JPH01133986A - Method for bonding silicon carbide-based ceramic - Google Patents

Method for bonding silicon carbide-based ceramic

Info

Publication number
JPH01133986A
JPH01133986A JP29291287A JP29291287A JPH01133986A JP H01133986 A JPH01133986 A JP H01133986A JP 29291287 A JP29291287 A JP 29291287A JP 29291287 A JP29291287 A JP 29291287A JP H01133986 A JPH01133986 A JP H01133986A
Authority
JP
Japan
Prior art keywords
silicon carbide
slip
compacts
boron
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29291287A
Other languages
Japanese (ja)
Other versions
JP2508157B2 (en
Inventor
Teizo Hase
長谷 貞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62292912A priority Critical patent/JP2508157B2/en
Publication of JPH01133986A publication Critical patent/JPH01133986A/en
Application granted granted Critical
Publication of JP2508157B2 publication Critical patent/JP2508157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/61Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To bond compacts with high strength by adding boron and carbon to silicon carbide-based powder as a sintering aid, compacting the mixture, filling a slip consisting of a sintering aid, silicon carbide powder, a deflocculant, and a liq. medium between the bonding surfaces of the compacts, and sintering the slip. CONSTITUTION:The compacts or calcined bodies 1 and 2 are produced by using the silicon carbide powder added with boron and carbon as the sintering aid. The slip 3 consisting of a sintering aid contg. boron and carbon, silicon carbide powder, a deflocculant (e.g., dimethylamine and polycarboxylic acid), and a liq. medium (e.g., water) is filled between the bonding surfaces of the compacts 1 and 2 and sintered, and the compacts 1 and 2 are bonded. A part of the particles ot SiC, carbon, boron, etc., in the slip are diffused and infiltrated into the spaces between the particles in the compacts 1 and 2 by the action of the deflocculant 3. Since sintering is carried out under such conditions, the compacts 1 and 2 are integrated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は炭化珪素(SiC)系セラミックスの接合方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for joining silicon carbide (SiC) ceramics.

〈従来の技術〉 炭化珪素系セラミックスは耐熱性に優れ、高い硬度を有
しているのでエンジン部品やタービン部品などの高温構
造材料としての用途が期待されている。セラミックス製
部品の製造は、SiC粒子等から成形体を得、焼成する
ことによって製造される(特開昭61−163167号
参照)が、例えばガスタービン羽根のような一体成形が
困難な構造部品の製造においては、各部分ごとに成形し
たものを接合して本来の形状の部品としなければならな
い。この場合、接合強度が非常に重要視されることは勿
論である。
<Prior Art> Silicon carbide ceramics have excellent heat resistance and high hardness, and are therefore expected to be used as high-temperature structural materials for engine parts, turbine parts, and the like. Ceramic parts are manufactured by obtaining molded bodies from SiC particles and firing them (see Japanese Patent Laid-Open No. 61-163167). During manufacturing, each part must be molded and then joined to form a part with its original shape. In this case, it goes without saying that bonding strength is of great importance.

従来、同糧のセラミックスどうしを接合する一般的な方
法として、次の方法が知られている。
Conventionally, the following method has been known as a general method for joining ceramics of the same type.

■ スリップキャスティング成形で脱型直後の2つの未
乾燥成形体にスリップ(セラミックス原料粒子を含むス
ラリー)を塗布して塗布面を合わせ、乾燥後焼結して一
体セラミック部品とする方法、 ■ 上記■とは本質的に異なり、メタル層やガラス相等
の接合材を介して接合する方法(特開昭61−2198
2号参照)。
■ A method of applying slip (slurry containing ceramic raw material particles) to two undried molded bodies immediately after demolding by slip casting molding, aligning the coated surfaces, drying and sintering to form an integrated ceramic part, ■ Above ■ This is essentially different from the method of bonding through a bonding material such as a metal layer or glass phase (Japanese Patent Laid-Open No. 61-2198
(See No. 2).

〈発明が解決しようとする問題点〉 しかしながら、これら両方法にはいずれも以下のような
問題があった。
<Problems to be Solved by the Invention> However, both of these methods have the following problems.

■の方法は、接合は良好に行なうことができるが、脱型
直後の成形体にしか適用できないので機械加工によシ形
状を整えた高強度のセラミックス接合品を得ることがで
きないという問題があった。なお機械加工による整形が
容易な圧縮成形体(乾燥体)や仮焼結体を上記■の方法
に準じて接合しようとしても極めて接合力の弱いものし
か得られない。
Method (2) can achieve good bonding, but it can only be applied to molded bodies immediately after demolding, so there is a problem in that it is not possible to obtain a high-strength ceramic bonded product with a well-shaped shape by machining. Ta. It should be noted that even if compression molded bodies (dried bodies) or temporary sintered bodies that are easily shaped by machining are attempted to be joined according to the method (2) above, only those with extremely weak bonding strength will be obtained.

一方、上記■の方法は接合操作が繁雑であることに加え
、得られる接合強度は上記■の方法に比べ明らかに劣る
という問題があった。
On the other hand, method (1) has the problem that the bonding operation is complicated and the resulting bonding strength is clearly inferior to method (2).

本発明は以上のような事情に鑑みなされたもので、機械
加工により形状を整えた圧縮成形体ないし仮焼結体を設
計時に定めた面で接合し、所定の強度を確保した最終形
状部品を製造するための炭化珪素系セラミックスの接合
方法を提供することを目的とする。
The present invention was developed in view of the above circumstances, and involves joining compression-molded bodies or provisionally sintered bodies that have been shaped by machining at the plane determined at the time of design to create a final shaped part that maintains a predetermined strength. An object of the present invention is to provide a method for joining silicon carbide ceramics for manufacturing.

〈問題点を解決するための手段〉 上記目的を達成できる本発明の炭化珪素系セラミックス
の接合方法は、ホウ素と炭素とを焼結助剤として加えた
炭化珪素系粉末で圧縮成形体又は仮焼結体を製造し、そ
れらの接合面間に、上記焼結助剤、炭化珪素系粉末、解
膠剤及び媒液から成るスリップを充填してから焼結させ
ることを特徴とする。
<Means for Solving the Problems> The method for joining silicon carbide ceramics of the present invention which can achieve the above object is to form a compression molded body or calcined a silicon carbide powder to which boron and carbon are added as sintering aids. The present invention is characterized in that a compact is produced, and a slip consisting of the above-mentioned sintering aid, silicon carbide powder, deflocculant, and liquid medium is filled between the joint surfaces thereof, and then sintered.

ここで「炭化珪素系粉末」とはSiCを主成分とする粉
末を指し、他の無機物質が多くない量で混入していても
よいが、SiCのみからなるものが望ましい。また上記
の「仮焼結体」 とは1600℃程度以下の温度で仮焼
結させたものを好ましくは意味する。
Here, the term "silicon carbide powder" refers to a powder whose main component is SiC, and although a small amount of other inorganic substances may be mixed in, it is preferable that it consists only of SiC. Further, the above-mentioned "temporary sintered body" preferably means one that is temporarily sintered at a temperature of about 1600°C or lower.

成形体を製造するための炭化珪素系粉末に加えられる焼
結助剤は、ホウ素及び炭素とも、[1,1〜5重量%の
量を粉末の形態で加えるのが過半であり、また上記スリ
ップにおける焼結助剤と炭化珪素系粉末は、上記成形体
に等しい配合比であることが好ましい。
The sintering aids added to the silicon carbide powder for producing a molded body are mostly boron and carbon in an amount of 1.1 to 5% by weight in the form of powder, and the above-mentioned slip It is preferable that the sintering aid and the silicon carbide powder in the molded article have the same mixing ratio as in the molded body.

上記スリップは、媒液を水とする場合には、解膠剤とし
てジエチルアミンとポリカルボン酸塩を、また媒液をベ
ンゼンとする場合には解膠剤として有機リン酸エステル
の塩とポリオキシエチレンアルキルアミンとポリカルボ
ン酸塩を用いるのが好ましい。
The above slip uses diethylamine and polycarboxylate as the deflocculant when water is used as the medium, and organic phosphate salt and polyoxyethylene as the deflocculant when benzene is used as the medium. Preference is given to using alkylamines and polycarboxylic acid salts.

接合面間にスリップを充填するには、一方又は両方の接
合面にスリップを塗布した後、両接合面を合わせる(接
触させるようにする)のがよい。そうすることによって
両波接合物間に介在することとなるスリップ層の厚さは
0.2〜1簡となるのが好ましい。これは厚すぎるとス
リップ乾燥後の取扱い中に割れを生じ易く、また薄すぎ
るとスリップが不均一に塗布される傾向となり、所定の
強度の接合が達成できなくなるからである。
In order to fill the slip between the joint surfaces, it is preferable to apply the slip to one or both of the joint surfaces and then bring the two joint surfaces together (bring them into contact). By doing so, it is preferable that the thickness of the slip layer interposed between the two wave-bonded materials is 0.2 to 1. This is because if the slip is too thick, it is likely to crack during handling after drying, and if it is too thin, the slip will tend to be applied unevenly, making it impossible to achieve a desired bonding strength.

スリップを塗布して合わせた被接合物を、非酸化性雰囲
気中、1950〜2200℃の温度で焼結することによ
り、一体化した炭化珪素系セラミック接合物が得られる
By applying the slip and sintering the bonded objects in a non-oxidizing atmosphere at a temperature of 1950 to 2200° C., an integrated silicon carbide ceramic bonded article can be obtained.

〈作用〉 接合面間に充填されたスリップ中に含まれている解膠剤
の作用によって、スリップ中のSiC。
<Function> The action of the peptizing agent contained in the slip filled between the joint surfaces causes the SiC in the slip to break down.

炭素、ホウ素の各粒子の一部が被接合物のそれら粒子間
に拡散浸透し、その状態で焼結されることKよシ、被接
合物は一体化する。
A portion of each particle of carbon and boron diffuses between the particles of the object to be joined and is sintered in that state, so that the object to be joined is integrated.

〈実施例〉 以下に実施例を試験例と併せて掲げ、本発明を更に詳し
く説明する。
<Examples> The present invention will be described in more detail below using Examples along with Test Examples.

実施例 a)被接合試料の作製 下記の原料から、まずA、  B二種類の被接合試料(
成形体)を作製した。
Example a) Preparation of samples to be joined First, two types of samples A and B were prepared from the following raw materials (
A molded body) was produced.

人)β型5iC(平均粒径CJ、SiLm)     
9B、5wt%非晶質ホウ素(平均粒径α6μrn) 
    0.5wt%カーボンブラック(平均粒径0.
02μm)    towt%B)α型5iC(平均粒
径0.4 μFF! )   98、Owt%非晶質ホ
ウ素(平均粒径0.6μm)    towt%カーボ
ンブラック(平均粒径0.02μm)    tOwt
%各試料は、上記原料をプラスチック製ボールミルで、
媒液としてエチルアルコールを用いて48時間混合し、
乾燥して得た粉末を200Kz/d圧で一次成形し、該
−火成形体をゴム袋に密封して水中で5000 Kg/
cdl圧で静水圧縮成形することにより巾30■×長さ
150■X厚さ6■の板状試料として作製した。成形体
の嵩密度は、Aが理論密度の53%、Bが理論密度の5
8%であった。
human) β type 5iC (average particle size CJ, SiLm)
9B, 5wt% amorphous boron (average particle size α6μrn)
0.5wt% carbon black (average particle size 0.5wt%)
02 μm) towt% B) α-type 5iC (average particle size 0.4 μFF!) 98, Owt% amorphous boron (average particle size 0.6 μm) towt% carbon black (average particle size 0.02 μm) tOwt
%Each sample was prepared by processing the above raw materials in a plastic ball mill.
Mix for 48 hours using ethyl alcohol as a medium,
The powder obtained by drying was first molded at a pressure of 200 Kz/d, and the fire-molded product was sealed in a rubber bag and immersed in water at 5000 Kg/d.
A plate-like sample having a width of 30 cm, a length of 150 cm, and a thickness of 6 cm was prepared by isostatic compression molding at CDL pressure. The bulk density of the molded body is A: 53% of the theoretical density, B: 5% of the theoretical density.
It was 8%.

また上記の試料A、B(成形体)を各々アルゴン中、1
500℃で仮焼結させた試料A、 B(仮焼結体)も作
製した。
In addition, the above samples A and B (molded bodies) were each placed in argon for 1
Samples A and B (temporary sintered bodies) which were pre-sintered at 500°C were also produced.

b)スリップの調製 下記組成でなる3種類のスリップ■、■及び■を常法に
より調製した。なおこれらスリップは上記試料A、  
Bのそれぞれの原料混合物に解膠剤及び水を加えたもの
である。
b) Preparation of slips Three types of slips (1), (2) and (2) having the following compositions were prepared by a conventional method. These slips are the above sample A,
A deflocculant and water are added to each raw material mixture of B.

スリップI 媒液:ベンゼン              30重量
部媒液:水                60重量
部スリップ■ 媒液:水                30重量部
上記スリップI、■及び■の粘性はそれぞれ390cp
、480cp及び366CI)であった。
Slip I Medium: Benzene 30 parts by weight Medium: Water 60 parts by weight Slip ■ Medium: Water 30 parts by weight The viscosity of the above slips I, ■, and ■ is 390 cp, respectively.
, 480cp and 366CI).

C)接合 を予め使用するスリップの媒液で濡らしてから直ちにス
リップを塗布し、塗−布したスリップを挾むようにして
2枚の板状試料を合わせ、第1図に示すように黒鉛製治
具4に立てかけて配置する。板状試料1,2間のスリッ
プ層6の厚さは約1■となるよう塗布されている。第1
図で示されるように配置した状態で加熱炉に入れ、アル
ゴンガス中、2050℃ないし2100℃の温度で1時
間焼結させることによシ、接合部分が判らないほど一体
化した焼結接合物が得られた。
C) Wet the joint in advance with the medium of the slip to be used, immediately apply the slip, put the two plate-shaped samples together by sandwiching the applied slip, and as shown in Figure 1, use the graphite jig 4. Place it upright. The thickness of the slip layer 6 between the plate-shaped samples 1 and 2 is approximately 1 inch. 1st
The sintered joint is placed in a heating furnace as shown in the figure and sintered in argon gas at a temperature of 2,050°C to 2,100°C for 1 hour, resulting in a sintered joint that is so integrated that the joints cannot be discerned. was gotten.

試験例 上記実施例で得られた、種々の試料、スリップを組合わ
せて焼結接合された様々な接合物の接合強さを試験した
。試験は、第2図に示すような、接合部6を中心にして
切出したテストピース5を用いて行なった。該テストピ
ースの大きさは、縦3 ws X横4 w X高さ50
■であシ、JIS  R1601試験法に準じて、上ス
パン10、下スパン30雪の4点曲げ強度試験を行なっ
た。
Test Example The bond strength of various bonded products obtained by combining various samples and slips obtained in the above examples and sinter bonding was tested. The test was conducted using a test piece 5 cut out with the joint 6 in the center as shown in FIG. The size of the test piece is 3ws (length) x 4w (width) x 50mm (height)
■A 4-point bending strength test was conducted on snow with an upper span of 10 and a lower span of 30 in accordance with the JIS R1601 test method.

その結果を次表に示す。The results are shown in the table below.

表 本試験により、曲げ強度はスリップの種類に依らず、ま
た同一寸法の被接合試料自身の曲げ強度と殆んど変わら
ないことが確かめられた。
This test confirmed that the bending strength does not depend on the type of slip and is almost the same as the bending strength of the welded samples of the same size.

〈発明の効果〉 以上の説明から明らかなように、本発明の炭化ケイ素系
セラミックスの接合方法によれば、機械加工によシ形状
を整えた成形体ないし仮焼結体から、接合部の強度が非
接合部の強度に匹敵するほど高強度となったセラミック
接合製品を提供できるようになった。従って、例えばガ
スタービン部品のような大型で一体成形困難な複雑構造
の炭化珪素系セラミックス部品を、各部分ごとに成形し
たものを接合して最終形状とすることによって製造する
ことができるようになった。
<Effects of the Invention> As is clear from the above explanation, according to the method for joining silicon carbide ceramics of the present invention, the strength of the joint part can be improved from a molded body or a temporarily sintered body that has been shaped into a shape by machining. It is now possible to provide ceramic bonded products whose strength is comparable to that of non-bonded parts. Therefore, it is now possible to manufacture silicon carbide ceramic parts such as gas turbine parts, which are large and have complex structures that are difficult to mold in one piece, by molding each part and joining them together to form the final shape. Ta.

また小部分ごとに分けて製造できるため、各部分の信頓
性が大型一体成形品より格段と高まったセラミックス製
品を得ることができるようになった。
Furthermore, since it can be manufactured separately into small parts, it has become possible to obtain ceramic products in which the reliability of each part is much higher than that of large, integrally molded products.

更に、金属等の他の接合材を用いる繁雑な接合方法に代
えて、より簡便で強力に接合できる本発明方法を適用す
ることができるようになったため炭化珪素系セラミック
ス接合製品を低コストで提供できるようになった。
Furthermore, in place of complicated bonding methods that use other bonding materials such as metals, it is now possible to apply the method of the present invention, which is easier and more powerful, allowing silicon carbide-based ceramic bonded products to be provided at low cost. Now you can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の炭化娃紮系セラミックスの接合方法の
一実施例に係る、治具に配置された被接合物を示す斜視
図、 第2図は一実施例によシ接合されたセラミックスから切
り出されたテストピースを示す斜視図である。 図中: 1、2−−−・・試料(成形体)3・・・−・・・スリ
ップ層特許出願人 トヨタ自動車株式会社
FIG. 1 is a perspective view showing objects to be joined arranged in a jig according to an embodiment of the method of joining carbonized porcelain ceramics of the present invention, and FIG. 2 is a perspective view of ceramics joined according to an embodiment. It is a perspective view showing a test piece cut out from. In the figure: 1, 2 --- Sample (molded body) 3 --- Slip layer Patent applicant Toyota Motor Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)ホウ素と炭素とを焼結助剤として加えた炭化珪素
系粉末で圧縮成形体又は仮焼結体を製造し、それらの接
合面間に、上記焼結助剤、炭化珪素系粉末、解膠剤及び
媒液から成るスリップを充填してから焼結させることを
特徴とする炭化珪素系セラミックスの接合方法。
(1) A compression molded body or a temporary sintered body is manufactured using silicon carbide powder to which boron and carbon are added as sintering aids, and the sintering aid, silicon carbide powder, A method for joining silicon carbide ceramics, characterized in that the slip is filled with a deflocculant and a medium and then sintered.
(2)媒液が水で、解膠剤がジエチルアミンとポリカル
ボン酸である特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the medium is water and the peptizers are diethylamine and polycarboxylic acid.
(3)媒液がベンゼンで、解膠剤が有機リン酸エステル
塩とポリオキシアルキルアミンとポリカルボン酸塩であ
る特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the medium is benzene and the peptizer is an organic phosphate ester salt, a polyoxyalkylamine, and a polycarboxylic acid salt.
JP62292912A 1987-11-19 1987-11-19 Method for joining silicon carbide ceramics Expired - Lifetime JP2508157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292912A JP2508157B2 (en) 1987-11-19 1987-11-19 Method for joining silicon carbide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292912A JP2508157B2 (en) 1987-11-19 1987-11-19 Method for joining silicon carbide ceramics

Publications (2)

Publication Number Publication Date
JPH01133986A true JPH01133986A (en) 1989-05-26
JP2508157B2 JP2508157B2 (en) 1996-06-19

Family

ID=17788007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292912A Expired - Lifetime JP2508157B2 (en) 1987-11-19 1987-11-19 Method for joining silicon carbide ceramics

Country Status (1)

Country Link
JP (1) JP2508157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379743B1 (en) * 2000-06-12 2003-04-11 (주)글로벌코센테크 Method for Jointing Porous SiC Body
KR20180103509A (en) * 2017-03-10 2018-09-19 서울시립대학교 산학협력단 Residual stress free joined SiC ceramics and the processing method of the same
CN114478043A (en) * 2022-01-12 2022-05-13 中国科学院上海硅酸盐研究所 Connection method of silicon carbide ceramic based on liquid phase sintering

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054984A (en) * 1983-09-07 1985-03-29 日立化成工業株式会社 Manufacture of silicon carbide sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054984A (en) * 1983-09-07 1985-03-29 日立化成工業株式会社 Manufacture of silicon carbide sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379743B1 (en) * 2000-06-12 2003-04-11 (주)글로벌코센테크 Method for Jointing Porous SiC Body
KR20180103509A (en) * 2017-03-10 2018-09-19 서울시립대학교 산학협력단 Residual stress free joined SiC ceramics and the processing method of the same
CN114478043A (en) * 2022-01-12 2022-05-13 中国科学院上海硅酸盐研究所 Connection method of silicon carbide ceramic based on liquid phase sintering

Also Published As

Publication number Publication date
JP2508157B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JP2843348B2 (en) Formation of complex high performance ceramic and metal shapes
JPH05506422A (en) Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body
US4419161A (en) Method of producing composite ceramic articles
JPH02129080A (en) Method of joining porous silicon carbide articles
RU2193543C2 (en) Method of manufacturing caked structured ceramic product from aluminum nitride
JP3017372B2 (en) Compound for ceramic joining
JPH01133986A (en) Method for bonding silicon carbide-based ceramic
Wang et al. Joining of advanced ceramics in green state
JPS61502185A (en) Heterogeneous sintered body
US5320989A (en) Boron nitride-containing bodies and method of making the same
JPS5864329A (en) Composite body of metal-bonded cubic boron nitride and substrate and manufacture thereof
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JP5067751B2 (en) Ceramic joined body and manufacturing method thereof
JP2614749B2 (en) Manufacturing method of porous metal body
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPS6243956B2 (en)
JPS5884186A (en) Ceramics bonding method
JPS61101447A (en) Manufacture of ceramic formed body
JPH05132367A (en) Inorganic cementing material
JP3520320B2 (en) Manufacturing method of ceramic joined body
EP0569391A1 (en) A method of manufacturing a boron nitride-based ceramic body
JP2563782B2 (en) Method for manufacturing silicon carbide based jig for semiconductor manufacturing
JPS59107984A (en) Metal bonding ceramic part
JP2005335253A (en) Method for producing ceramic junction body
JPH1053453A (en) Production of high density ceramics