JPH0832599B2 - Cylindrical structure of oxide superconductor - Google Patents

Cylindrical structure of oxide superconductor

Info

Publication number
JPH0832599B2
JPH0832599B2 JP1120687A JP12068789A JPH0832599B2 JP H0832599 B2 JPH0832599 B2 JP H0832599B2 JP 1120687 A JP1120687 A JP 1120687A JP 12068789 A JP12068789 A JP 12068789A JP H0832599 B2 JPH0832599 B2 JP H0832599B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
tubular body
tubular
cylindrical
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1120687A
Other languages
Japanese (ja)
Other versions
JPH02302379A (en
Inventor
均 酒井
均 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1120687A priority Critical patent/JPH0832599B2/en
Priority to EP90303279A priority patent/EP0390517B1/en
Priority to DE69023376T priority patent/DE69023376T2/en
Priority to US07/501,818 priority patent/US5079226A/en
Priority to CA002013357A priority patent/CA2013357C/en
Publication of JPH02302379A publication Critical patent/JPH02302379A/en
Publication of JPH0832599B2 publication Critical patent/JPH0832599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導体の筒状体構造に関する。The present invention relates to a tubular structure of an oxide superconductor.

〔従来の技術〕[Conventional technology]

酸化物超電導体は、高い臨界温度を示し電力分野、核
磁気共鳴装置、磁気シールド等の各分野での用途が期待
され注目を集めている。特に、微弱な生体磁気の測定
が、液体窒素を利用した簡便な冷却装置で、酸化物超電
導体を用いることにより可能となり、医学及び医療分野
において今後の応用が期待されている。
Oxide superconductors have a high critical temperature and are attracting attention because they are expected to be used in various fields such as electric power fields, nuclear magnetic resonance devices, and magnetic shields. In particular, weak biomagnetism can be measured with a simple cooling device using liquid nitrogen by using an oxide superconductor, and future applications in the medical and medical fields are expected.

生体磁気の測定において、測定機器は、生体を収容で
きることと同時に極低磁場空間を得ることが必要とな
り、生体の収容器としては一般に筒状体構造が提案され
ている。
In the measurement of biomagnetism, the measuring device needs to be able to accommodate a living body and at the same time obtain an extremely low magnetic field space, and a tubular structure has been generally proposed as a container for the living body.

筒状体構造において、極低磁場空間を得るためには、
筒状体全体に地球磁場を遮蔽するに十分な超電導電流が
均一に流れることが必要である。そのため、従来、生体
を収容する筒状体は一体製造により得なければならない
とされていた。
To obtain an extremely low magnetic field space in a tubular structure,
It is necessary that the superconducting current sufficient to shield the earth's magnetic field uniformly flows over the entire tubular body. For this reason, it has been conventionally said that a tubular body containing a living body must be obtained by integral manufacturing.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、生体磁気測定用の収容器となる筒状体は、例
えば人体の診断測定用のためには最低径が約1mで、長さ
は約3mを必要とする。
However, the cylindrical body that serves as a container for biomagnetic measurement requires a minimum diameter of about 1 m and a length of about 3 m for diagnostic measurement of the human body.

このような大型の筒状体を一体に製造するためには、
大型の電気炉を必要とし実用的でないばかりか、酸化物
超電導体からなる筒状体全域を均質なものとすること
は、現在の技術では極めて困難であることが予測されて
いる。
In order to integrally manufacture such a large tubular body,
In addition to requiring a large-scale electric furnace and not being practical, it is predicted that it is extremely difficult with the current technology to make the entire region of the tubular body made of an oxide superconductor uniform.

発明者等は、工業的に実用化可能な生体磁気測定用収
容器を得ることを目的に鋭意検討した結果、従来、一体
的成形等により製造した均質酸化物超電導体の収容器
が、地磁気を遮蔽して極低磁場空間を得ることができる
とされていたのに対し、本発明は、大型の筒状体を分割
して製造した後、接合により得た長尺の酸化物超電導体
の筒状体であっても、磁気シールド能の高い筒状体を得
るための分割する部位及び接合状態を特定することによ
り本発明を完成した。
As a result of intensive investigations by the inventors for the purpose of obtaining a container for biomagnetism measurement that can be industrially put to practical use, conventionally, a container for a homogeneous oxide superconductor produced by integral molding, etc. While it was said that it is possible to obtain an extremely low magnetic field space by shielding, the present invention is a tube of a long oxide superconductor obtained by joining after manufacturing a large tubular body by dividing. The present invention has been completed by specifying a part to be divided and a joining state in order to obtain a tubular body having a high magnetic shielding ability even in the case of a tubular body.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、生体磁気測定用磁気シールド体とし
て用いる酸化物超電導体の筒状体構造において、軸方向
を横切り1または2以上の接合部を有し、該接合部は該
筒状体の直径の1/10以上の間隔で配置され、かつ、該酸
化物超電導体の厚さ(t:mm)と臨界電流密度(Jc)との
関係が、非接合部において、t×Jcが4A/cm以上、接合
部において、t×Jcが0.4A/cm以上で、接合部の幅が0.5
mm以下であることを特徴とする酸化物超電導体の筒状体
構造が提供される。
According to the present invention, in a tubular structure of an oxide superconductor used as a magnetic shield for biomagnetism measurement, there is one or two or more joints that traverse the axial direction, and the joints are of the tubular body. The oxide superconductors are arranged at intervals of 1/10 or more of the diameter, and the relationship between the thickness (t: mm) of the oxide superconductor and the critical current density (Jc) is such that t × Jc is 4 A / cm or more, at the joint, t × Jc is 0.4 A / cm or more, and the width of the joint is 0.5
There is provided a tubular body structure of an oxide superconductor characterized by being less than or equal to mm.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明における酸化物超電導体としては、たとえばM-
Ba-Cu-O系化合物(但し、MはSc、Tl、Y及びLa、Eu、G
d、Er、Yb、Lu等のランタニドから選ばれる一種以上を
表す。)及びBi-Sr-Ca-Cu-O系化合物等の多層ペロブス
カイ構造を有するものが挙げられる。
Examples of the oxide superconductor in the present invention include M-
Ba-Cu-O-based compound (where M is Sc, Tl, Y and La, Eu, G
Represents one or more selected from lanthanides such as d, Er, Yb and Lu. ) And Bi-Sr-Ca-Cu-O based compounds having a multi-layer perovskite structure.

本発明の酸化物超電導体は、上記酸化物超電導体のみ
で構成されるものでもよいし、金属等基体上に上記酸化
物超電導体が塗布等により複合化され超電導体を構成す
るものでもよい。
The oxide superconductor of the present invention may be composed only of the above oxide superconductor, or may be one in which the above oxide superconductor is composited by coating or the like on a substrate such as a metal to form a superconductor.

本発明の筒状体構造は、筒状体の軸方向を横切り1ま
たは2以上に分割して、各1mより短い分割筒状体を製造
し、その分割筒状体を接合して得るものである。筒状体
の長さは、特に制限されないが、一般的には1m以上の筒
状体に適用する。
The tubular body structure of the present invention is obtained by dividing the tubular body in the axial direction into 1 or 2 or more pieces, producing divided tubular bodies each shorter than 1 m, and joining the divided tubular bodies. is there. The length of the tubular body is not particularly limited, but is generally applied to a tubular body of 1 m or more.

筒状体の軸方向を横切る分割は、好ましくはほぼ直角
に分割すればよいが、垂直から±10°の角度以内であっ
てもよい。垂直から10°以上の角度で分割する場合には
磁気遮蔽が十分でなく、その筒状体を生体磁気測定収容
器として用いた場合に、極低磁場空間を得ることができ
ない。
The division of the tubular body in the axial direction may be preferably performed at a right angle, but may be within ± 10 ° from the vertical. When dividing at an angle of 10 ° or more from the vertical, the magnetic shield is not sufficient, and when the cylindrical body is used as a biomagnetic measurement container, a very low magnetic field space cannot be obtained.

本発明の筒状体においては、接合部が筒状体の直径の
1/10の間隔で配置されるようにする。従って、本発明で
用いる分割筒状体は、一般的には直径約1mとして、長さ
が0.1〜1.0mのもので、直径は筒状体構造を構成する直
径と同一のものである。長さが0.1m未満であると、臨界
電流密度の低い接合部が0.1m未満の間隔で存在すること
になり、地磁気の遮蔽効果が低下し、生体磁気測定用収
容器としては適さない。また、分割筒状体の長さが1.0m
を超えると実用性に欠けることになり、好ましくない。
例えば直径1mで、長さ1mまでのものは既存の電気炉で焼
成でき、さらに長さが0.5m以下であれば、従来から用い
られている比較的小型の電気炉を用いて焼成することが
できると共に、全域が均質な酸化物超電導体である筒状
体を容易に製造できるため、より好ましい。
In the tubular body of the present invention, the joint portion has a diameter of the tubular body.
Make sure they are placed at 1/10 intervals. Therefore, the divided tubular body used in the present invention generally has a diameter of about 1 m and a length of 0.1 to 1.0 m, and the diameter is the same as the diameter constituting the tubular body structure. If the length is less than 0.1 m, the joints having a low critical current density will be present at intervals of less than 0.1 m, and the effect of shielding the geomagnetism will be reduced, which is not suitable as a biomagnetic measuring container. In addition, the length of the divided tubular body is 1.0 m
If it exceeds, it is not practical and is not preferable.
For example, those with a diameter of 1 m and up to a length of 1 m can be fired in an existing electric furnace, and if the length is 0.5 m or less, it can be fired using a relatively small electric furnace that has been conventionally used. It is more preferable because it is possible to easily manufacture a tubular body which is an oxide superconductor having a uniform whole area.

本発明の接合部における臨界電流密度(Jc)は筒状体
構造を構成する酸化物超電導体のJcより低くてもよい。
接合部におけるJcは、筒状体を構成する酸化物超電導体
(金属等の基体と複合化された酸化物超電導体において
はその酸化物超電導特性を有する層をいう。)の厚みに
より異なるが、例えば酸化物超電導体の厚さが1mmであ
る場合、接合部が、4A/cm2以上のJcを有する超電導体か
らなり、接合部の巾が0.5mm以下であれば十分な磁気シ
ールドができる。
The critical current density (Jc) at the joint portion of the present invention may be lower than Jc of the oxide superconductor forming the tubular structure.
Jc in the joint portion varies depending on the thickness of the oxide superconductor (which is a layer having the oxide superconducting property in the oxide superconductor compounded with a substrate such as a metal) forming the tubular body, For example, when the thickness of the oxide superconductor is 1 mm, the junction is made of a superconductor having Jc of 4 A / cm 2 or more, and the width of the junction is 0.5 mm or less, sufficient magnetic shielding can be achieved.

一般に、地磁気を完全に遮蔽するには、地磁気の変動
及び安全率を考慮して外部磁界の5ガウス程度を減衰さ
せる必要がある。この場合、例えば直径1mで、長さ3mの
円筒形の筒状体構造において、筒状体の軸方向1cmあた
り4A程度の反磁性電流、即ち筒状体周方向の超電導電流
を有することが必要な要件となる。この要件を満足させ
るためには、例えば筒状体を構成する超電導体の厚さが
1mmであれば、40A/cm2のJcを有するもの、また厚さが10
0μmであれば、400A/cm2のJcを有するものでなければ
ならない。
Generally, in order to completely shield the earth's magnetism, it is necessary to attenuate the external magnetic field by about 5 gauss in consideration of the fluctuation of the earth's magnetism and the safety factor. In this case, for example, in a cylindrical tubular structure having a diameter of 1 m and a length of 3 m, it is necessary to have a diamagnetic current of about 4 A per 1 cm of the axial direction of the tubular body, that is, a superconducting current in the circumferential direction of the tubular body. Requirements. In order to satisfy this requirement, for example, the thickness of the superconductor that constitutes the tubular body
If it is 1 mm, it has a Jc of 40 A / cm 2 , and the thickness is 10
If it is 0 μm, it must have a Jc of 400 A / cm 2 .

また、筒状体を製造工程上、分割体を接合して得た場
合には、その接合部から外部磁界が侵入するおそれが生
じ外部磁界を減衰することができないと考えられてい
た。
Further, it has been considered that, when the tubular body is obtained by joining the divided bodies in the manufacturing process, there is a possibility that the external magnetic field may enter from the joined portion and the external magnetic field cannot be attenuated.

これに対し、発明者らの知見によれば、筒状体の軸方
向を横切って接合部を設置した場合、例えば直径1mで、
長さ3.0mの円筒形の厚さ1mmの酸化物超電導体からなる
筒状体構造において、長さ1.5mの部位にほぼ垂直に接合
部を設置するように、2個の分割筒状体を間隙幅0.5mm
を設け配置して、侵入磁界を測定したところ、筒状体内
部への外部磁界の地磁気の侵入は約10%程度であった。
従って、上記したように酸化物超電導体の厚さが1mmで
ある場合、接合部巾0.5mmの接合部におけるJcは4A/cm2
以上あれば十分である。
On the other hand, according to the knowledge of the inventors, when the joint is installed across the axial direction of the tubular body, for example, with a diameter of 1 m,
In a cylindrical body structure consisting of a 3.0 m long cylindrical 1 mm thick oxide superconductor, two divided cylindrical bodies are installed so that the joint part is installed almost vertically at a 1.5 m long site. Gap width 0.5 mm
When the intrusion magnetic field was measured by arranging and arranging, the intrusion of the external magnetic field into the inside of the cylindrical body was about 10%.
Therefore, as described above, when the thickness of the oxide superconductor is 1 mm, Jc at the joint width of 0.5 mm is 4 A / cm 2
The above is enough.

本発明において、前記分割筒状体の接合は、分割筒
状体同士をそのまま合わせ局部的に加熱溶融して接合す
る方法、分割筒状体同士を合わせる際に、筒状体の超
電導体を構成する原料スラリーを分割筒状体の接合面に
塗布したのち、接合部を部分焼成して接合する方法及び
接合する分割筒状体間に筒状体とは異なる、好ましく
はより低融点の接合部を形成する酸化物超電導体の薄い
筒状体を配置し、局部的に加熱溶融して接合するか、該
酸化物超電導体を構成する原料スラリーを塗布てし部分
焼成して接合する方法等の各種方法により行うことがで
きる。
In the present invention, the joining of the divided tubular bodies is a method of joining the divided tubular bodies as they are and locally heating and melting them, and when joining the divided tubular bodies, a superconductor of the tubular body is formed. After applying the raw material slurry to the joining surface of the divided tubular body, the method of joining the joining portion by partially firing, and a joining portion different from the tubular body between the joining divided tubular bodies, preferably having a lower melting point Such as a method of arranging a thin cylindrical body of an oxide superconductor that forms a film, locally heating and melting and joining, or applying a raw material slurry that constitutes the oxide superconductor and then partially firing and joining. It can be performed by various methods.

上記の接合方法における部分的加熱溶融または焼成
は、例えば局部加熱炉を使用することにより行うことが
できる。
The partial heating melting or firing in the above joining method can be performed by using, for example, a local heating furnace.

〔実施例〕〔Example〕

以下、本発明について実施例によりさらに詳しく説明
する。但し、本発明は本実施例に限定されるものでな
い。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to this embodiment.

実施例 純度99.9%のY2O3粉末(平均粒径0.4μm)、BaCO3
末(平均粒径0.8μm)及びCuO粉末(平均粒径2.5μ
m)をモル比で1:4:6となるように調製した後、大気中9
40℃で10時間仮焼し、YBaCu3O7粉末を合成した。
Example Y 2 O 3 powder (average particle size 0.4 μm), BaCO 3 powder (average particle size 0.8 μm) and CuO powder (average particle size 2.5 μm) having a purity of 99.9%
m) was prepared in a molar ratio of 1: 4: 6, and
It was calcined at 40 ° C. for 10 hours to synthesize YBaCu 3 O 7 powder.

次いで、このYBaCu3O7粉末2kgに結合剤としてポリビ
ニルブチラール(PVB)50g及び非イオン系分散剤5gを混
合し、ポリポット容器内のトルエン2l中にジルコニア玉
石1kgと共に入れ、回転ミルで16時間粉砕・混合してス
ラリーを作製した。このスラリーをスプレードライヤー
により平均粒径50μmに造粒した。
Then, 2 g of this YBaCu 3 O 7 powder was mixed with 50 g of polyvinyl butyral (PVB) as a binder and 5 g of a nonionic dispersant, and 1 g of zirconia cobblestone was placed in 2 l of toluene in a polypot container and pulverized with a rotary mill for 16 hours. -Slurry was prepared by mixing. This slurry was granulated with a spray dryer to an average particle size of 50 μm.

この粉末を、2.5トン/cm2の静水圧により金型プレス
成形して、外径110mm、高さ350mm、厚さ8mmの円筒状成
形体(A)と、外径110mm、高さ120mm、厚さ8mmの円筒
状成形体(B)3個を作製した。
This powder was press-molded with a hydrostatic pressure of 2.5 ton / cm 2 to obtain a cylindrical molded body (A) having an outer diameter of 110 mm, a height of 350 mm and a thickness of 8 mm, and an outer diameter of 110 mm, a height of 120 mm and a thickness of 120 mm. Three cylindrical shaped bodies (B) having a length of 8 mm were produced.

作製した成形体それぞれを酸素雰囲気下で、250℃で
6時間、880℃で10時間、さらに960℃で6時間焼成し、
その後1℃/分で徐冷して円筒状焼結体を得た。
Each of the formed compacts was fired in an oxygen atmosphere at 250 ° C for 6 hours, 880 ° C for 10 hours, and further at 960 ° C for 6 hours,
Then, the mixture was gradually cooled at 1 ° C./min to obtain a cylindrical sintered body.

得られた焼結体は、成形体(A)は外径100mm、高さ3
00mm、厚さ6mmの円筒状焼結体(A)に、成形体(B)
は外径100mm、高さ100mm、厚さ6mmの円筒状焼結体
(B)となった。
The obtained sintered body is a compact (A) with an outer diameter of 100 mm and a height of 3 mm.
A cylindrical sintered body (A) with a thickness of 00 mm and a thickness of 6 mm, and a molded body (B)
Was a cylindrical sintered body (B) having an outer diameter of 100 mm, a height of 100 mm and a thickness of 6 mm.

次いで、焼結体(B)3本の端面をSiCペーパーによ
り平滑にした後、接合面に前記YBaCu3O7スラリーを塗布
して、3本を合わせ酸素雰囲気下で上記と同様にして接
合部を焼成及び徐冷して、接合部を有する高さ300mmの
円筒状焼結体(B′)を得た。この場合の接合部のJcは
20A/cm2で、焼結体本体のJc100A/cm2より低くなってい
た。
Then, after three end faces of the sintered body (B) are smoothed with SiC paper, the YBaCu 3 O 7 slurry is applied to the joint surface, and the three joints are combined in an oxygen atmosphere in the same manner as above. Was fired and gradually cooled to obtain a cylindrical sintered body (B ') having a joint and having a height of 300 mm. Jc of the joint in this case is
In 20A / cm 2, it was lower than Jc100A / cm 2 of sintered body.

上記で得られた焼結体(A)と(B′)とをパーマロ
イ合金で磁気遮蔽された微小磁場空間(10-4ガウス)中
で液体窒素中に浸漬し超電導状態にした。その後、焼結
体を液体窒素中に浸漬した状態で地磁気中に取り出し、
各円筒状焼結体中央部における磁場強度を磁束計で測定
した。
The sintered bodies (A) and (B ') obtained above were immersed in liquid nitrogen in a minute magnetic field space (10 -4 Gauss) magnetically shielded with a permalloy alloy to make them superconducting. After that, take out the sintered body into the geomagnetism in a state of being immersed in liquid nitrogen,
The magnetic field strength at the center of each cylindrical sintered body was measured with a magnetometer.

測定の結果、焼結体の円筒軸に平行方向の磁場強度
は、焼結体(A)及び(B′)共に10-3ガウス以下とな
り、いずれも地磁場を完全に遮蔽していた。
As a result of the measurement, the magnetic field strength in the direction parallel to the cylindrical axis of the sintered body was 10 −3 Gauss or less for both the sintered bodies (A) and (B ′), and both of them completely shielded the earth's magnetic field.

比較例 実施例と同様の製造方法により、外径110mm、高さ120
mm、厚さ8mmで、円筒を軸方向に2つに切断した形状の
半円筒状成形体(C)6個を作製し、焼成した焼結体
(C)6個を得た。その後、円筒体となるように、実施
例と同様に6個の焼結体を接合、焼成して、接合部を有
する高さ300mmの円筒状焼結体(C′)を得た。
Comparative Example By the same manufacturing method as in the example, the outer diameter is 110 mm and the height is
Six semi-cylindrical compacts (C) each having a size of 8 mm and a thickness of 8 mm and having a shape obtained by cutting a cylinder into two in the axial direction were prepared, and six sintered compacts (C) were obtained. Thereafter, six sintered bodies were bonded and fired in the same manner as in the example so as to form a cylindrical body, and a cylindrical sintered body (C ′) having a joint portion and a height of 300 mm was obtained.

焼結体(C′)における磁気遮蔽能を、実施例と同様
にして測定した。その結果、焼結体(C′)の円筒軸に
平行方向の磁場強度は、10-2ガウスとなり、地磁気が一
部侵入していることが認められた。
The magnetic shielding ability of the sintered body (C ') was measured in the same manner as in the example. As a result, the magnetic field strength in the direction parallel to the cylindrical axis of the sintered body (C ′) was 10 −2 Gauss, and it was confirmed that the geomagnetism partially penetrated.

これらの実施例及び比較例の結果から、軸方向に接合
部を有する酸化物超電導体の筒状体では、地磁気の一部
侵入があるのに対し、本発明の軸方向を横切り接合部を
有するように分割筒状体を接合した、酸化物超電導体の
筒状体においては、一体成形体した酸化物超電導体の筒
状体と同レベルの微小磁場を得ることができ、接合部か
らの磁束の漏れは生じないことが確認された。
From the results of these examples and comparative examples, in the cylindrical body of the oxide superconductor having the joint portion in the axial direction, there is a partial invasion of the geomagnetism, whereas in the present invention, there is a joint portion traversing the axial direction of the present invention. In the tubular body of the oxide superconductor in which the divided tubular bodies are joined as described above, a minute magnetic field at the same level as that of the tubular body of the integrally molded oxide superconductor can be obtained, and the magnetic flux from the joint portion can be obtained. It was confirmed that no leakage occurred.

〔発明の効果〕〔The invention's effect〕

本発明は、大型の筒状体を分割して製造した後に、接
合部を設けて一体化した酸化物超電導体の筒状体構造で
あり、接合部を有する酸化物超電導体筒状体であっても
地磁気のシールド効果を得ることができるものである。
The present invention is a tubular body structure of an oxide superconductor, which is manufactured by dividing a large-sized tubular body into pieces and then providing a joint portion, and is an oxide superconductor tubular body having a joint portion. Even so, it is possible to obtain a shield effect of geomagnetism.

従来、一体成形等でしかシールド効果が得られないと
され、実用化が問題となっていたことを鑑みて、特に生
体磁気測定に用いられる大型の酸化物超電導体収容器の
工業的製造において、極めて有用である。
Conventionally, it is said that the shield effect can be obtained only by integral molding, etc., and in view of the fact that practical application has been a problem, particularly in the industrial production of a large oxide superconductor container used for biomagnetic measurement, Extremely useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 HCU Z 7244−5L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01B 13/00 HCU Z 7244-5L

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】生体磁気測定用磁気シールド体として用い
る酸化物超電導体の筒状体構造において、 軸方向を横切り1または2以上の接合部を有し、 該接合部は該筒状体の直径の1/10以上の間隔で配置さ
れ、 かつ、該酸化物超電導体の厚さ(t:cm)と臨界電流密度
(Jc:A/cm2)との関係が、 非接合部において、t×Jcが4A/cm以上、 接合部において、t×Jcが0.4A/cm以上で、 接合部の幅が0.5mm以下であることを特徴とする酸化物
超電導体の筒状体構造。
1. A tubular structure of an oxide superconductor used as a magnetic shield for biomagnetism measurement, which has one or more joints traversing the axial direction, and the joints have a diameter of the tubular body. The distance between the oxide superconductor and the critical current density (Jc: A / cm 2 ) is 1/10 or more, and the relation between the critical current density (Jc: A / cm 2 ) is t × A tubular body structure of an oxide superconductor characterized in that Jc is 4 A / cm or more, t × Jc is 0.4 A / cm or more at the joint, and the width of the joint is 0.5 mm or less.
JP1120687A 1989-03-30 1989-05-15 Cylindrical structure of oxide superconductor Expired - Lifetime JPH0832599B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1120687A JPH0832599B2 (en) 1989-05-15 1989-05-15 Cylindrical structure of oxide superconductor
EP90303279A EP0390517B1 (en) 1989-03-30 1990-03-28 Superconductor joint structure
DE69023376T DE69023376T2 (en) 1989-03-30 1990-03-28 Composite superconductor.
US07/501,818 US5079226A (en) 1989-03-30 1990-03-28 Superconductor jointed structure
CA002013357A CA2013357C (en) 1989-03-30 1990-03-29 Superconductor jointed structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120687A JPH0832599B2 (en) 1989-05-15 1989-05-15 Cylindrical structure of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH02302379A JPH02302379A (en) 1990-12-14
JPH0832599B2 true JPH0832599B2 (en) 1996-03-29

Family

ID=14792470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120687A Expired - Lifetime JPH0832599B2 (en) 1989-03-30 1989-05-15 Cylindrical structure of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0832599B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627566B2 (en) * 1990-03-06 1997-07-09 同和鉱業株式会社 Bonding method and bonding paste for ceramic superconductor
JP2907313B2 (en) * 1993-12-02 1999-06-21 中部電力 株式会社 Bismuth-based high-temperature superconductor joining method
US7011898B2 (en) * 2003-03-21 2006-03-14 Air Products And Chemicals, Inc. Method of joining ITM materials using a partially or fully-transient liquid phase
JP5131136B2 (en) * 2008-10-06 2013-01-30 新日鐵住金株式会社 Superconducting member and superconducting magnetic levitation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507806A (en) * 1973-05-25 1975-01-27
JPS63234569A (en) * 1987-03-24 1988-09-29 Asahi Chem Ind Co Ltd Magnetic shielding material
JPS63191607U (en) * 1987-05-29 1988-12-09
JPH02279570A (en) * 1989-04-18 1990-11-15 Toyota Motor Corp Production of structural ceramics body

Also Published As

Publication number Publication date
JPH02302379A (en) 1990-12-14

Similar Documents

Publication Publication Date Title
JPH1081518A (en) Production of product comprising superconducting material
JPH0643268B2 (en) Oxide high temperature superconductor
US5079226A (en) Superconductor jointed structure
US5882536A (en) Method and etchant to join ag-clad BSSCO superconducting tape
JPH0832599B2 (en) Cylindrical structure of oxide superconductor
EP0292436A2 (en) High current conductors and high field magnets using anisotropic superconductors
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JPS63232215A (en) Manufacture of superconductive wire
JPH0529787A (en) Magnetic shield
EP0458043A1 (en) Magnetic shield
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2730043B2 (en) Superconductor
EP0489600A2 (en) Superconducting tubular material for magnetic shielding
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH0797454B2 (en) Manufacturing method of superconducting material
JPH0640720A (en) Laminar oxide superconductor and its production
Poeppel et al. Ceramic Processing Of High-T [sub] c [/sub] Superconductors
JPH0195409A (en) Superconducting wire
Tachikawa et al. Preparation of High-Tc Superconducting Magnetic Shields by a Low Pressure Plasma Spraying
JPH01163922A (en) Manufacture of linear superconductive material
Oomi et al. Effect of oxygen deficiency on the thermal expansion of high Tc superconductor YBa2Cu3O7-Δ
Lanagan et al. Production of wires and coils from high-temperature superconducting materials
Chu Fabrication and process-related properties of superconducting oxide ytterbium barium (2) copper (3) oxygen (7-y)
Lanagan et al. SUPERCONDUCTING MATERIALS
JPH01289300A (en) Superconducting magnetic shielding material