JPH02279570A - Production of structural ceramics body - Google Patents

Production of structural ceramics body

Info

Publication number
JPH02279570A
JPH02279570A JP9789889A JP9789889A JPH02279570A JP H02279570 A JPH02279570 A JP H02279570A JP 9789889 A JP9789889 A JP 9789889A JP 9789889 A JP9789889 A JP 9789889A JP H02279570 A JPH02279570 A JP H02279570A
Authority
JP
Japan
Prior art keywords
slurry
fired
cylinders
molded
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9789889A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
敦史 田中
Kiyoshi Hoshi
星 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9789889A priority Critical patent/JPH02279570A/en
Publication of JPH02279570A publication Critical patent/JPH02279570A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a structural ceramics body which is excellent in dimensional precision and has a large size or a complex shape without causing a crack and a cutout in the molded body by previously and temporarily calcining the divided lightweight parts and thereafter joining and integrating the parts and recalcining these parts. CONSTITUTION:A temporarily calcined body is formed by utilizing casting slurry and molding two pieces of cylindrical molded bodies by a slurry cast molding method and calcining the molded bodies respectively at the prescribed temp. for a prescribed time. Slurry 3 is applied to the end faces of the temporarily calcined cylindrical bodies 1, 2. The end faces of two cylinders are allowed to abut and integrated. The integrated cylinders are air-dried and thereafter recalcined in the atmosphere of the prescribed temp. to obtain a sintered body wherein two cylinders have been joined. Thereby a structural ceramics body which is excellent in dimensional precision and has a large size or a complex shape is produced without causing a crack and a cutout.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス構造体、特に大型乃至複雑な形
状のセラミックス構造体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic structure, particularly a large-sized or complicated-shaped ceramic structure.

〔従来の技術〕[Conventional technology]

従来、大型乃至複雑な形状を有するセラミックス構造体
の製造方法の一つとして、構造体を複数個に分割成形し
、該分割成形した成形体を相互に接合一体化するという
方法が採用されている(特開昭61−209964号公
報、特開昭63−166767号公報)、特に、特開昭
63−166767号公報に於ては、泥漿鋳込み成形法
(スリップキャステング法)により、予め分割成形した
生の成形体同士を、該成形体と同一組成からなる泥漿(
スリップ)を接着剤として用いることによって接合一体
化し、乾燥後、焼成することにより構造物用の焼結体を
得ている。
Conventionally, one of the methods for manufacturing ceramic structures having large or complicated shapes has been to mold the structure into multiple parts, and then to integrate the divided molded parts by joining them together. (JP-A-61-209964, JP-A-63-166767) In particular, in JP-A-63-166767, pre-segmented molding was performed using a slurry casting method (slip casting method). The raw molded bodies are mixed with a slurry having the same composition as the molded bodies (
A sintered body for a structure is obtained by bonding and integrating the materials by using a slip (slip) as an adhesive, drying, and then firing.

しかしながら、この方法に於ては1分割成形した生の成
形体は十分な強度を有していないため、生の分割成形体
同士を接合する際の取扱い操作等により成形体に亀裂や
欠けが発生し、また大型の成形体に於ては、焼成時に自
重により成形体の下方部位が変形し、また接地面での収
縮に伴う変形が生じやすいという問題点を有している。
However, in this method, the raw molded body formed in one piece does not have sufficient strength, so cracks and chips may occur in the molded body due to handling operations when joining the raw divided molded bodies together. However, large-sized molded bodies also have the problem that the lower part of the molded body deforms due to its own weight during firing, and deformation due to shrinkage on the contact surface tends to occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記した従来技術の問題に鑑みてなされたもの
であり、分割成形体の接合の際の成形体に亀裂や欠けが
発生することのない、また焼成時に成形体が変形する恐
れのない、従って寸法精度の優れたセラミックス構造体
の製造方法を提供することを、その課題とするものであ
る。
The present invention has been made in view of the problems of the prior art described above, and it is possible to prevent cracks or chips from occurring in the molded body when joining the divided molded bodies, and to prevent the molded body from deforming during firing. Therefore, it is an object of the present invention to provide a method for manufacturing a ceramic structure with excellent dimensional accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のセラミックス構造体の製造方法は。 A method for manufacturing a ceramic structure according to the present invention.

泥漿鋳込み成形法により成形し、焼成した仮焼成体同士
を該焼成体と同一組成の泥漿でもって接合一体化し、再
度焼成することからなり、かかる構成をとることにより
前記した課題を解決するものである。
The pre-fired bodies formed by the slurry casting method and fired are joined and integrated with a slurry having the same composition as the fired body, and then fired again. By adopting such a structure, the above-mentioned problems are solved. be.

本発明に於ては、目的とするセラミックス構造体を構成
要素として単純な板状、角状、管状等最も成形が容易な
形状をした要素に分割し、各分割要素を成形するための
成形型を用意する。成形型としては、一般的には石膏型
が使用されるが、その地業焼型、金属型なども使用する
ことができる0次いで11整された泥漿を型に鋳込んで
各分割要素の成形を行う、泥漿鋳込み成形法としては、
排泥鋳込み成形、固型鋳込み成形、真空鋳込み成形、遠
心鋳込み成形、圧力鋳込み成形等、従来から採用されて
いる、各種成形法を採用することができる。鋳込みが完
了すると、成形体は乾燥し、収縮して型から離れる。
In the present invention, the target ceramic structure is divided into elements having shapes that are easiest to mold, such as simple plate shapes, square shapes, and tube shapes, and a mold is used to mold each divided element. Prepare. As a mold, a plaster mold is generally used, but locally fired molds, metal molds, etc. can also be used. Each divided element is formed by pouring the 0-11-sized slurry into the mold. As a slurry casting method,
Various conventionally used forming methods can be employed, such as sludge casting, solid casting, vacuum casting, centrifugal casting, and pressure casting. Once the casting is complete, the molded body dries, contracts, and separates from the mold.

このようにして鋳込み成形された、分割成形体は、次い
で乾燥し、仮焼成される。仮焼成体は成形体に対しては
収縮しているものの、焼成が完了しておらず、焼成体中
に後の接合工程に於て使用する泥漿が滲入する空隙が確
保されている状態のものである。
The segmented molded body cast in this manner is then dried and calcined. Although the pre-fired body has shrunk relative to the molded body, firing has not yet been completed, and there are voids in the fired body that allow the slurry used in the subsequent joining process to seep in. It is.

一般的には仮焼成体は、理論密度に対して93%程度以
下の見掛密度を有し、焼成体中に空隙が多く存在するも
のが好ましい。
Generally, it is preferable that the calcined body has an apparent density of about 93% or less of the theoretical density, and has many voids in the calcined body.

仮焼成された分割焼成体は、その接合部に該焼成体と同
一組成の泥漿(スリップ)を塗布し、焼成体同士を接合
して目的とするセラミックス構造物を組立た後、接合部
の泥漿を乾燥し、組立た構造物を焼結温度に加熱し、再
度焼成を行い焼結完了し、完成品を得る。
The pre-fired divided calcined bodies are coated with a slip having the same composition as the calcined body at their joints, and after the calcined bodies are joined together to assemble the desired ceramic structure, the slip at the joints is applied. is dried, the assembled structure is heated to a sintering temperature, and fired again to complete sintering and obtain a finished product.

本発明の方法が適用することのできるセラミックスとし
ては、マグネシア、ジルコニア、アルミナ、コージェラ
イト、チタン酸アルミニウム、ムライト、窒化ケイ素、
炭化ケイ素、サイアロン等が例示される。
Ceramics to which the method of the present invention can be applied include magnesia, zirconia, alumina, cordierite, aluminum titanate, mullite, silicon nitride,
Examples include silicon carbide and sialon.

(作 用) 泥漿鋳込み成形法により成形し焼成した仮焼成体は、生
の成形体に比較して、十分に高い強度を有しているため
、生の成形体同士を接合する場合に比較して取扱いが容
易になり、また接合して組立られた構造体は、再焼成に
際して、生の成形体の組立構造体の場合のように、自重
による変形や、接地面での収縮に伴う変形がない、また
接合面に塗布された泥漿は接合面に於ける再仮焼成体の
微細な空間に滲入し、焼成後に投揚効果により画境成体
を強固に接合する。
(Function) A pre-fired body formed and fired using the slurry casting method has sufficiently high strength compared to a raw molded body, so it has a much higher strength than when joining raw molded bodies together. In addition, the bonded and assembled structure does not deform due to its own weight or due to shrinkage on the contact surface when re-firing, as in the case of an assembled structure of green compacts. Moreover, the slurry applied to the joint surface seeps into the minute spaces of the re-calcined body at the joint surface, and after firing, the image-bounded body is firmly joined by the throwing effect.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1: 次の組成を有する鋳込み泥漿を調整する。Example 1: A casting slurry having the following composition is prepared.

ム この、鋳込み泥漿を用いて、泥漿鋳込み成形法により円
筒状の成形体を2個成形し、それぞれ1550℃で5時
間焼成して仮焼成体とした。第1因に示すようにこのチ
タン酸アルミニウムの円筒状仮゛焼成体1.2の端面に
、上記泥漿(スリップ)3を塗布し、2つの円筒の端面
を突き合せて一体化した。
Using this casting slurry, two cylindrical compacts were formed by a slurry casting method, and each was fired at 1550°C for 5 hours to obtain a pre-fired body. As shown in the first factor, the slip 3 was applied to the end face of this cylindrical pre-fired body 1.2 of aluminum titanate, and the end faces of the two cylinders were brought together and integrated.

これを約1日間自然乾燥した後1500℃の大気中で2
時間再度焼成を行いz債の円筒が接合されたチタン酸ア
ルミニウムの焼結晶を得る。
After drying this naturally for about 1 day, it was placed in the atmosphere at 1500℃ for 2
Firing is performed again for a certain period of time to obtain a fired crystal of aluminum titanate to which the z-bond cylinder is joined.

この製品の接合部を含む部分から試験片を15本切出し
、該試験片について抗折強度を測定した結果、平均30
MPaであった。
We cut out 15 test pieces from the parts including the joints of this product, and measured the bending strength of the test pieces.
It was MPa.

実施例2: 次の組成を有する鋳込み泥漿を調整する。Example 2: A casting slurry having the following composition is prepared.

糺虞 この泥漿を用いて、泥漿鋳込み成形法により実施例1と
同様に円筒状の成形体を2個成形する。この円筒状窒化
珪素成形体をそれぞれ窒素雰囲気中の炉内で1200℃
で3時間仮焼成する。得られる窒化珪素の円筒状焼成体
の端面に、上記の泥漿を塗布し、2つの円筒の端面を突
き合せて一体化する。
Using this slurry, two cylindrical molded bodies were molded in the same manner as in Example 1 by the slurry casting method. Each of these cylindrical silicon nitride molded bodies was heated to 1200°C in a furnace in a nitrogen atmosphere.
Temporarily bake for 3 hours. The above-mentioned slurry is applied to the end face of the resulting cylindrical fired body of silicon nitride, and the end faces of the two cylinders are brought together and integrated.

これを約1日間自然乾燥した後、1750℃の窒素雰囲
気中で5時間の焼成を行い、2個の円筒が接合されてい
る窒化珪素の焼結晶を得る。この製品について、実施例
1と同様にして抗折強度を測定した結果、平均520 
M P aであった。
After naturally drying this for about one day, it is fired for 5 hours in a nitrogen atmosphere at 1750°C to obtain a fired crystal of silicon nitride in which two cylinders are joined. As a result of measuring the bending strength of this product in the same manner as in Example 1, the average strength was 520.
It was MPa.

比較例1: 実施例1と同じ材質形状の円筒を一体型で成形し、焼成
してチタン酸アルミニウムの円筒状焼結晶を作成し、こ
の製品から試験片を15木切り出し抗折強度を測定した
結果、平均29MPaであった。
Comparative Example 1: A cylinder with the same material and shape as in Example 1 was integrally molded and fired to create a cylindrical fired crystal of aluminum titanate, and 15 test pieces were cut out from this product to measure the bending strength. As a result, the average pressure was 29 MPa.

この比較例1と実施例1との比較から明らかのように、
接合部分を有する実施例1の製品は接合部分のない比較
例1の製品と同等の抗折強度を有していることがわがる
As is clear from the comparison between Comparative Example 1 and Example 1,
It can be seen that the product of Example 1, which has a joint part, has the same bending strength as the product of Comparative Example 1, which does not have a joint part.

比較例2: 実施例2と同じ材質形状の円筒を一体型で成形し、焼成
して、窒化珪素の円筒状製品を作成し、この製品から試
験片を15本切り出し抗折強度を測定した結果、平均5
10MPaであった。
Comparative Example 2: A cylinder made of the same material and shape as in Example 2 was integrally molded and fired to create a cylindrical silicon nitride product. 15 test pieces were cut out from this product and the bending strength was measured. , average 5
It was 10 MPa.

この比較例2と実施例2との比較から明らかのように、
接合部分を有する実施例2の製品は、接合部分のない比
較例2の製品と同等の抗折強度を有していることがわか
る。
As is clear from the comparison between Comparative Example 2 and Example 2,
It can be seen that the product of Example 2, which has a joint part, has the same bending strength as the product of Comparative Example 2, which does not have a joint part.

(発明の効果) 本発明によると1分割された軽量の部分を予め仮焼成し
てから接合一体化し再度焼成するため、2回目の焼成で
は、はとんど変形を伴なゎない・従って、生の成形体を
接合し、焼成する従来技術の場合のように、接合時に成
形体に亀裂や欠けが発生したり、或いは焼成時に組立体
変形するという問題を生ずることなく1寸法精度の優れ
た大型乃至複雑形状のセラミックス構造体を製造するこ
とができる。また、仮焼成体の接合部に塗布された泥漿
は接合面に於ける画境成体の微細な空間に滲入し、焼成
後、投揚効果により画境成体を接合するため、極めて強
固な接着が達成される。
(Effects of the Invention) According to the present invention, the divided lightweight parts are pre-fired in advance, then joined and integrated, and fired again, so there is almost no deformation during the second firing. Unlike the conventional technology in which raw molded bodies are joined and fired, there is no problem of cracks or chips occurring in the molded bodies during joining or deformation of the assembly during firing, and the process achieves excellent one-dimensional accuracy. Ceramic structures with large or complex shapes can be manufactured. In addition, the slurry applied to the joints of the pre-fired bodies seeps into the fine spaces of the image boundary bodies at the joint surface, and after firing, the image boundary bodies are joined by the throwing effect, resulting in extremely strong adhesion. Ru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明により、泥漿により接合された円筒状
仮焼成体の断面図である。 1 、2 、、、、、、円筒状仮焼成体3  、、、、
、、泥 漿 第1図 3 児償 特許出願人  トヨタ自動車株式会社 代理人 弁理士   萼   優  美(ほか2名)
FIG. 1 is a sectional view of a cylindrical calcined body joined by slurry according to the present invention. 1 , 2 , , , Cylindrical pre-fired body 3 , , ,
,, Sludge Figure 1 3 Child compensation patent applicant Toyota Motor Corporation representative Patent attorney Yumi Kaede (and 2 others)

Claims (1)

【特許請求の範囲】[Claims] 泥漿鋳込み成形法により成形し、焼成した仮焼成体同士
を該焼成体と同一組成の泥漿でもって接合一体化し、再
度焼成することを特徴とするセラミックス構造体の製造
方法。
1. A method for manufacturing a ceramic structure, characterized in that pre-fired bodies formed by a slurry casting method and fired are joined and integrated with a slurry having the same composition as the fired body, and then fired again.
JP9789889A 1989-04-18 1989-04-18 Production of structural ceramics body Pending JPH02279570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9789889A JPH02279570A (en) 1989-04-18 1989-04-18 Production of structural ceramics body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9789889A JPH02279570A (en) 1989-04-18 1989-04-18 Production of structural ceramics body

Publications (1)

Publication Number Publication Date
JPH02279570A true JPH02279570A (en) 1990-11-15

Family

ID=14204562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9789889A Pending JPH02279570A (en) 1989-04-18 1989-04-18 Production of structural ceramics body

Country Status (1)

Country Link
JP (1) JPH02279570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302379A (en) * 1989-05-15 1990-12-14 Ngk Insulators Ltd Cylindrical unit structure of oxide superconductor
JP2011093779A (en) * 2009-09-30 2011-05-12 Taiheiyo Cement Corp Method for producing ceramic sintered compact
JP2015224173A (en) * 2014-05-29 2015-12-14 京セラ株式会社 Cordierite joint
JP2016069227A (en) * 2014-09-30 2016-05-09 株式会社日本セラテック Hollow structure manufacturing method and hollow structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302379A (en) * 1989-05-15 1990-12-14 Ngk Insulators Ltd Cylindrical unit structure of oxide superconductor
JP2011093779A (en) * 2009-09-30 2011-05-12 Taiheiyo Cement Corp Method for producing ceramic sintered compact
JP2015224173A (en) * 2014-05-29 2015-12-14 京セラ株式会社 Cordierite joint
JP2016069227A (en) * 2014-09-30 2016-05-09 株式会社日本セラテック Hollow structure manufacturing method and hollow structure

Similar Documents

Publication Publication Date Title
JPS647035B2 (en)
JPH02279570A (en) Production of structural ceramics body
JP3585310B2 (en) Manufacturing method of multi-diaphragm structure
JPH06298574A (en) Joined ceramic article and joining method
JPH07144975A (en) Production of ceramic joined body
JPH06191959A (en) Method for joining ceramic member
JPS6143163B2 (en)
JPH1177635A (en) Production of hollow ceramic sintered object
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
JP4666791B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JPS62121900A (en) Manufacture of ceramic turbo wheel
JPS62138370A (en) Method of joining ceramic bodies
JP4771256B2 (en) Large ceramic structure, manufacturing method thereof and ceramic member
JP2614061B2 (en) Nitride composite ceramics
JPS61111975A (en) Manufacture of ceramic structural material
JP2919857B2 (en) Method for producing dense ceramic membrane
JPH069806B2 (en) Method for manufacturing ceramic structure
JPH1117242A (en) Method of manufacturing burned ceramic board
JP2003238260A (en) Method of manufacturing long-sized cylindrical ceramic body
JPS61275169A (en) Method of drying ceramic formed body and tool therefor
JPS62119177A (en) Manufacture of ceramic turbowheel
JP2000167819A (en) Manufacture of ceramic filter with flange
JPH06279092A (en) Method for sintering ceramic cylindrical part
JP2000335973A (en) Ceramic chamber structure and its production
JP2000159569A (en) Multi-layered structure refractory for sintering ceramic