JP2907313B2 - Bismuth-based high-temperature superconductor joining method - Google Patents

Bismuth-based high-temperature superconductor joining method

Info

Publication number
JP2907313B2
JP2907313B2 JP5302883A JP30288393A JP2907313B2 JP 2907313 B2 JP2907313 B2 JP 2907313B2 JP 5302883 A JP5302883 A JP 5302883A JP 30288393 A JP30288393 A JP 30288393A JP 2907313 B2 JP2907313 B2 JP 2907313B2
Authority
JP
Japan
Prior art keywords
superconducting
temperature
joining
crystallized glass
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5302883A
Other languages
Japanese (ja)
Other versions
JPH07157372A (en
Inventor
敏宏 春日
良弘 阿部
光一 中村
英吉 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP5302883A priority Critical patent/JP2907313B2/en
Publication of JPH07157372A publication Critical patent/JPH07157372A/en
Application granted granted Critical
Publication of JP2907313B2 publication Critical patent/JP2907313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ビスマス系高温超電導
体の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining bismuth-based high-temperature superconductors.

【0002】[0002]

【従来の技術】従来、主としてファインセラミックスか
ら成る高温超電導体は、金属とは異なり、溶接等による
接合が極めて困難である。即ち、ファインセラミックス
の一種であるビスマス系の高温超電導体は、熱衝撃に対
して弱く、単なる加熱による接合を試みた場合、クラッ
クが発生し、接合は実際上、不可能であることから、目
的とする形状の高温超電導体を初めから一体構造で製作
しなければならない。そのため、大きい形状の高温超電
導体を製作するためには焼結炉等の設備が大型化しなけ
ればならないからコストが高くなるとともに、特に大型
で複雑な形状の高温超電導体は均一な品質の維持が難し
い。そのような理由により、従来は高温超電導体の大型
化が制限されている。
2. Description of the Related Art Conventionally, high-temperature superconductors mainly composed of fine ceramics are very difficult to join by welding or the like, unlike metals. In other words, bismuth-based high-temperature superconductors, which are a type of fine ceramics, are vulnerable to thermal shock, and cracks will occur if joining is attempted simply by heating, making joining impossible in practice. A high-temperature superconductor having the following shape must be manufactured in an integrated structure from the beginning. Therefore, in order to manufacture a large-sized high-temperature superconductor, the equipment such as a sintering furnace must be increased in size, which increases the cost, and in particular, a large and complicated-shaped high-temperature superconductor maintains uniform quality. difficult. For such a reason, upsizing of the high-temperature superconductor has conventionally been limited.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明では、ビ
スマス系の高温超電導体の接合を可能にすることにより
大型設備を使用しなくても大型の形状の高温超電導体を
製作できるように、且つ大型で複雑な形状の高温超電導
体であっても均一な品質を確保できるようにすることを
解決すべき技術的課題とするものである。
SUMMARY OF THE INVENTION Therefore, according to the present invention, a high-temperature superconductor having a large shape can be manufactured without using large-scale equipment by enabling joining of a bismuth-based high-temperature superconductor. It is a technical problem to be solved to ensure uniform quality even for a high-temperature superconductor having a large and complicated shape.

【0004】[0004]

【課題を解決するための手段】上記課題解決のための技
術的手段は、Bi、Sr、Ca、及びCuそれぞれの酸
化物の混合原料を加熱溶融し、所要の形状に冷却固化し
たあと、熱処理された複数のBi Sr CaCu
x超電導結晶を含む超電導結晶化ガラスそれぞれの接合
部の表面部を加熱して溶融状態にする行程と、表面部が
溶融状態になったそれぞれの接合部を直接突き合わせる
行程と、その直接突き合わせた接合部を所要の温度で加
熱することによりBi Sr CaCu Ox超電導結
晶を溶融させて接合する行程と、前記接合部が接合され
た状態の前記超電導結晶化ガラスを700℃〜880℃
の温度で所要時間空気中または酸素を含んだ雰囲気中で
加熱したうえ同温度で所要時間保持したあと自然放冷す
る行程とにより前記超電導結晶化ガラスを接合すること
である。
The technical means for solving the above-mentioned problems are as follows: Bi, Sr, Ca and Cu
The mixed raw material of the compound is heated and melted, then cooled and solidified to the required shape.
And then heat-treated a plurality of Bi 2 Sr 2 CaCu 2 O
Bonding of superconducting crystallized glass including x superconducting crystal
The process of heating the surface of the part to a molten state,
Directly butting each melted joint
The process and its directly butted joints are heated at the required temperature.
Bi 2 Sr 2 CaCu 2 Ox superconductivity by heating
The step of melting and joining the crystals,
The superconducting crystallized glass in the closed state is heated at 700 ° C. to 880 ° C.
At the temperature of the required time in the air or oxygen-containing atmosphere
Heat, hold at the same temperature for the required time, and allow to cool naturally
Joining the superconducting crystallized glass by
It is.

【0005】[0005]

【作用】Bi Sr CaCu Ox超電導結晶を含む
超電導結晶化ガラスそれぞれの接合部の表面部を加熱し
て溶融状態にしたあと、溶融状態の接合部を直接突き合
わせたうえ所要の温度で加熱することによりBi Sr
CaCu Ox超電導結晶を溶融させて接合し、接合
された状態の超電導結晶化ガラスを700℃〜880℃
の温度で所要時間空気中または酸素を含んだ雰囲気中で
加熱し、その温度で所要時間保持したあと自然放冷する
と、その接合部は亀裂の無い状態で接合され、且つ、そ
の接合部の超電導特性は、接合前の超電導結晶化ガラス
と同様の特性になることが確かめられた。
[Action] Including Bi 2 Sr 2 CaCu 2 Ox superconducting crystal
Heat the surface of the joint of each superconducting crystallized glass
Melted, and then directly join the melted joints
After heating at the required temperature, Bi 2 Sr
2 CaCu 2 Ox superconducting crystal is melted and joined, joining
The superconducting crystallized glass in a state of 700 ° C. to 880 ° C.
At the temperature of the required time in the air or oxygen-containing atmosphere
Heat, hold for the required time at that temperature, and let it cool naturally
And the joints are joined without cracks, and
The superconducting properties of the joint of
It was confirmed that the characteristics were the same as those of.

【0006】[0006]

【実施例】次に、本発明の実施例について説明する。市
販の特級試薬(酸化物、炭酸塩、硝酸塩、水酸化物等の
例えば、Bi3,SrCO3,CaCO3,CuO
等)の粉末を用いて酸化物比で、Bi:SrO:
CaO:CuO=1:2:1:2のモル比になるように
秤量した。これらを混合したあと、白金製のるつぼに入
れ、1000℃〜1400℃に保持した電気炉で加熱し
て融液化した。予め用意した内径3mmの石英管の一端
をこの融液に挿入し、反対側の末端から減圧して同融液
を管内に吸引したあと、室温まで放冷した。次に、外部
の石英管を機械的に外すことにより、ガラス相を多量に
含む棒状の融液固化物が得られた。
Next, an embodiment of the present invention will be described. Commercially available special grade reagents (eg, Bi 2 O 3, SrCO 3, CaCO 3, CuO such as oxides, carbonates, nitrates, and hydroxides)
Etc.) and the oxide ratio, Bi 2 O 3 : SrO:
It was weighed so that the molar ratio of CaO: CuO = 1: 2: 1: 2. After mixing these, the mixture was put into a crucible made of platinum, and heated and melted in an electric furnace maintained at 1000 ° C. to 1400 ° C. One end of a previously prepared quartz tube having an inner diameter of 3 mm was inserted into the melt, the melt was suctioned into the tube under reduced pressure from the opposite end, and then allowed to cool to room temperature. Next, by mechanically removing the external quartz tube, a rod-shaped molten solid containing a large amount of a glass phase was obtained.

【0007】次に、上記棒状の融液固化物を700℃〜
880℃で空気中または酸素を含んだ雰囲気中で加熱
し、その温度で5〜100時間保持したあと自然放冷し
て超電導結晶化ガラスを得た。この超電導結晶化ガラス
にはBiSrCaCu超電導結晶が生成して
おり、ガラス相がほとんど残留していなかった。この超
電導結晶化ガラスの超電導特性を測定したところ、電気
抵抗ゼロを示す臨界温度は約80K(ケルビン)、外部
磁場ゼロにおける77Kでの臨界電流密度は約80A/
cmであった。
Next, the rod-like solidified melt is heated to 700 ° C.
The mixture was heated at 880 ° C. in air or an atmosphere containing oxygen, kept at that temperature for 5 to 100 hours, and allowed to cool naturally to obtain a superconducting crystallized glass. This superconducting crystallized glass has been generated Bi 2 Sr 2 CaCu 2 O x superconducting crystal, glass phase was observed almost no residual. When the superconducting properties of the superconducting crystallized glass were measured, the critical temperature at which the electric resistance was zero was about 80 K (Kelvin), and the critical current density at 77 K at zero external magnetic field was about 80 A /
cm 2 .

【0008】図1に示すように、棒状の上記の超電導結
晶化ガラス1,1を2本用意し、これらを直列に接合す
るものとする。図2に示すように、一般的に使用される
ブンゼンバーナー2で超電導結晶化ガラス1,1の接合
部を加熱し、図3に示すように表面部のみが溶けた状態
になったとき、図4に示すように超電導結晶化ガラス
1,1の接合部を接触させる。そのあと、図5に示すよ
うに同ブンゼンバーナー2で接触状態にある接合部を加
熱し、十分に接合させる。
As shown in FIG. 1, two rod-shaped superconducting crystallized glasses 1, 1 are prepared, and these are joined in series. As shown in FIG. 2, when a commonly used Bunsen burner 2 heats the junction of superconducting crystallized glass 1 and 1, and only the surface is melted as shown in FIG. As shown in FIG. 4, the junctions of the superconducting crystallized glasses 1 and 1 are brought into contact. Thereafter, as shown in FIG. 5, the bonding portion in a contact state is heated by the Bunsen burner 2 to be sufficiently bonded.

【0009】上記接合部が十分に接合された状態では、
その接合部近傍に亀裂の発生が見られず、完全な接合状
態になっていた。この接合部は、一旦、高温になって溶
融しており、超電導結晶化ガラス1,1のBiSr
CaCu超電導結晶は溶融し、ガラス相が多くな
っていた。
In a state where the above-mentioned joints are sufficiently joined,
No cracks were found near the joint, and the joint was in a complete joined state. This joint is once heated to a high temperature and melted, and the Bi 2 Sr 2
The CaCu 2 O x superconducting crystal was melted and the glass phase was increased.

【0010】上記のようにBiSrCaCu
超電導結晶が溶融し、ガラス相が多くなった接合部を有
する図6に示すような超電導結晶化ガラス1,1を、図
示していない電気炉に入れ、700℃〜880℃で空気
中または酸素を含んだ雰囲気中で加熱し、その温度で5
〜100時間保持したあと自然放冷した。このように熱
処理された超電導結晶化ガラス1,1の接合部にはBi
SrCaCu超電導結晶が生成されており、
直流4端子法により電気抵抗を測定したところ、接合部
は超電導結晶でつながれており、電気抵抗ゼロを示す臨
界温度は約80K(ケルビン)、外部磁場ゼロにおける
77Kでの臨界電流密度は約80A/cmとなって、
接合前の超電導結晶化ガラス1,1とほぼ同レベルの超
電導特性が得られた。
As described above, Bi 2 Sr 2 CaCu 2 O x
The superconducting crystallized glass 1, 1 having a junction where the superconducting crystal has melted and the glass phase has increased as shown in FIG. 6 is placed in an electric furnace (not shown) and heated at 700 ° C. to 880 ° C. in air or oxygen. Heating in an atmosphere containing
After holding for 100100 hours, the mixture was naturally cooled. The junction of the superconducting crystallized glass 1,1 thus heat-treated is Bi
2 Sr 2 CaCu 2 O x superconducting crystal is generated,
When the electric resistance was measured by the DC four-terminal method, the junctions were connected by a superconducting crystal, the critical temperature at which the electric resistance was zero was about 80 K (Kelvin), and the critical current density at 77 K at zero external magnetic field was about 80 A / It becomes cm 2, and
Superconducting properties almost equal to those of superconducting crystallized glass 1, 1 before joining were obtained.

【0011】尚、前記融液固化物を、700℃〜880
℃で空気中または酸素を含んだ雰囲気中で加熱し、その
温度で5〜100時間保持したあと自然放冷するという
前記行程を省いた場合には、次のような問題が生じた。
即ち、前記石英管を機械的に外したあと、ブンゼンバー
ナーで2本の融液固化物の端部を加熱溶融し、接合させ
たあと、更にその接合部を加熱することにより十分に接
合した状態での冷却中に、接合部分近傍に亀裂が生じて
完全な接合が得られなかった。但し、特殊な電気炉中で
全体をゆっくり冷却することができれば上記亀裂の発生
が防止され、完全な接合が可能になる。
The solidified melt is treated at 700 ° C. to 880
The following problem arises when the above-mentioned step of heating at a temperature of 0 ° C. in the air or an atmosphere containing oxygen, maintaining the temperature at that temperature for 5 to 100 hours, and naturally cooling is omitted.
That is, after the quartz tube is mechanically removed, the ends of the two solidified melts are heated and melted by a Bunsen burner, joined, and then the joint is sufficiently joined by heating the joint. During the cooling in, cracks occurred near the joints, and complete joining could not be obtained. However, if the whole can be cooled slowly in a special electric furnace, the above-mentioned cracks are prevented from occurring, and perfect joining becomes possible.

【0012】また、図1に示した超電導結晶化ガラス
1,1の形状に限らず、例えば図7に示すようにそれぞ
れ異なった形状の超電導結晶化ガラス3,4を接合する
こともできる。あるいは二つではなく、それ以上の数の
超電導結晶化ガラスでも接合することができる。更に、
丸形に限らず、角形等の超電導結晶化ガラスを接合する
こともできる。
The superconducting crystallized glasses 1 and 1 shown in FIG. 1 are not limited to the shape, but superconducting crystallized glasses 3 and 4 having different shapes can be joined as shown in FIG. 7, for example. Alternatively, it is possible to join not only two but also more superconducting crystallized glasses. Furthermore,
Not only a round shape but also a superconducting crystallized glass such as a square shape can be joined.

【0013】次に、焼結法により製作された高温超電導
体の接合方法について説明する。市販の特級試薬(酸化
物、炭酸塩、硝酸塩、水酸化物等の例えば、Bi
3,SrCO.CaCO3,CuO等)の粉末を用い
て酸化物比で、Bi:SrO:CaO:CuO=
1:2:1:2のモル比になるように秤量した。これら
を混合したあと、800℃で24時間加熱して仮焼し、
室温まで冷却した。これを粉砕し、200MPaで角柱
状(4×5×40mm)に加圧成形したものを電気炉に
入れ、800〜880℃で空気中または酸素を含んだ雰
囲気中で加熱し、その温度で5〜100時間保持したあ
と自然放冷した。この製作行程により、BiSr
aCu超電導結晶から成る角柱状セラミックスが
得られた。
Next, a method of joining a high-temperature superconductor manufactured by a sintering method will be described. Commercially available high-grade reagents (eg, Bi 2 O such as oxides, carbonates, nitrates, and hydroxides)
3, SrCO 3 . CaCO 3, an oxide ratio using the powder of CuO or the like), Bi 2 O 3: SrO : CaO: CuO =
It was weighed so as to have a molar ratio of 1: 2: 1: 2. After mixing these, it is calcined by heating at 800 ° C for 24 hours,
Cooled to room temperature. This was pulverized, pressed into a prismatic shape (4 × 5 × 40 mm) at 200 MPa, placed in an electric furnace, and heated at 800 to 880 ° C. in air or an atmosphere containing oxygen. After holding for 100100 hours, the mixture was naturally cooled. By this manufacturing process, Bi 2 Sr 2 C
A prismatic ceramic made of aCu 2 O x superconducting crystal was obtained.

【0014】上記角柱状セラミックスの超電導特性を測
定したところ、電気抵抗ゼロを示す臨界温度は約80K
(ケルビン)、外部磁場ゼロにおける77Kでの臨界電
流密度は約80A/cmであり、前述の超電導結晶化
ガラス1とほぼ同様の特性であった。
When the superconducting properties of the prismatic ceramics were measured, the critical temperature at which the electrical resistance was zero was about 80K.
(Kelvin), the critical current density at 77 K with no external magnetic field was about 80 A / cm 2 , which was almost the same as that of the superconducting crystallized glass 1 described above.

【0015】以下、上記の角柱状セラミックスを2本用
意し、これを接合する接合方法について説明する。尚、
この接合行程は、ほぼ前述の超電導結晶化ガラス1,1
の接合行程と同様であるため、図示は省略する。一般的
に使用されるブンゼンバーナーで角柱状セラミックスそ
れぞれの接合部を加熱し、接合部表面のみが溶けた状態
になったとき、角柱状セラミックスそれぞれの接合部を
接触させる。そのあと、同ブンゼンバーナーで、接触状
態にある接合部を加熱し、十分に接合させる。
Hereinafter, a joining method for preparing two prismatic ceramics and joining them will be described. still,
This joining process is performed substantially in the above-described superconducting crystallized glass 1,1.
The illustration is omitted because it is the same as the joining process. A generally used Bunsen burner heats the joint of each of the prismatic ceramics, and when only the joint surface is melted, the joints of each of the prismatic ceramics are brought into contact. After that, the contact portion in the contact state is heated by the Bunsen burner to be sufficiently joined.

【0016】尚、上記接合部が十分に接合された状態で
は、その接合部近傍に亀裂の発生が見られず、完全な接
合状態になっていた。この接合部は、一旦、高温になっ
て溶融しており、角柱状セラミックス中に生成していた
BiSrCaCu超電導結晶は溶融し、ガラ
ス相が多くなっていた。
When the joints were sufficiently joined, no cracks were observed near the joints, and the joints were completely joined. This joint portion was once heated to a high temperature and melted, and the Bi 2 Sr 2 CaCu 2 O x superconducting crystal generated in the prismatic ceramics was melted and the glass phase was increased.

【0017】上記のようにBiSrCaCu
超電導結晶が溶融し、ガラス相が多くなった接合部を有
する角柱状セラミックスを電気炉に入れ、700℃〜8
80℃で空気中または酸素を含んだ雰囲気中で加熱し、
その温度で5〜100時間保持したあと自然放冷した。
このように熱処理された角柱状セラミックスの接合部に
は、BiSrCaCu超電導結晶が生成され
ており、直流4端子法により電気抵抗を測定したとこ
ろ、接合部は超電導結晶でつながれており、電気抵抗ゼ
ロを示す臨界温度は約80K(ケルビン)、外部磁場ゼ
ロにおける77Kでの臨界電流密度は約80A/cm
となって、接合前の角柱状セラミックスとほぼ同レベル
の超電導特性が得られた。
As described above, Bi 2 Sr 2 CaCu 2 O x
The prismatic ceramic having the junction where the superconducting crystal is melted and the glass phase is increased is placed in an electric furnace, and the temperature is set to 700 ° C.
Heating at 80 ° C in air or oxygen-containing atmosphere,
After maintaining at that temperature for 5 to 100 hours, it was allowed to cool naturally.
The junction of the heat-treated prismatic ceramic Thus, Bi 2 Sr 2 CaCu 2 O x superconductor crystals are produced, where the electrical resistance was measured by a dc four-terminal method, the junction is connected by superconducting crystals The critical temperature at which the electric resistance is zero is about 80 K (Kelvin), and the critical current density at 77 K at zero external magnetic field is about 80 A / cm 2.
As a result, superconducting properties at substantially the same level as those of the prismatic ceramics before joining were obtained.

【0018】以上の説明では、局部加熱手段としてブン
ゼンバーナーを用いたが、ブンゼンバーナーに限らず酸
素バーナー、レーザー加熱、あるいは赤外線集光加熱な
どの局部加熱手段を用いることができる。
In the above description, the Bunsen burner is used as the local heating means. However, the present invention is not limited to the Bunsen burner, and a local heating means such as an oxygen burner, laser heating, or infrared condensing heating can be used.

【0019】[0019]

【発明の効果】以上のように本発明によれば、Bi
CaCu 超電導結晶を含む超電導結晶化ガラ
スそれぞれの接合部の表面部を加熱して溶融状態にした
あと、溶融状態の接合部を直接突き合わせたうえ所要の
温度で加熱することによりBi Sr CaCu
超電導結晶を溶融させて接合し、接合された状態の超電
導結晶化ガラスを700℃〜880℃の温度で所要時間
空気中または酸素を含んだ雰囲気中で加熱し、その温度
で所要時間保持したあと自然放冷すると、その接合部は
亀裂の無い状態で接合され、且つ、その接合部の超電導
特性は、接合前の超電導結晶化ガラスと同等の特性にな
るため、任意の形状のビスマス系高温超電導体を接合す
ることができる。そのため、 (1)小さい高温超電導体を接合し、組み合わせること
により大型化することができる。 (2)複雑な形状の高温超電導体を形成することができ
る。 (3)焼結炉等の設備を小型化することができるため、
大幅なコストダウンが可能になる。 (4)高温超電導製品の均一な品質を維持することがで
きる。という効果がある。
As described above, according to the present invention, Bi 2 S
Superconducting crystallized glass containing r 2 CaCu 2 O x superconducting crystal
The surface of each joint was heated to a molten state
After that, the joints in the molten state
By heating at a temperature, Bi 2 Sr 2 CaCu 2 O x
The superconducting crystal is melted and joined, and the superconducting
Time required for conducting crystallized glass at 700 ° C to 880 ° C
Heat in air or an atmosphere containing oxygen,
And let it cool naturally after holding the required time at
Joined without cracks and superconducting at the joint
The characteristics are equivalent to those of the superconducting crystallized glass before joining.
Therefore, a bismuth-based high-temperature superconductor having an arbitrary shape can be joined. Therefore, (1) It is possible to increase the size by joining and combining small high-temperature superconductors. (2) A high-temperature superconductor having a complicated shape can be formed. (3) Since equipment such as a sintering furnace can be downsized,
Significant cost reduction becomes possible. (4) Uniform quality of the high-temperature superconducting product can be maintained. This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】二つの被接合高温超電導体の接合前の状態を示
した斜視図である。
FIG. 1 is a perspective view showing a state before joining of two joined high-temperature superconductors.

【図2】二つの被接合高温超電導体の接合部分を加熱す
る状態を示した斜視図である。
FIG. 2 is a perspective view showing a state in which a joint between two high-temperature superconductors to be joined is heated.

【図3】二つの被接合高温超電導体の接合部分が溶融し
た状態を示した斜視図である。
FIG. 3 is a perspective view showing a state where a joint portion between two joined high-temperature superconductors is melted.

【図4】二つの被接合高温超電導体の接合部分を接合し
た状態を示した斜視図である。
FIG. 4 is a perspective view showing a state in which a joining portion between two joined high-temperature superconductors is joined.

【図5】二つの被接合高温超電導体の接合部分の接合後
に、その部分を加熱する状態を示した斜視図である。
FIG. 5 is a perspective view showing a state in which the two high-temperature superconductors to be joined are heated after being joined.

【図6】接合完了した高温超電導体の斜視図である。FIG. 6 is a perspective view of the joined high-temperature superconductor.

【図7】異形の二つの被接合高温超電導体の接合前の状
態を示した斜視図である。
FIG. 7 is a perspective view showing a state before joining of two deformed high-temperature superconductors to be joined.

【符号の説明】[Explanation of symbols]

1 超電導結晶化ガラス(被接合ビスマス系高温超電導
体) 2 ブンゼンバーナー
1 superconducting crystallized glass (bonded bismuth-based high-temperature superconductor) 2 Bunsen burner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 良弘 愛知県愛知郡日進町東山6丁目1705番地 (72)発明者 中村 光一 愛知県海部郡蟹江町大字蟹江新田字与太 郎124の5 (72)発明者 犬飼 英吉 愛知県名古屋市緑区鳴子町5丁目1番地 の12 (56)参考文献 特開 平3−877(JP,A) 特開 平3−242384(JP,A) 特開 平4−321569(JP,A) 特開 平2−302379(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiro Abe 6-1705, Higashiyama, Nisshin-cho, Aichi-gun, Aichi Prefecture (72) Inventor Koichi Nakamura Kanie-cho, Kaifu-gun, Aichi Prefecture 72) Inventor Eikichi Eikichi 5-1-1, Naruko-cho, Midori-ku, Nagoya-shi, Aichi (56) References JP-A-3-877 (JP, A) JP-A-3-242384 (JP, A) 4-321569 (JP, A) JP-A-2-302379 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Bi、Sr、Ca、及びCuそれぞれの
酸化物の混合原料を加熱溶融し、所要の形状に冷却固化
したあと、熱処理された複数のBi Sr CaCu
Ox超電導結晶を含む超電導結晶化ガラスそれぞれの接
合部の表面部を加熱して溶融状態にする行程と、表面部
が溶融状態になったそれぞれの接合部を直接突き合わせ
る行程と、その直接突き合わせた接合部を所要の温度で
加熱することによりBi Sr CaCu Ox超電導
結晶を溶融させて接合する行程と、前記接合部が接合さ
れた状態の前記超電導結晶化ガラスを700℃〜880
℃の温度で所要時間空気中または酸素を含んだ雰囲気中
で加熱したうえ同温度で所要時間保持したあと自然放冷
する行程とにより前記超電導結晶化ガラスを接合する
とを特徴とするビスマス系高温超電導体の接合方法。
1. The method of claim 1 wherein each of Bi, Sr, Ca, and Cu
Heat and melt the mixed oxide material, and cool and solidify it to the required shape
And then heat-treated a plurality of Bi 2 Sr 2 CaCu 2
Connection of superconducting crystallized glass including Ox superconducting crystal
The process of heating the surface of the joint to a molten state
Butted joints that have become molten
At the required temperature
Bi 2 Sr 2 CaCu 2 Ox superconductivity by heating
The step of melting and joining the crystals;
The superconducting crystallized glass in the separated state is heated to 700 ° C. to 880 ° C.
At the temperature of ℃ for the required time in air or atmosphere containing oxygen
After heating at the same temperature and holding for the required time, let it cool naturally
Joining method bismuth-based high temperature superconductor by a process characterized by the this <br/> joining said superconducting crystallized glass.
JP5302883A 1993-12-02 1993-12-02 Bismuth-based high-temperature superconductor joining method Expired - Lifetime JP2907313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5302883A JP2907313B2 (en) 1993-12-02 1993-12-02 Bismuth-based high-temperature superconductor joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5302883A JP2907313B2 (en) 1993-12-02 1993-12-02 Bismuth-based high-temperature superconductor joining method

Publications (2)

Publication Number Publication Date
JPH07157372A JPH07157372A (en) 1995-06-20
JP2907313B2 true JP2907313B2 (en) 1999-06-21

Family

ID=17914256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5302883A Expired - Lifetime JP2907313B2 (en) 1993-12-02 1993-12-02 Bismuth-based high-temperature superconductor joining method

Country Status (1)

Country Link
JP (1) JP2907313B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857661B1 (en) * 2003-07-15 2006-09-22 Snc Eurokera PRODUCT IN VITROCERAMIC WITH SEAL (S); MANUFACTURING
KR100964361B1 (en) * 2008-08-04 2010-06-17 케이조인스(주) Method of joining YBCO-CC superconducting wire by the melting diffusion under the control of partial oxygen pressure
KR100964354B1 (en) * 2008-08-04 2010-06-18 케이조인스(주) Method of joining YBCO-CC superconducting wire by the melting diffusion of two superconductor layers facing each other
JP5214744B2 (en) * 2008-08-04 2013-06-19 ケイ.ジョインス カンパニー リミテッド Superconducting joining method of 2 generation high temperature superconducting wire using heat treatment under reduced oxygen partial pressure
KR20110105679A (en) * 2010-03-19 2011-09-27 고려대학교 산학협력단 Superconducting joint method of hts 1g wire with superconducting powder using melting diffusion technique
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832599B2 (en) * 1989-05-15 1996-03-29 日本碍子株式会社 Cylindrical structure of oxide superconductor
JPH0829988B2 (en) * 1989-03-30 1996-03-27 日本碍子株式会社 Bonding structure of oxide superconductor
DE4004363A1 (en) * 1990-02-13 1991-08-14 Hoechst Ag METHOD FOR CONNECTING PARTS FROM CERAMIC HIGH TEMPERATURE SUPER-MATERIAL MATERIAL
JPH03242384A (en) * 1990-02-16 1991-10-29 Furukawa Electric Co Ltd:The Connection of bi-based oxide superconductor

Also Published As

Publication number Publication date
JPH07157372A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
JP3110451B2 (en) High critical current orientated grained Y-Ba-Cu-O superconductor and method for producing the same
US5306700A (en) Dense melt-based ceramic superconductors
JP2907313B2 (en) Bismuth-based high-temperature superconductor joining method
JPH01138168A (en) Production of melt-formed superconductor
JP4995284B2 (en) Joining method of oxide superconductor tube and superconducting joint
EP1107324B1 (en) Method of joining oxide superconductors and superconductor members produced by same
KR100209580B1 (en) Manfacturing method of yttrium ultra conduct
JP2004158440A (en) Metal-ceramic high-temperature superconductor compound and method of joining ceramic high-temperature superconductor compound to metal
Komatsu et al. Superconducting Coupling Nature at Grain Boundaries in Bi2Sr2CaCu2Ox Glass‐Ceramics
JPH09500083A (en) High temperature superconducting solid and method for producing the same
JPH06648B2 (en) Meltable superconductor and manufacturing method thereof
Behrens et al. Induction skull melting of Y2O3-BaO-CuO in a cold crucible
JP2639961B2 (en) Superconducting element manufacturing method
JPH042669A (en) Joining method of superconducting film and repairing method thereof
JPH03242384A (en) Connection of bi-based oxide superconductor
JP3709531B2 (en) Manufacturing method of oxide superconductor
JP3709532B2 (en) Manufacturing method of oxide superconductor
Kasuga et al. Direct Joining of BSCCO Superconducting Glass‐Ceramics Using a Flame‐Melting Method
JPH01226735A (en) Production of superconducting material
JP2549684B2 (en) Oxide-based superconducting wire connection method
JP2597844B2 (en) Superconductor manufacturing method
JP2721821B2 (en) Method of removing sheath sheathed on superconductor
JPH03237073A (en) Joining method for ceramics superconductive material
JPH01164772A (en) Bonding of oxide superconductor
JPH03252369A (en) Production of oxide superconductor