JPS62138370A - Method of joining ceramic bodies - Google Patents

Method of joining ceramic bodies

Info

Publication number
JPS62138370A
JPS62138370A JP27860385A JP27860385A JPS62138370A JP S62138370 A JPS62138370 A JP S62138370A JP 27860385 A JP27860385 A JP 27860385A JP 27860385 A JP27860385 A JP 27860385A JP S62138370 A JPS62138370 A JP S62138370A
Authority
JP
Japan
Prior art keywords
ceramic
sheet
molded body
green molded
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27860385A
Other languages
Japanese (ja)
Inventor
裕之 宮本
裕氏 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP27860385A priority Critical patent/JPS62138370A/en
Publication of JPS62138370A publication Critical patent/JPS62138370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高い精度の複雑形状を存するセラミックス体を
得るのに適した接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a joining method suitable for obtaining ceramic bodies having complex shapes with high precision.

〔従来の技術〕[Conventional technology]

セラミックスは金属に比較して、高温強度或いは耐摩耗
性、化学的耐食性に優れるため、近年高温構造材料、耐
摩耗材料、耐食材料等の分野で金属に代わる材料として
注槽されており、数多くの研究開発がなされている。そ
の用途も多岐に亘り、例えば高温構造材料としては、耐
火物、熱交換器。
Compared to metals, ceramics have superior high-temperature strength, wear resistance, and chemical corrosion resistance. Research and development is being carried out. Its uses are wide-ranging, including high-temperature structural materials such as refractories and heat exchangers.

ガスバーナ等の耐熱材料から自動車エンジン部品。From heat-resistant materials such as gas burners to automobile engine parts.

ガスタービン部品等の精密機械部品に至るまで、数多く
のものが研究されている。
Many things are being researched, ranging from precision mechanical parts such as gas turbine parts.

ところで、エンジン部品等としてのセラミックスの用途
は、ロータ、ステータ、シリンダ、ピストン、弁体等の
一般に複雑な形状を有することが多く、高精密機械部品
としての厳しい寸法精度が要求される。
Incidentally, when ceramics are used as engine parts, they generally have complex shapes such as rotors, stators, cylinders, pistons, valve bodies, etc., and require strict dimensional accuracy as high-precision mechanical parts.

これらの複雑形状部品をセラミックスから製造する場合
、成形過程で一体成形によっては高精度のものを得るこ
とは極めて困難であるため、設計段階で接合部にできる
だけ負担が加わらないような分割成形体に分け、これら
の各部材を接合するのが最良の手段であるとされている
When manufacturing these complex-shaped parts from ceramics, it is extremely difficult to obtain high precision by integral molding during the molding process, so it is necessary to create separate molded parts at the design stage to minimize stress on the joints. It is said that the best method is to separate the parts and then join them together.

このための接合方法としては、従来がら金属ロウ剤、酸
化物系接着剤等の各種介在物を用いる方法或いはホ、ド
ブレスによる固相反応を利用する方法等が提案されてい
る。
As bonding methods for this purpose, methods using various inclusions such as metal brazing agents and oxide adhesives, and methods using a solid phase reaction by dobresses have been proposed.

ところが、金属ロウ剤、酸化物系接着剤等の各種接合剤
を用いる方法では、高温における接合強喰が母材に比較
して不充分である。また常圧下で接合を行なう場合には
、接合部に液相を介在させる際に気泡等を巻込みU織欠
陥の原因となり、均一ノf接合組織を得ることが困難で
あるために接合部の信頼性が低い。
However, in methods using various bonding agents such as metal brazing agents and oxide adhesives, the bonding strength at high temperatures is insufficient compared to the base material. Furthermore, when bonding is performed under normal pressure, when a liquid phase is interposed in the bonded area, air bubbles are drawn in and cause U-weave defects, and it is difficult to obtain a uniform No.F bonding structure. Unreliable.

更に均一ホットプレスによる固相反応を利用する接合方
法では、高温下における加圧を必要とするため、設備に
要するコストが高く、更に装置上の制約がある。
Furthermore, a bonding method that utilizes a solid phase reaction using uniform hot pressing requires pressurization at high temperatures, which increases the cost of equipment and imposes restrictions on the equipment.

〔発明が解決しようとする問題点〕 本発明において解決しようとする課題は、複雑な形状を
有するセラミックス成形体を得るための従来の欠点を解
消することにあり、連続的な均一組織と接合母材と同様
の強度を存する接合部を得るもので、高信頼性の複雑形
状を有するセラミックス体を11供するものである。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are to eliminate the conventional drawbacks of obtaining a ceramic molded body having a complicated shape, and to The purpose is to obtain a joint having the same strength as the material, and to provide a highly reliable ceramic body with a complex shape.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は特定通気率以上のセラミックス体を被接合体と
するもので、その接合面間に被接合セラミックス体と同
種のセラミックス粉とバインダよりなるシート状グリー
ン成形体を介在させ圧着し、次に圧着加圧下でバインダ
溶剤をキャピラリティによって被接合体内の開孔連通気
孔を通してシート状グリーン成形体に与えて軟化せしめ
、接合間隙内に完全に充填せしめた後、更に乾燥、焼成
工程を経て化学的結合を得る。ものである。
The present invention uses ceramic bodies with air permeability above a certain level as objects to be joined, and a sheet-shaped green molded body made of ceramic powder and binder of the same type as the ceramic bodies to be joined is interposed between the joining surfaces, and then they are pressed together. Under crimping pressure, binder solvent is applied to the sheet-like green molded body using a capillary through open holes in the body to be bonded to soften it and completely fill the bonding gap, and then undergoes a drying and firing process to chemically bind the solvent. Get a bond. It is something.

本発明における被接合体を形成するセラミックスとして
は、窒化珪素、窒化アルミニウム等の窒化物、炭化珪素
、炭化硼素等の炭化物等の非酸化物系のセラミックス、
アルミナ、ジルコニア、ムライト等の酸化物系のセラミ
ックスが任意適用できる。
Ceramics forming the objects to be joined in the present invention include non-oxide ceramics such as nitrides such as silicon nitride and aluminum nitride, carbides such as silicon carbide and boron carbide;
Oxide-based ceramics such as alumina, zirconia, and mullite can be optionally used.

被接合体は、後述のシート状グリーン成形体を形成する
バインダ中の溶剤のキャピラリティによる浸透を可能に
するために、通気度が英国規格(BS Part IA
 : 19665ect 5 )による10−6m1l
 −cm/ cM−sec H20cm以上の通気度を
有する必要がある。
The objects to be bonded have an air permeability that meets British Standards (BS Part IA) in order to allow the capillaries to penetrate the solvent in the binder that forms the sheet-like green molded object described below.
: 10-6ml by 19665ect 5)
-cm/cM-sec It is necessary to have an air permeability of H20cm or more.

そして係る通気率を有する被接合体としては、セラミッ
クス仮焼成体或いは反応してセラミックスに変わる途中
の成形体を被接合体として得、仮焼成体、或いは反応し
てセラミックスに変わる途中の成形体が好適に使用する
ことができる。特に反応途中の被接合体は高強度であり
、機械加工による負荷に対して耐用性を存し、且つ切削
加工等が容易であり、寸法精度に優れた加工が可能であ
る。
As objects to be joined having such air permeability, a pre-fired ceramic body or a molded object in the process of reacting and changing into ceramics can be obtained as a bonding object; It can be used suitably. Particularly, the objects to be joined during the reaction have high strength, can withstand the load caused by machining, are easy to cut, etc., and can be processed with excellent dimensional accuracy.

接合面に介在するシート状グリーン成形体としては、被
接合体を構成する母材と同様の組成のセラミックス或い
は、以後の加熱や反応によって母材と同様の組成のセラ
ミックスとなる物質を使用することもできる。このセラ
ミックス化する物質としては水酸化物、塩類等の無機物
質、アルミニウム、珪素等の金属であって、窒素或いは
一酸化炭素等と反応して窒化物或いは炭化物等を形成す
るもの、有機物と共に加熱処理することによりセラミッ
クス化するものを使用できる。但し、水酸化物、塩類等
は反応途中でガスを発生し、反応前後における容積変化
が大きいため適当でない。
As the sheet-like green molded body interposed at the joint surface, use a ceramic having the same composition as the base material constituting the joined body, or a substance that becomes ceramic with the same composition as the base material by subsequent heating or reaction. You can also do it. Substances that can be turned into ceramics include inorganic substances such as hydroxides and salts, metals such as aluminum and silicon that react with nitrogen or carbon monoxide, etc. to form nitrides or carbides, and those that are heated together with organic substances. Materials that can be turned into ceramics by treatment can be used. However, hydroxides, salts, etc. are not suitable because they generate gas during the reaction and the volume changes significantly before and after the reaction.

また、バインダとしては、常温及び単体で固形であって
、特定の溶剤に可溶であり、溶液としたときに加熱、真
空乾燥等の処理を行って溶剤を飛散させてもバインダと
しての性質を損なわないものを使用する。また溶剤とし
ては被接合体に体積変化1重量変化、化学変化等の物理
的或いは化学的影響を及ぼさないものを使用する。その
ようなバインダと溶剤の組合せとしては、PVAと水。
In addition, binders are solid at room temperature and soluble in specific solvents, and do not maintain their properties as a binder even if the solvent is scattered by heating or vacuum drying when the binder is made into a solution. Use something that won't damage it. The solvent used is one that does not have any physical or chemical effects such as volume change, weight change, chemical change, etc. on the objects to be joined. Such binder and solvent combinations include PVA and water.

フェノール樹脂とエタノール、アクリル樹脂とアセトン
、有機珪素高分子化合物とキシレン、ポリエステル樹脂
とアセトン、PVAとエタノール等がある。
Examples include phenol resin and ethanol, acrylic resin and acetone, organosilicon polymer compound and xylene, polyester resin and acetone, PVA and ethanol, etc.

接合面に介在させる上記のセラミックス或いはセラミッ
ク化材の粉末とバインダと溶剤の組み合わせからなるグ
リーンは、接合間隙に均一な厚さと充分な充填が行われ
る厚みのシート状とし、0.5〜10mm程度の厚みと
する。
The green, which is a combination of the above ceramic or ceramic material powder, binder, and solvent, to be interposed on the joint surface is in the form of a sheet with a thickness that is uniform and sufficiently filled in the joint gap, and has a thickness of about 0.5 to 10 mm. The thickness shall be .

このグリーンシートを上記通気度を存するセラミックス
仮焼成体或いは反応してセラミックスに変わる途中の成
形体の接合部に平面研削加工を施し、上記シート状グリ
ーン成形体を介在させ圧着する。次いでこのグリーンシ
ートを被接合材の接合面に介在せしめて圧着加圧する。
This green sheet is subjected to surface grinding at the joint portion of a pre-fired ceramic body having the above-mentioned air permeability or a molded body which is in the process of reacting and turning into ceramics, and the sheet-like green molded body is interposed and pressure bonded. Next, this green sheet is interposed between the joining surfaces of the materials to be joined and pressure is applied.

加圧は、好ましくは真空中において、接合面に垂直な方
向から被接合体を媒体として行なう。真空中で行なう場
合には、接合界面への気泡の巻込み等に起因する組織欠
陥の生成は皆無であり、極めて信頼性に優れたセラミッ
クス接合体を得ることができる。
Pressurization is preferably carried out in a vacuum in a direction perpendicular to the bonding surfaces, using the objects to be bonded as a medium. When the bonding is carried out in a vacuum, there is no generation of structural defects due to the inclusion of air bubbles at the bonding interface, and a ceramic bonded body with extremely high reliability can be obtained.

これによって、ハ・インダ中の?容剤がキャピラリティ
によって被接合体内の開孔連通気孔を通してシート状グ
リーン成形体中のバインダを溶解せしめ、シート状グリ
ーン成形体を軟化させてスリップ状と化しながら変形充
填し、シート状グリーン成形体中のセラミックス粉末或
いは加熱や反応でセラミックス化する物質相互及び被接
合体の接合面とを接触させ、接合体接合面の間の間隙に
シート状グリーン成形体中のバインダによるボンディン
グによって接合界面とする。
By this, in the middle of Ha Indah? The container dissolves the binder in the sheet-like green molded body through the continuous open holes in the object to be joined by capillaries, softens the sheet-like green molded body, and deforms and fills the sheet-like green molded body while turning it into a slip-like shape, thereby forming a sheet-like green molded body. The ceramic powder or substance that becomes ceramic through heating or reaction is brought into contact with each other and the bonding surfaces of the objects to be bonded, and a bonding interface is formed by bonding with the binder in the sheet-shaped green molded body in the gap between the bonding surfaces of the bonded bodies. .

但し、この過程で加える加圧力は、溶剤が浸透していな
い部分のシート状グリーン成形体を圧縮破壊しないこと
、溶剤が浸透して軟化したシート状グリーン成形体を接
合界面中において不連続に破壊しないこと、溶剤が浸透
して軟化したシート状グリーン成形体を接合界面中にお
いて連続的に変形させることが可能であること等の条件
を満たす範囲の圧力である必要がある。
However, the pressure applied in this process should not compress and destroy the sheet-like green molded product in the areas where the solvent has not penetrated, and must not discontinuously break the sheet-like green molded product that has been softened by the penetration of the solvent at the joint interface. The pressure needs to be within a range that satisfies the following conditions: that the sheet-like green molded product, which has been softened by penetration of the solvent, can be continuously deformed in the joint interface.

被接合体の通気率が、10’ m 1−cm/ ci−
secH20cm以下である場合は、被接合体内の開孔
連通気孔が非常に少ないため、被接合体への溶剤の浸透
が認められず、シート状グリーン成形体に溶剤を供給す
ることができないため接合不能となる。
The air permeability of the object to be joined is 10' m 1-cm/ci-
If secH is 20 cm or less, there are very few open holes in the object to be joined, so the penetration of the solvent into the object is not observed, and the solvent cannot be supplied to the sheet-like green molded object, making it impossible to join. becomes.

実験の結果、被接合体への溶剤の浸透割合は、被接合体
の通気率がlO°6mjl −cm/ cal−sec
 H20C1fi以下では著しく減少する。従って被接
合体の通気率は少なくとも10’ ml−cm/ cI
+!−5ec H20cm以上、好ましくは10J5m
ll ・Cm/ cA ・sea H20cm以上にす
る必要がある。
As a result of the experiment, the permeation rate of the solvent into the objects to be bonded was determined as follows:
It decreases significantly below H20C1fi. Therefore, the air permeability of the object to be bonded should be at least 10' ml-cm/cI.
+! -5ec H20cm or more, preferably 10J5m
ll ・Cm/cA ・sea H must be 20cm or more.

また、接合界面に上記グリーン成形体を介在せしめた接
合体を焼成するに際しては、焼成時に接合界面と被接合
体の収縮率の差による接合界面の破壊を防ぐため、グリ
ーン成形体の収縮率ができるだけ小さくなるようにする
ことが望ましく、5%以下程度とすることにより良好な
結果を得ることができる。更に同様の理由からシート状
グリーン成形体を軟化変形して得られる接合界面の厚さ
は0.11■以下程度とすることが望ましい。これによ
って、接合部の寸法精度に優れたセラミックス接合体を
得ることができる。
In addition, when firing a bonded body with the above-mentioned green molded body interposed at the bonded interface, the shrinkage rate of the green molded body is It is desirable to make it as small as possible, and good results can be obtained by setting it to about 5% or less. Further, for the same reason, it is desirable that the thickness of the bonded interface obtained by softening and deforming the sheet-like green molded product is approximately 0.11 mm or less. Thereby, it is possible to obtain a ceramic bonded body with excellent dimensional accuracy of the bonded portion.

シート状グリーン成形体は被接合体と同種の出発原料或
いは同種のセラミックスとなる出発原料を使用するため
、接合界面は母、材と同一の化学組成物及び化学的結合
を持ち、連続的均一&11織を有する。従って、乾燥、
焼成後のセラミックス接合体は、極めて寸法精度に優れ
たものとなる。
Since the sheet-like green molded body uses the same type of starting material as the object to be joined or the same type of starting material that will become the same type of ceramic, the bonded interface has the same chemical composition and chemical bond as the base material and material, and is continuous and uniform. It has a texture. Therefore, drying,
The ceramic bonded body after firing has extremely excellent dimensional accuracy.

従って本発明により極めて寸法精度に優れ且つ物理的及
び化学的に連続的な組織を有するセラミックス接合体を
得ることが可能であり、更に本発明は複雑形状セラミッ
クスの接合も容易に行なえる。
Therefore, according to the present invention, it is possible to obtain a ceramic bonded body having extremely excellent dimensional accuracy and a physically and chemically continuous structure, and furthermore, the present invention can easily bond ceramics having complex shapes.

(実施例〕 実施例1 第1表に示すセラミックス粉末及びバインダよりなるグ
リーン成形体を仮焼成を行い、同表に示す通気率を有す
るセラミックス仮焼成体を得た。
(Example) Example 1 A green molded body made of the ceramic powder and binder shown in Table 1 was pre-fired to obtain a ceramic pre-fired body having the air permeability shown in the table.

第  1  表 得られたセラミックス仮焼成体を被接合体として、それ
ら被接合体から4(bm X40+n X 10+nの
試験片を切出し、それらの接合面(4011X 10m
m)を研削盤により研磨し、この研磨面を接合面とした
Table 1 Using the obtained ceramic calcined bodies as objects to be joined, test pieces of 4 (bm
m) was polished using a grinder, and this polished surface was used as the bonding surface.

加工した2つの同種被接合体の接合面間に第2表に示す
配合組成物の50鶴X15mmxl鰭のシート状グリー
ン成形体を介在させ、−750mmHgの真空中におい
て各々同表に示す加圧を加えながら、被接合体中の開孔
連通気孔を通してシート状グリーン形成体に同表に示す
各種溶剤を浸透させ、軟化変形せしめて接合物を得た。
A green molded sheet of 50 cranes x 15 mm x l fins with the compounding composition shown in Table 2 was interposed between the joint surfaces of two processed objects of the same type to be joined, and the pressure shown in the table was applied to each in a vacuum of -750 mmHg. At the same time, the various solvents shown in the table were permeated into the sheet-like green formed body through the continuous holes in the body to be bonded, and the green body was softened and deformed to obtain a bonded body.

第2表 得られた接合物を乾燥後、第3表に示す焼成条件で焼成
してセラミックス接合体を得た。得られた各種セラミッ
クス接合体の接合部を接合面に垂直な方向の断面から走
査型電子顕微鏡による2次電子像観察を行った結果、全
てのセラミックス接合体について接合部に母材と接合界
面の区別は認められず、セラミックス接合体全体に渡り
連続的均一組織を有していた。
Table 2 After drying the resulting bonded products, they were fired under the firing conditions shown in Table 3 to obtain ceramic bonded products. Secondary electron images of the joints of the various ceramic joints obtained were observed using a scanning electron microscope in a cross section perpendicular to the joint surface. No distinction was observed, and the entire ceramic bonded body had a continuous and uniform structure.

更に接合面を中心として、50mmX5imX5mmの
曲げ強度測定用試験片を切出し、常温曲げ試験を行った
結果及び母材の曲げ強度を同表に示す。同表より接合部
の強度及び信頼性は、母材と同程度のレヘルであること
が判る。
Furthermore, a test piece for measuring bending strength of 50 mm x 5 mm x 5 mm was cut out with the joint surface as the center, and subjected to a room temperature bending test. The results and the bending strength of the base material are shown in the same table. From the same table, it can be seen that the strength and reliability of the joint are on the same level as the base material.

第  3  表 比較例1 実施例1の接合において、シート状グリーン成形体への
溶剤の浸透を無加圧下で行い、他の条件については実施
例1と同様にした。この条件においては、シート状グリ
ーン成形体の軟化変形が認められず、接合不能であった
Table 3 Comparative Example 1 In the bonding of Example 1, the solvent was permeated into the sheet-like green molded body under no pressure, and the other conditions were the same as in Example 1. Under these conditions, no softening deformation of the sheet-like green molded body was observed, and it was impossible to join.

実施例2 実施例1の接合において溶剤の浸透及び加圧によるシー
ト状グリーン成形体の軟化変形を大気中で行い、他の条
件については実施例1と同様にして各種セラミックス接
合体を得た。得られたセラミックス接合体の接合部常温
曲げ強度を第4表に示す。
Example 2 In the bonding process of Example 1, the sheet-like green molded body was softened and deformed by penetration of a solvent and pressurization in the air, and other conditions were the same as in Example 1 to obtain various ceramic bonded bodies. Table 4 shows the room temperature bending strength of the joint of the obtained ceramic joint.

第4表から明らかなように、大気中で接合を行った場合
には、真空中で接合を行った実施例1の場合と比べて接
合部の信頼性が少し劣る。
As is clear from Table 4, when the bonding was performed in the atmosphere, the reliability of the bonded portion was slightly inferior to that in Example 1, in which the bonding was performed in a vacuum.

第  4  表 1μ 実施例3 44μ以下の粒径の珪素粉末90重量%及び有機珪素高
分子化合物10重量%よりなるグリーン成形体を窒素雰
囲気中800℃で仮焼成を行い、通気率4×IQ−5m
l! −C11l/Cut−5ec H20の珪素仮焼
成体を得た。得られた珪素仮焼成体から4Qm@X40
mmX1011の試験片を切出し、被接合体としてこれ
らの接合面(40菖m X 10mm)を研削盤により
研磨し、この研磨面を接合面とした。加工した2つの被
接合体の接合面間に粒径44μ以下の珪素粉末80重量
%及び有機珪素高分子化合物20重量%よりなる50重
宵X 15mm X l +uのシート状グリーン成形
体を介在させ、−700mmHgの真空下において3k
g/cII!の加圧を加えながら被接合体中の開孔連通
気孔を通してシート状グリーン成形体にキシレンを浸透
させ、軟化変形せしめて接合物を得、乾燥後、窒素雰囲
気中1400℃で窒化合成を行なうことにより、窒化珪
素セラミックス接合体を得た。得られた窒化珪素セラミ
、クス接合体の接合部を、接合面に垂直な方向の断面か
ら走査型電子顕微鏡による2次電子像観察を行った結果
、接合部に母材と接合界面の区別は認められず、連続的
均一組織を有していた。
Table 4 1μ Example 3 A green molded body made of 90% by weight of silicon powder with a particle size of 44μ or less and 10% by weight of an organosilicon polymer compound was calcined at 800°C in a nitrogen atmosphere to give an air permeability of 4×IQ- 5m
l! A silicon pre-fired body of -C11l/Cut-5ec H20 was obtained. 4Qm@X40 from the obtained silicon calcined body
Test pieces measuring 1011 mm x 10 mm were cut out, and their joint surfaces (40 iris x 10 mm) were polished using a grinder, and this polished surface was used as the joint surface. A sheet-like green molded body of 50 mm x 15 mm x l + u consisting of 80% by weight of silicon powder with a particle size of 44μ or less and 20% by weight of an organic silicon polymer compound was interposed between the bonding surfaces of the two processed objects to be bonded. , 3k under vacuum of -700mmHg
g/cII! While applying pressure of As a result, a silicon nitride ceramic bonded body was obtained. Secondary electron image observation of the resulting joint between the silicon nitride ceramic and the bonded body using a scanning electron microscope from a cross section perpendicular to the joint surface revealed that there was no distinction between the base material and the joint interface at the joint. It was not recognized and had a continuous homogeneous structure.

更に接合面を中心として、50snX5mmX5mの曲
げ強度測定用試片を切出し、常温曲げ試験を行った結果
、その曲げ強度は35kg/n2. ワイブル係数は2
5であった。母材の窒化珪素セラミックスの曲げ強度は
36kg/ 龍2.ワイブル係数は30であり、接合部
の強度及び信頼性は母材と同等であつた。
Furthermore, a specimen measuring 50 sn x 5 mm x 5 m was cut out for bending strength measurement centering on the joint surface, and a bending test was performed at room temperature. As a result, the bending strength was 35 kg/n2. Weibull coefficient is 2
It was 5. The bending strength of the silicon nitride ceramic base material is 36 kg/Ryu 2. The Weibull coefficient was 30, and the strength and reliability of the joint were equivalent to that of the base metal.

比較例2 実施例3において、グリーン成形体の仮焼成を窒素雰囲
気中1300℃で行い、通気率5X10−7ml −c
m/cnt−see H20の仮焼成を得た。得られた
焼成体を被接合体として、他は実施例3と同様の条件で
接合を行った。この条件においては、被接合体への溶剤
の浸透が認められなかった。従って、シート状成形体に
溶剤を浸透させることができず、接合不能であった。
Comparative Example 2 In Example 3, the green molded body was pre-fired at 1300°C in a nitrogen atmosphere, and the air permeability was 5X10-7ml-c.
Preliminary firing of m/cnt-see H20 was obtained. Joining was performed under the same conditions as in Example 3 except that the obtained fired bodies were used as objects to be joined. Under these conditions, no penetration of the solvent into the objects to be joined was observed. Therefore, it was not possible to penetrate the solvent into the sheet-like molded bodies, and it was impossible to join them.

実施例4 実施例3において示したグリーン焼成体の代わりに、4
4μ以下の粒径の珪素粉末95重量%及びポリエステル
樹脂5重量%よりなるグリーン成形体を用い、実施例3
と同様の条件で仮焼成を行い珪素仮焼成体を得、更に4
4μ以下の粒径の珪素粉末90重世%及びポリエステル
樹脂10重量%よりなるシート状グリーン成形体と、シ
ート状グリーン成形体に浸透させる溶剤としてアセトン
を用い、他は実施例3と同様の条件で窒化珪素セラミッ
クス接合体を得た。得られた接合体の組織は、連続的均
一組織を有し、接合部の曲げ強度は28 kg / m
@2゜ワイブル係数は12であった。母材の曲げ強度及
びワイブル係数は各々30kg/II2であるので、接
合部は母材と同等の強度及び信頼性を有するものであっ
た0 〔発明の効果〕 本発明は、被接合部材に何等影響を与えることなくセラ
ミックス母材と同質の接合部を格別の装置なしで得るこ
とができる方法であって、ロータ。
Example 4 Instead of the green fired body shown in Example 3, 4
Example 3 Using a green molded body made of 95% by weight of silicon powder with a particle size of 4 μ or less and 5% by weight of polyester resin
Calcination was performed under the same conditions as above to obtain a silicon calcined body, and further 4
A sheet-shaped green molded body made of 90% by weight of silicon powder with a particle size of 4 μ or less and 10% by weight of polyester resin, and acetone used as a solvent to penetrate into the sheet-shaped green molded body, other conditions being the same as in Example 3. A silicon nitride ceramic bonded body was obtained. The structure of the obtained joint has a continuous uniform structure, and the bending strength of the joint is 28 kg / m
@2°Weibull coefficient was 12. Since the bending strength and Weibull coefficient of the base material were each 30 kg/II2, the joint had the same strength and reliability as the base material. A method for obtaining a joint of the same quality as a ceramic base material without affecting the rotor without special equipment.

ステーク、シリンダ、ピストン3弁体等の高い寸法精度
を有する精密機械部品を得るのに適した方法である。
This method is suitable for obtaining precision mechanical parts with high dimensional accuracy, such as stakes, cylinders, and piston 3-valve bodies.

Claims (1)

【特許請求の範囲】[Claims] 1、開孔連通気孔を有し、通気率が10^−^6ml・
cm/cm^2・secH_2Ocm以上のセラミック
ス成形体の接合面間に同成形体と同種のセラミックス粉
末或いは同種のセラミックスにセラミックス化する物質
とバインダとからなるシート状グリーン成形体を介在さ
せ圧着し、次に圧着加圧下でシート状グリーン成形体中
のバインダの溶剤を被接合体内の開孔連通気孔を通して
シート状グリーン成形体に供給し同シート状グリーン成
形体を軟化せしめて接合間隙に充填せしめた後、更に乾
燥、焼成することを特徴とするセラミックス体の接合方
法。
1. Has continuous ventilation holes and has an air permeability of 10^-^6ml.
A sheet-like green molded body made of a ceramic powder of the same type as the molded body or a substance that turns the same type of ceramic into a ceramic and a binder is interposed between the bonding surfaces of a ceramic molded body of cm/cm^2・secH_2Ocm or more, and bonded. Next, under pressure, the solvent of the binder in the sheet-like green molded body was supplied to the sheet-like green molded body through the open holes in the object to be joined, and the sheet-like green molded body was softened and filled into the bonding gap. A method for joining ceramic bodies, which is characterized by further drying and firing.
JP27860385A 1985-12-10 1985-12-10 Method of joining ceramic bodies Pending JPS62138370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27860385A JPS62138370A (en) 1985-12-10 1985-12-10 Method of joining ceramic bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27860385A JPS62138370A (en) 1985-12-10 1985-12-10 Method of joining ceramic bodies

Publications (1)

Publication Number Publication Date
JPS62138370A true JPS62138370A (en) 1987-06-22

Family

ID=17599571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27860385A Pending JPS62138370A (en) 1985-12-10 1985-12-10 Method of joining ceramic bodies

Country Status (1)

Country Link
JP (1) JPS62138370A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035381A (en) * 1989-05-31 1991-01-11 Ibiden Co Ltd Adhesive for ceramic blank
JPH1171184A (en) * 1997-08-22 1999-03-16 Toshiba Ceramics Co Ltd Binder for aln sintered product, its production and binding of aln sintered product therewith
JP2007191387A (en) * 2006-01-17 2007-08-02 Air Products & Chemicals Inc Method of joining at least two sintered bodies and composite structure produced by the method
JP2015054802A (en) * 2013-09-13 2015-03-23 株式会社クボタ Method for producing ceramic structure, method for producing membrane element, joining material and method for producing the joining material
JP2019517981A (en) * 2016-05-19 2019-06-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method of manufacturing ceramic insulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035381A (en) * 1989-05-31 1991-01-11 Ibiden Co Ltd Adhesive for ceramic blank
JPH1171184A (en) * 1997-08-22 1999-03-16 Toshiba Ceramics Co Ltd Binder for aln sintered product, its production and binding of aln sintered product therewith
JP2007191387A (en) * 2006-01-17 2007-08-02 Air Products & Chemicals Inc Method of joining at least two sintered bodies and composite structure produced by the method
JP2015054802A (en) * 2013-09-13 2015-03-23 株式会社クボタ Method for producing ceramic structure, method for producing membrane element, joining material and method for producing the joining material
JP2019517981A (en) * 2016-05-19 2019-06-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method of manufacturing ceramic insulator
US11760068B2 (en) 2016-05-19 2023-09-19 Siemens Energy Global GmbH & Co. KG Ceramic insulator

Similar Documents

Publication Publication Date Title
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
JPS595550B2 (en) Ceramic rotor and its manufacturing method
CN110407582B (en) Preparation method of silicon carbide microreactor based on gel forming
JP3943366B2 (en) Ceramic bonded body and manufacturing method thereof
JPS62138370A (en) Method of joining ceramic bodies
Wang et al. Joining of advanced ceramics in green state
JP2802013B2 (en) Ceramic joining method
Peng et al. Wet green‐state joining of alumina ceramics without paste
JPS60186468A (en) Ceramic structural material and manufacture
JP2882996B2 (en) Jig for manufacturing ceramic joined body and method for manufacturing ceramic joined body using the jig
KR101477921B1 (en) Manufacturing methods of alumina ceramic adhesives and bonding method using the same
JPS5879880A (en) Bonding method
JP2008184352A (en) Ceramic connector and its manufacturing method
JPS5884186A (en) Ceramics bonding method
CN111238891B (en) Preparation method of internal defects of reaction sintered silicon carbide ceramic
JPH01133986A (en) Method for bonding silicon carbide-based ceramic
JPS6011261A (en) Manufacture of ceramics sintered body
JP2801973B2 (en) Ceramic joining method
JPS6374962A (en) Porous reaction sintered si3n4 sic base composite ceramic material,manufacture and joining method
JP2843450B2 (en) Ceramic joining method
JPH03281902A (en) Radial type ceramic rotor
KR100379743B1 (en) Method for Jointing Porous SiC Body
JPH0632668A (en) Joined body of ceramic
JP2005335253A (en) Method for producing ceramic junction body
SU1694553A1 (en) High temperature ceramic material