i系酸化物超電導体はその材料が脆
弱であり、他の銀、アルミナあるいはマグネシアなどの
基板と一体化して成形する手法が行われている。実際に
は、適当なバインダーと共に混練したBii酸化物超電
導体前駆物質あるいは仮焼粉体を前述の基板上に所望量
塗りつけ、乾燥及び脱バインダー処理を行い、更に熱処
理して成形体を得ている。
In this case, since the material of the FXB i-based oxide superconductor is fragile, a method is used in which it is formed integrally with another substrate such as silver, alumina, or magnesia. In practice, a desired amount of Bii oxide superconductor precursor or calcined powder kneaded with a suitable binder is applied onto the above-mentioned substrate, dried and binder removed, and then heat-treated to obtain a molded body. .

このような成形体は、上述した焼成時、あるいは高温使
用時などの急激な冷却に際し、前記基板とBi系酸化物
超電導体との熱膨張係数の差により部分的なひび割れな
どの超電導体断裂部が発生することがある。
When such a molded body is rapidly cooled during the above-mentioned firing or during high-temperature use, the superconductor ruptures, such as partial cracks, due to the difference in thermal expansion coefficient between the substrate and the Bi-based oxide superconductor. may occur.

かかる超電導体断裂部の発生により、その部分にて超電
導回路が切断され、超電導体成形体の特性低下を招く、
そのため適時、上記超電導体断裂部の補修接続が必要と
なる。
Due to the occurrence of such a superconductor fracture, the superconducting circuit is severed at that part, leading to deterioration of the characteristics of the superconductor molded body.
Therefore, it is necessary to repair and connect the above-mentioned superconductor fracture portion at a timely manner.

又、Bi系超超電導体長尺化にあたっては、上述の成形
体を適宜接続して長尺品化する必要もある。
Furthermore, in order to lengthen the Bi-based superconductor, it is also necessary to appropriately connect the above-mentioned molded bodies to make it into a long product.

従来のこのようなりi系酸化物超電導体の接続には、バ
インダーと混練したBi系酸化物超電導体前導体あるい
は仮焼粉体を前記断裂部又は接続部に塗り付は等により
配置し、乾燥及び脱バインダー処理を行い、更に焼成処
理を施していた。
In the conventional connection of i-based oxide superconductors, a pre-conductor of Bi-based oxide superconductor or calcined powder kneaded with a binder is applied to the fractured part or the connected part, and then dried. A binder removal treatment was performed, and a firing treatment was further performed.

(発明が解決しようとする課題) しかし上記従来のBi系酸化物超電導体の接続作業にお
いては、上述の熱処理に先立って、前記乾燥処理及び脱
バインダー処理工程が必要となり、全体の熱処理作業が
著しく複雑化する問題があった。
(Problem to be Solved by the Invention) However, in the above-mentioned conventional connection work of Bi-based oxide superconductors, the drying process and debinding process are required prior to the above-mentioned heat treatment, and the overall heat treatment work is significantly increased. The problem was becoming more complicated.

又、このような複雑な熱処理は、その都度被処理品に対
する体積収縮を発生させ、超電導体の付着時の形態保持
を困難にさせる等Bi系酸化物超電導体の特性にも影響
を及ぼす恐れがあった。
In addition, such complicated heat treatment causes volumetric shrinkage of the treated product each time, which may affect the properties of the Bi-based oxide superconductor, such as making it difficult to maintain the shape of the superconductor when it is attached. there were.

(課題を解決するための手段) 本発明者等は、上記問題点を解決すべく鋭意検討を重ね
た結果この発明を完成するに到ったものである。
(Means for Solving the Problems) The present inventors have completed the present invention as a result of intensive studies to solve the above problems.

即ち本発明は、Bi系酸化物超を導体に生じた断裂部、
又は該超電導体相互間に、Bi系酸化物超電導体前駆体
あるいはそれらの仮焼粉体を適宜配置し、これら両材料
の溶融温度を超える温度にて前記断裂部又は接続部近傍
を加熱して両者を溶融−体化させ、常法により成形を行
った後熱処理を行うことを特徴とするBi系酸化物超電
導体の接続方法である。
That is, the present invention provides a fracture portion that occurs in a Bi-based oxide superconductor,
Alternatively, a Bi-based oxide superconductor precursor or a calcined powder thereof is appropriately arranged between the superconductors, and the vicinity of the fractured part or the connection part is heated at a temperature exceeding the melting temperature of both of these materials. This is a method for connecting Bi-based oxide superconductors, which is characterized in that both are melted, molded by a conventional method, and then heat treated.

本発明において、Bi系酸化物超電導体前駆体とは、構
成元素をそれぞれ含有する酸化物や炭酸塩などの化合物
の混合体、Bi系酸化物超電導体に合成されるまでの中
間体例えば共沈混合物、酸素欠損型複合酸化物、構成元
素の合金など酸素含有雰囲気中の加熱処理によりBi系
酸化物超電導体に反応するものを意味する。又その仮焼
粉体は、上記原料物質をその融点以下の温度880 ’
C以下で熱処理して得られる。
In the present invention, the Bi-based oxide superconductor precursor refers to a mixture of compounds such as oxides and carbonates containing each of the constituent elements, and intermediates until synthesis into the Bi-based oxide superconductor, such as coprecipitation. It means a mixture, an oxygen-deficient composite oxide, an alloy of constituent elements, etc. that reacts with the Bi-based oxide superconductor by heat treatment in an oxygen-containing atmosphere. The calcined powder is prepared by heating the raw material to a temperature of 880' below its melting point.
Obtained by heat treatment at temperatures below C.

又、上記前駆体及び仮焼粉体の断裂部又は接続部への配
置は、それらの散布、盛りつけなどにより行う。
Further, the precursor and the calcined powder are placed on the fractured part or the connected part by scattering, piling, or the like.

上述の断裂部又は接続部での溶融一体化は、最も好まし
くはガスバーナーを用いて行うのが好適である。
The melting and integration at the above-mentioned fractures or connections is most preferably carried out using a gas burner.

その温度条件は、Bi系酸化物超電導体の溶融温度であ
る880°C〜920°Cの範囲である。
The temperature conditions are in the range of 880°C to 920°C, which is the melting temperature of the Bi-based oxide superconductor.

熔融一体化後の当該部分の成形は、実際には例えば白金
製へらなどによりその表面が平滑になるよう成形する。
After melting and integrating, the part is actually molded using, for example, a platinum spatula so that its surface is smooth.

成形後の熱処理は、常法の如く、10°(:/min程
度で、940°C程度に昇温し、同率で約840°Cに
陣温させ、以下急冷を行う。
The heat treatment after molding is carried out in the usual manner by raising the temperature to about 940°C at a rate of about 10° (:/min), raising the temperature to about 840°C at the same rate, and then rapidly cooling.

(作 用) 本発明は上記のように、Bi系酸化$1超電導体断裂部
又は接続部に、Bt系酸化物超電導体前駆体あるいはそ
れらの仮焼粉体を適宜配置し、これら両材料の溶融温度
を超える温度にて前記断裂部又は接続部近傍を加熱して
両者を溶融一体化させるものである。
(Function) As described above, in the present invention, a Bt-based oxide superconductor precursor or a calcined powder thereof is appropriately placed in a fractured part or a connection part of a Bi-based oxidized $1 superconductor, and The vicinity of the rupture portion or the connection portion is heated to a temperature exceeding the melting temperature to melt and integrate the two.

そして、上記熔融一体化は、ガスバーナ等の照射により
非常に作業性良く行われることになり、熱処理が単純化
され、当該部品での熱収縮現象も少なくなり、結果的に
上述の超電導体形態保持が得易(なる。
The above-mentioned melting and integration can be performed very easily by irradiation with a gas burner, etc., which simplifies the heat treatment and reduces the thermal shrinkage phenomenon in the parts, resulting in the above-mentioned superconductor shape retention. is easy to obtain.

(実施例) 以下実施例によりこの発明を具体的に説明する。(Example) The present invention will be specifically explained below with reference to Examples.

実施例1 第1図a、bは、5C111幅のAg基体1上に、0.
3■厚のBizSrzCaCugO工2を形成した成形
体3において、その全幅にわたり0.5a幅に生じた断
裂部4を接続する例である。
Example 1 FIGS. 1a and 1b show that a 0.0.
This is an example of connecting a fractured part 4 which is 0.5a wide over the entire width of a molded body 3 formed with a BizSrzCaCugO process 2 having a thickness of 3cm.

前記断裂部4上に、BizSrzCaCuzOx仮焼粉
体5を散布し、ガスバーナー6を当該部に当てて両者を
溶融させ、加熱部を白金製こて7により表面を平滑化し
た。
BizSrzCaCuzOx calcined powder 5 was sprinkled on the fractured part 4, a gas burner 6 was applied to the part to melt both, and the surface of the heated part was smoothed with a platinum trowel 7.

次にバーナー6での加熱を停止し冷却した0次いで、酸
素雰囲気中10℃/腸Inにて940°Cに昇温し、同
温度勾配にて850℃に陳温し6時間保持し急冷した。
Next, the heating with burner 6 was stopped and cooled.Then, the temperature was raised to 940°C in an oxygen atmosphere at 10°C/Intestine In, and then the temperature was raised to 850°C with the same temperature gradient, and the temperature was maintained for 6 hours to quench. .

接合部をはさみ、4端子法にて電気抵抗値を測定したと
ころ、液体窒素温度にて超電導を示し、超電導体接合が
良好に行われたことをf!認した。
When we sandwiched the joint and measured the electrical resistance value using the four-terminal method, it showed superconductivity at liquid nitrogen temperature, indicating that the superconductor joining was successful! Approved.

又、同位置にて臨界電流密度(Jc)を測定したところ
120A/cdであった。
Further, when the critical current density (Jc) was measured at the same position, it was 120 A/cd.

実施例2 第2図a、bは、切口3X2m++、長さ20mの一つ
の棒状のBizSrzCaCuzOx成形体2a  2
aの接続の例を示す。
Example 2 Figures 2 a and b show one rod-shaped BizSrzCaCuzOx molded body 2a 2 with a cut section of 3 x 2 m++ and a length of 20 m.
An example of connection a is shown.

接続部4a上に、BizSrzCaCuzOx仮焼粉体
5aを散布し、実施例1に準してガスバーナー6を用い
当該部分の超電導体を溶融一体化させた。
BizSrzCaCuzOx calcined powder 5a was sprinkled on the connecting portion 4a, and the superconductor in that portion was melted and integrated using the gas burner 6 in accordance with Example 1.

以下実施例1と同様にして、加熱部成形及び熱処理を行
った。
Thereafter, heating section molding and heat treatment were performed in the same manner as in Example 1.

同様にして接続部の評価を行ったところ、液体窒素温度
で超電導を示し、又、Jc値は130A/cdであった
When the connection was similarly evaluated, it showed superconductivity at liquid nitrogen temperature, and the Jc value was 130 A/cd.

実施例3 第3図a、bは、シールド機器等用の大口径円筒体1b
をの接続例を示す。
Example 3 Figures 3a and 3b show a large diameter cylindrical body 1b for shield equipment, etc.
An example of how to connect is shown below.

厚さ5+m++、径50c+aのA、円筒上に0.3 
lll11厚のBizSrzCaCuzOつが被着され
て形成されている。図の如く一方が他方に嵌合される構
成にて接続部4bを形成し、この接続部4b上にBiz
SrzCaCuzO++仮焼粉体5bを散布し、実施例
1に準じてガスバーナー6を用いて当該部分の超電導体
を溶融一体化させた。
Thickness 5+m++, diameter 50c+a A, 0.3 on cylinder
It is formed by depositing BizSrzCaCuzO with a thickness of lll11. As shown in the figure, a connecting portion 4b is formed in a configuration in which one is fitted into the other, and a Biz
SrzCaCuzO++ calcined powder 5b was spread, and the superconductor in the relevant portion was melted and integrated using the gas burner 6 according to Example 1.

以下実施例1と同様に、加熱部成形及び熱処理等を行い
、接続部の評価を行った。その結果、円筒体中心部(第
3図A)での磁束密度は5X10−’Gであり、地磁気
を十分に遮蔽し接合が完全に行われていることが認めら
れた。
Thereafter, heating portion molding, heat treatment, etc. were performed in the same manner as in Example 1, and the connection portion was evaluated. As a result, the magnetic flux density at the center of the cylinder (FIG. 3A) was 5×10 −'G, and it was confirmed that the earth's magnetic field was sufficiently shielded and the bonding was completed.

(発明の効果) この発明は上記の如<、Bi系酸化物超電導体の断裂部
、又はそれら相互の接続にあたり、該酸化物超電導体前
駆体あるいはそれらの仮焼粉体を適宜配置し、これら両
材料の溶融温度を超える温度にて前記断裂部又は接続部
近傍を加熱して両者を溶融一体化させ、常法により成形
を行った後熱処理を行うようにしたので、該溶融化作業
が非常に作業性良く行われることになり、熱処理が単純
化され、当該部分での熱収縮現象も少なくなり、結果的
に上述の超電導体形態保持が得易くなるなどの効果をも
たらし、上記の問題が解消される。
(Effects of the Invention) As described above, the present invention provides for the oxide superconductor precursor or its calcined powder to be appropriately arranged at the fractured portion of the Bi-based oxide superconductor or for their mutual connection. The area near the fractured part or the connection part is heated at a temperature exceeding the melting temperature of both materials to fuse and integrate them, and the heat treatment is performed after molding by a conventional method, so that the melting work is extremely difficult. This simplifies the heat treatment and reduces the thermal shrinkage phenomenon in the relevant parts, resulting in the above-mentioned ability to maintain the superconductor shape more easily, which solves the above-mentioned problems. It will be resolved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、この発明の接続作業の3つの例を示
す説明図である。 1・・・基体、2.2a−・・超電導体、4.4a、4
b・・・断裂部(接続部)、5.5a、5b・・・仮焼
粉体。 第1図 第 2 図 第 図 b b
FIGS. 1 to 3 are explanatory diagrams showing three examples of connection work according to the present invention. 1... Substrate, 2.2a-... Superconductor, 4.4a, 4
b...Tear section (connection section), 5.5a, 5b...Calcined powder. Figure 1 Figure 2 Figure b b

Claims (1)

【特許請求の範囲】[Claims] Bi系酸化物超電導体に生じた断裂部、又は該超電導体
相互間に、Bi系酸化物超電導体前駆体あるいはそれら
の仮焼粉体を適宜配置し、これら両材料の溶融温度を超
える温度にて前記断裂部又は接続部近傍を加熱して両者
を溶融一体化させ、常法により成形を行った後熱処理を
行うことを特徴とするBi系酸化物超電導体の接続方法
A Bi-based oxide superconductor precursor or its calcined powder is appropriately placed in the fractured part of the Bi-based oxide superconductor or between the superconductors, and heated to a temperature exceeding the melting temperature of both materials. A method for connecting Bi-based oxide superconductors, characterized in that the vicinity of the fractured part or the connected part is heated to melt and integrate the two, and after being molded by a conventional method, a heat treatment is performed.
JP2033793A 1990-02-16 1990-02-16 Connection of bi-based oxide superconductor Pending JPH03242384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033793A JPH03242384A (en) 1990-02-16 1990-02-16 Connection of bi-based oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033793A JPH03242384A (en) 1990-02-16 1990-02-16 Connection of bi-based oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03242384A true JPH03242384A (en) 1991-10-29

Family

ID=12396351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033793A Pending JPH03242384A (en) 1990-02-16 1990-02-16 Connection of bi-based oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03242384A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157372A (en) * 1993-12-02 1995-06-20 Chubu Electric Power Co Inc Method for joining bismuth-containing high temperature superconductor
DE112007003312T5 (en) 2007-01-31 2010-01-28 Council Of Scientific & Industrial Research Method for connecting oxide superconducting tubes with a superconducting joint
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157372A (en) * 1993-12-02 1995-06-20 Chubu Electric Power Co Inc Method for joining bismuth-containing high temperature superconductor
DE112007003312T5 (en) 2007-01-31 2010-01-28 Council Of Scientific & Industrial Research Method for connecting oxide superconducting tubes with a superconducting joint
DE112007003312B4 (en) * 2007-01-31 2019-02-07 Council Of Scientific & Industrial Research Method for connecting oxide superconducting tubes with a superconducting joint
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate

Similar Documents

Publication Publication Date Title
JPH0440289B2 (en)
JPH03242384A (en) Connection of bi-based oxide superconductor
JP2672926B2 (en) Method for producing yttrium-based superconductor
JP2907313B2 (en) Bismuth-based high-temperature superconductor joining method
JPH06111862A (en) Solid substance composed of ceramic high- temperature superconducting material connected to metal conductor and its manufacture
JPH06648B2 (en) Meltable superconductor and manufacturing method thereof
JPH04104970A (en) Bonding or mending oxide superconductor
JPH03237073A (en) Joining method for ceramics superconductive material
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JPH027309A (en) Manufacture of oxide type superconductive wire
JP2721821B2 (en) Method of removing sheath sheathed on superconductor
JP3709532B2 (en) Manufacturing method of oxide superconductor
JPH0669555A (en) Josephson junction element
JPH02212372A (en) Joined structure of oxide superconductor
JP3709531B2 (en) Manufacturing method of oxide superconductor
JPH0312313A (en) Production of superconducting ceramic fiber
JPH01239026A (en) Production of oxide superconducting form
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH01201060A (en) Production of superconductor
JP3548795B2 (en) Method for producing triaxially oriented oxide superconducting composite
JPH05339009A (en) Production of bi-base superconducting material and superconducting thick film
JPH02141461A (en) Production of high temperature ceramic superconductor
JPH02227249A (en) Joining method for magnetic shielding material made of bismuth oxide superconductor
JPH02221149A (en) Production of oxide superconductor
JPH0393664A (en) Production of oxide superconductor