JPS61101447A - Manufacture of ceramic formed body - Google Patents

Manufacture of ceramic formed body

Info

Publication number
JPS61101447A
JPS61101447A JP59220666A JP22066684A JPS61101447A JP S61101447 A JPS61101447 A JP S61101447A JP 59220666 A JP59220666 A JP 59220666A JP 22066684 A JP22066684 A JP 22066684A JP S61101447 A JPS61101447 A JP S61101447A
Authority
JP
Japan
Prior art keywords
molded body
mold
ceramic
molding
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220666A
Other languages
Japanese (ja)
Inventor
重孝 和田
英之 正木
神取 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP59220666A priority Critical patent/JPS61101447A/en
Publication of JPS61101447A publication Critical patent/JPS61101447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業分野] 本発明はセラミックス成形体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] The present invention relates to a method for manufacturing a ceramic molded body.

本発明は、特に、比較的複雑な形状をもち、多量のセラ
ミックス焼結体を必要とする自動車産業、セラミックス
業界等において利用することができる。
The present invention can be used particularly in the automobile industry, ceramics industry, etc., which have relatively complex shapes and require large quantities of ceramic sintered bodies.

[従来技術] 比較的形状が複雑なセラミックス成形体の製造方法とし
て、射出成形法とスリップキャスト法が知られている。
[Prior Art] Injection molding and slip casting are known as methods for manufacturing ceramic molded bodies with relatively complex shapes.

射出成形法はセラミックス粉末とポリエチレン、ポリス
チレンなどの樹脂およびワックスから構成されるバイン
ダを混合混練し、この混合原料を、通常プラスチックス
の成形法で知られている、射出成形で成形し、得られた
成形体を脱脂してプリンコンパクトであるセラミックス
成形体を(qる方法である。スリップキャスト法は古く
から実施されている方法で、セラミックス粉末と水とよ
りなるスラリーを形成し、石膏で作られた型内にスラリ
ーを入れ、石膏型に水を吸収させ、その型表面にセラミ
ックス成形体を形成するもので、石膏型より取り出した
後、乾燥してプリンコンパクトであるセラミックス成形
体が得られる。
In the injection molding method, ceramic powder is mixed and kneaded with a binder consisting of resin such as polyethylene or polystyrene and wax, and this mixed raw material is molded by injection molding, which is commonly known as a molding method for plastics. This method involves degreasing the molded body and producing a pudding-compact ceramic molded body. The slurry is poured into a mold, and the plaster mold absorbs water, forming a ceramic molded body on the surface of the mold. After being removed from the plaster mold, it dries to obtain a pudding compact ceramic molded body. .

[発明によって解決される問題点] 上記従来の射出成形法は、射出成形で得られた射出成形
体の脱脂工程において、100乃至400時間という長
時間厳格温度下の脱脂時間を要する。すなわち、射出成
形法はセラミックス成形体の製造に長時間を必要とし、
品質管理上に多くの問題点を有している。
[Problems to be Solved by the Invention] The conventional injection molding method described above requires a long degreasing time under strict temperatures of 100 to 400 hours in the degreasing step of the injection molded article obtained by injection molding. In other words, injection molding requires a long time to produce ceramic molded bodies;
There are many problems in terms of quality control.

一方、スリップキャスト法はセラミックス粉末の粒度が
比較的大きい場合には、安定なスラリーを作ることが容
易であるが、最近のサブミクロン粒子の様に極めて細か
いセラミックス粉末を使用し、かつ非酸化物を含むセラ
ミックス粉末においては、安定なスラリーを作ることが
困難である。
On the other hand, in the slip casting method, it is easy to make a stable slurry when the particle size of the ceramic powder is relatively large, but it uses extremely fine ceramic powder such as the recent submicron particles, and It is difficult to make a stable slurry of ceramic powder containing .

又成形速度が遅く、多量のセラミックス成形体を得るた
めに、多量の石膏型を必要とするなど生産性に問題があ
る。
In addition, the molding speed is slow, and in order to obtain a large quantity of ceramic molded bodies, a large number of plaster molds are required, resulting in productivity problems.

本発明はこれら従来の製造方法の欠点を有しない新しい
セラミックス成形体の製、進方法を提供することを目的
とする。
The object of the present invention is to provide a new method for manufacturing and processing ceramic molded bodies that does not have the drawbacks of these conventional manufacturing methods.

[問題点を解決するための手段] 本発明のセラミックス成形体の製造方法は、セラミック
ス粉末と、水および加熱によりゲル化するゲル化成分を
含む可塑化剤とをもつ成形原料を得る第1工程、 該ゲル化成分のゲル化前に該成形原料を型面に当接させ
第1成形体を得る第2工程、 該第1成形体を高温に保持し、該第1成形体中の該ゲル
化成分をゲル化させ硬化した第2成形体を得る第3工程
、 該第2成形体を加熱して該可塑化剤を除去し、セラミッ
クス粉末よりなる第3成形体を得る第4工程とを順次実
施することを特徴とするものである。
[Means for Solving the Problems] The method for producing a ceramic molded body of the present invention includes a first step of obtaining a molding raw material containing ceramic powder and a plasticizer containing water and a gelling component that gels when heated. , a second step of bringing the molding raw material into contact with a mold surface before gelation of the gelling component to obtain a first molded body; holding the first molded body at a high temperature to remove the gel in the first molded body; a third step of gelling the chemical component to obtain a hardened second molded body; and a fourth step of heating the second molded body to remove the plasticizer and obtaining a third molded body made of ceramic powder. It is characterized by being carried out sequentially.

本発明の製造方法において、成形原料に可塑性を付与す
る主な物質として水を使用している。この水が可塑剤と
して充分な作用を果す間に成形原料を型面に当接させて
一定の形状に成形する。その後、加熱すると可塑化剤中
に含まれている加熱によりゲル化するゲル化成分がゲル
化して成形体の可塑性を低下させて硬化させ、取扱性を
向上させるものである。この後乾燥、加熱等で水および
ゲル化成分およびゲル化成分以外の可塑化剤を除去し、
セラミックス粉末より成る成形体を得るものである。
In the manufacturing method of the present invention, water is used as the main substance that imparts plasticity to the molding raw material. While this water is functioning sufficiently as a plasticizer, the molding raw material is brought into contact with the mold surface and molded into a predetermined shape. Thereafter, when heated, the gelling component contained in the plasticizer, which gels when heated, gels, thereby reducing the plasticity of the molded article and hardening it, thereby improving handleability. After this, water, gelling components, and plasticizers other than gelling components are removed by drying, heating, etc.
A molded body made of ceramic powder is obtained.

従来の射出成形法の場合のバインダに代えて、本発明で
は水を主とする可塑化剤を用いているために、従来の脱
脂に当る可塑化剤の除去が容易である。このため、本発
明の方法ではセラミックス成形体のvM3!時間が短縮
され、又、製造管理が容易となる。
Since the present invention uses a plasticizer mainly composed of water in place of the binder used in conventional injection molding methods, the plasticizer can be easily removed during conventional degreasing. Therefore, in the method of the present invention, vM3! Time is shortened and manufacturing management becomes easier.

[発明の構成の詳細な説明] 本発明のセラミックス成形体の製造方法は、成形原料を
得る第1工程、成形原料を型によって成形し、第1成形
体を得る第2工程、第1成形体中のゲル化成分をゲル化
させ、硬化した第2成形体を得る第3工程、水および可
塑化剤を除去しセラミックス粉末より成る第3成形体を
得る第4工程を順次実施することにより達成される。
[Detailed Description of the Structure of the Invention] The method for producing a ceramic molded body of the present invention includes a first step of obtaining a molding raw material, a second step of molding the molding raw material with a mold to obtain a first molded body, and a first molded body. Achieved by sequentially carrying out the third step of gelling the gelled component inside to obtain a hardened second compact, and the fourth step of removing water and plasticizer to obtain a third compact made of ceramic powder. be done.

第1工程である成形原料を得る工程は、セラミックス粉
末と水および加熱によりゲル化するゲル化成分を含む可
塑剤とを持つ成形原料を得る工程である。
The first step, the step of obtaining a molding raw material, is a step of obtaining a molding raw material containing ceramic powder, water, and a plasticizer containing a gelling component that gels when heated.

セラミックス粉末としては、従来の酸化物系セラミック
ス粉末以外にニューセラミックスとして知られる窒化珪
素、窒化アルミニウム等の窒化物、炭化珪素等の炭化物
、その他硼化物等の粉末を使用することができる。粉末
の粒度も直径がミクロン単位のものからナブミクロン単
位と広い範囲の粒径を有するセラミックス粉末を使用す
ることができる。
As the ceramic powder, in addition to conventional oxide-based ceramic powders, powders of nitrides such as silicon nitride and aluminum nitride, carbides such as silicon carbide, and other borides, which are known as new ceramics, can be used. Ceramic powders having particle sizes in a wide range from microns to nabumicrons in diameter can be used.

可塑化成分の主要部は水及び加熱によりゲル化するゲル
化成分である。水はセラミックス粉末の粒子間に存在し
、粒子同志の移動を容易にするものである。
The main parts of the plasticizing component are water and a gelling component that gels when heated. Water exists between particles of ceramic powder and facilitates movement between particles.

ゲル化成分は低温では溶液状あるいは流動性のある糊状
を呈し、加熱することによりゲル化しセラミックス粉末
を固めて硬化する作用をもつ。ゲル化成分としては、メ
チルセルロース等が使用できる。尚ゲル化成分以外に水
に可溶な高分子、例えば、ポリビニルアルコール、ポリ
エチレングリコール、ポリアクリル酸アミド等の有機物
及び既にゲル化したゲル化成分を使用することができる
The gelling component takes the form of a solution or a fluid paste at low temperatures, and when heated, it gels and has the effect of solidifying and hardening the ceramic powder. As the gelling component, methylcellulose or the like can be used. In addition to the gelling component, water-soluble polymers such as organic substances such as polyvinyl alcohol, polyethylene glycol, and polyacrylic acid amide, and gelling components that have already been gelled can be used.

これらは成形原料に適当な粘性を与え、第1成形体の流
動性、形状保持性などを付与するものである。
These impart appropriate viscosity to the molding raw material, and impart fluidity, shape retention, etc. to the first molded body.

成形原料の配合割合は、セラミックス粉末等の粒径等に
よって変動するが、成形原料全体を100体積%とした
時、セラミックス粉末が40〜60体積%、水は20〜
40体積%、ゲル化成分は5〜20体積%程度である。
The blending ratio of the molding raw materials varies depending on the particle size of the ceramic powder, etc., but when the entire molding raw material is 100% by volume, the ceramic powder is 40-60% by volume, and the water is 20-60% by volume.
40% by volume, and the gelling component is about 5-20% by volume.

セラミックス粉末の配合割合が少なくなると、得られる
セラミックス成形体の収縮が大きくなり、寸法精度の高
いセラミックス成形体が得にくい。逆に配合割合が多す
ぎると成形原料の粘度が大きくなりすぎ成形性が恩くな
る。ゲル化成分の配合割合に関しては、多くなりすぎる
とセラミックス粉末との混線性が悪く均質な成形原料が
得に(い傾向にある。逆に5体積%以下のように少なす
ぎるとゲル化した後も成形体の硬度が低く、取り扱いに
不便である。水の配合割合に関しては、多すぎると乾燥
時にクラックが入る傾向にあり、逆に少なすぎると成形
原料の粘度が高く、成形性が悪くなる。
When the blending ratio of ceramic powder decreases, the shrinkage of the obtained ceramic molded body increases, making it difficult to obtain a ceramic molded body with high dimensional accuracy. On the other hand, if the blending ratio is too high, the viscosity of the molding raw material becomes too high, which impairs moldability. Regarding the mixing ratio of the gelling component, if it is too large, the crosstalk with the ceramic powder tends to be poor and it is difficult to obtain a homogeneous molding raw material.On the other hand, if it is too small, such as 5% by volume or less, it tends to be difficult to obtain a homogeneous molding material. Also, the hardness of the molded product is low, making it inconvenient to handle.If the proportion of water is too high, cracks tend to appear during drying, while if it is too low, the viscosity of the molding raw material becomes high, resulting in poor moldability. .

セラミックス粉末、水、ゲル化成分を含む可塑化剤の好
適な配合割合を第1図に示す点A、B。
Points A and B in FIG. 1 show suitable blending ratios of ceramic powder, water, and a plasticizer containing a gelling component.

C,Dで囲まれた台形の範囲が好ましい範囲である。The trapezoidal range surrounded by C and D is a preferable range.

成形原料は上記したセラミックス粉末と可塑化剤とを混
合し、混練することにより得られる。尚この成形原料は
、通常坏土と呼ばれている状態のものである。
The molding raw material is obtained by mixing the above-mentioned ceramic powder and a plasticizer and kneading the mixture. This molding raw material is usually in a state called clay.

第2工程は上記成形原料を型面に当接させて第1成形体
を得る工程である。
The second step is a step of bringing the molding raw material into contact with the mold surface to obtain a first molded body.

成形型としてはセラミックスの射出成形法に用いられる
射出成形型、セラミックスの押し出し成形法に用いられ
る押し出し成形型、伝統的な食器などの成形法の1つで
あるプレス成形法等のプレス成形型等を使用することが
できる。又成形方法についても射出成形法、押し出し成
形法、拝上プレス法等の従来のセラミックス成形法と同
一の方法が使用できる。
Molding molds include injection molds used for ceramic injection molding, extrusion molds used for ceramic extrusion molding, press molding for press molding, which is one of the traditional molding methods for tableware, etc. can be used. As for the molding method, the same methods as conventional ceramic molding methods such as injection molding, extrusion molding, and press pressing can be used.

尚第2工程において、成形原料はゲル化成分がゲル化す
る前の状態になければならない。しかし、部分的にゲル
化を開始しているような場合でもよい。この場合は、ゲ
ル化により成形原料の可塑性が損われいてるものであっ
てはいけない。
In the second step, the molding raw material must be in a state before the gelling component gels. However, it may be the case that gelation has partially started. In this case, the plasticity of the molding raw material must not be impaired due to gelation.

第3工程は第1成形体中に含まれているゲル化成分をゲ
ル化させるものである。
The third step is to gel the gelling component contained in the first molded body.

このゲル化工程におけるゲル化成分のゲル化は、主とし
て熱が作用する。すなわちゲル化温度以上に保持するこ
とによりゲル化成分をゲル化さすもので、例えば、澱粉
をα化することにより水の吸着が増大し、水を多量に保
持することができる。
The gelation of the gelling component in this gelling step is mainly caused by heat. That is, gelling components are gelled by maintaining the temperature at or above the gelling temperature. For example, by gelatinizing starch, water adsorption increases and a large amount of water can be retained.

高温に保持する方法として、加熱が採用できる。Heating can be employed as a method of maintaining the temperature at a high temperature.

加熱としては第1成形体の成形時に用いる型そのものを
加熱し、型を介して第1成形体を加熱してもよい。しか
しこめ場合、熱は第1成形体の表面より伝達され、成形
体の内部に熱が伝わるのに比較的長時間を要する。この
ために高周波加熱のように成形体の表面も内部も同時に
加熱される加熱方法が好ましい。第1成形体の可塑性が
極めて高く、型より第1成形体を取り出すのが困難な場
合には、成形型内で第1成形体を加熱し、ゲル化を行な
うことが好ましい。又成形型を誘電損失係数の低い材料
、例えばセラミックス、樹脂、フッソ樹脂等で作り、成
形型とともに第1成形体を高周波加熱することにより、
ゲル化させてもよい。押し出し成形法で第1成形体を得
るような場合にも、押し出し成形型を加熱し、押し出し
成形時に部分的にゲル化を進めると共に成形型からでた
成形体を高周波加熱等で連続的に加熱することも好まし
゛い。ゲル化することにより第1成形体は可塑性が損わ
れ、比較的硬い取り扱い易い状態の第2成形体となる。
The heating may be performed by heating the mold itself used when molding the first molded body, and heating the first molded body through the mold. However, in the case of heat transfer, the heat is transmitted from the surface of the first molded body, and it takes a relatively long time for the heat to be transmitted to the inside of the molded body. For this reason, a heating method such as high-frequency heating in which both the surface and the inside of the molded body are heated at the same time is preferable. If the first molded body has extremely high plasticity and is difficult to take out from the mold, it is preferable to heat the first molded body within the mold to gel it. In addition, by making the molding mold from a material with a low dielectric loss coefficient, such as ceramics, resin, fluorocarbon resin, etc., and heating the first molded body together with the molding mold by high frequency,
It may be gelled. Even when obtaining the first molded body by extrusion molding, the extrusion mold is heated to promote partial gelation during extrusion molding, and the molded body released from the mold is continuously heated using high-frequency heating, etc. It is also preferable to do so. Due to gelation, the first molded body loses its plasticity, and becomes a second molded body that is relatively hard and easy to handle.

第4工程はこの第2成形体を加熱等で可塑化成分を除去
するものである。この第4工程は主として加熱に・より
成される。加熱により水は第2成形体より気化して蒸散
する。又可塑化剤、ポリビニルアルコール等の水溶性バ
インダ等は熱分解あるいは熱分解と酸化分解等により除
去される。可塑化剤、バインダ等の除去は、従来のセラ
ミックス射出成形体の脱脂と類似のものである。しかし
本発明の場合は、可塑化剤の主要成分として水が使用さ
れているために、水が蒸散後に、有機物の分解した低分
子成分が成形体よりでる。又有機物の配合量が比較的少
ない。このために本発明の第4工程は従来の脱脂工程に
比較して極めて短時間となる。
In the fourth step, the plasticizing component is removed from the second molded body by heating or the like. This fourth step is mainly accomplished by heating. Due to the heating, water is vaporized and evaporated from the second molded body. Furthermore, plasticizers, water-soluble binders such as polyvinyl alcohol, etc. are removed by thermal decomposition or thermal decomposition and oxidative decomposition. The removal of plasticizers, binders, etc. is similar to the degreasing of conventional ceramic injection molded bodies. However, in the case of the present invention, since water is used as the main component of the plasticizer, after the water evaporates, low molecular weight components of decomposed organic substances come out of the molded article. Also, the amount of organic matter blended is relatively small. For this reason, the fourth step of the present invention takes an extremely short time compared to the conventional degreasing step.

[発明の効果] 本発明のセラミックス成形体の製造方法においては、セ
ラミックス粉末の可塑化剤として、主として水が使用さ
れている。このため可塑化剤の除去が比較的簡単で、従
来のセラミックス射出成形法の脱脂工程と比較すると、
極めて短時間で可塑化剤の除去が可能となる。また、型
で成形された第1成形体の可塑性を無くするために、可
塑化剤中にゲル化成分を含ませ、ゲル化成分をゲル化し
ている。このためにゲル化後のセラミックス成形体(第
2成形体)は比較的硬度が高く、取り扱い性がよい。
[Effects of the Invention] In the method for manufacturing a ceramic molded body of the present invention, water is mainly used as a plasticizer for ceramic powder. Therefore, the removal of the plasticizer is relatively easy, compared to the degreasing process of conventional ceramic injection molding.
The plasticizer can be removed in an extremely short time. Further, in order to eliminate the plasticity of the first molded body formed by the mold, a gelling component is included in the plasticizer to gel the gelling component. For this reason, the ceramic molded body (second molded body) after gelation has relatively high hardness and is easy to handle.

[実施例1] 焼結助剤を含む粒径的0.75μの窒化珪素粉末47体
積%、水36体積%、メチルセルロース12体積%、澱
粉5体積%の組成で混合し、ニーダにて充分に混練して
成形原料を調整した。
[Example 1] A composition of 47% by volume of silicon nitride powder with a particle size of 0.75μ containing a sintering aid, 36% by volume of water, 12% by volume of methyl cellulose, and 5% by volume of starch was mixed, and thoroughly mixed in a kneader. The mixture was kneaded to prepare a molding raw material.

次に第2図にその斜視図を示す、直径約15ミリメート
ルの中心軸とこの中心軸より両側に突出した厚さ約1.
5ミリメートルの薄い翼を持つ回転試験体をプランジャ
ー型射出成形機で成形した。
Next, FIG. 2 shows a perspective view of the central axis with a diameter of about 15 mm and a thickness of about 1 mm that protrudes from the central axis on both sides.
A rotating test specimen with 5 mm thin blades was molded using a plunger injection molding machine.

尚ここでは成形型としてフェノール樹脂製の型を用いた
。射出成形時の圧力にたえるようにフェノール樹脂成形
型に金属製の枠体を組込んで使用した。成形後、フェノ
ール樹脂の型と共に得られた成形体を通常の電子レンジ
を使用し、20秒間加熱し、成形体を約75℃に加熱し
た。これにより比較的硬い第2成形体が得られた。この
第2成形体は、フェノール樹脂型より取り外しても充分
な硬さを備え取り扱いが容易なものであった。次にこの
第2成形体を110℃で15時間、その後2時間で45
0℃まで昇温して可塑化剤を除去し、セラミックスより
なるセラミックス成形体を得た。
Here, a phenol resin mold was used as the mold. A metal frame was incorporated into a phenolic resin mold to withstand the pressure during injection molding. After molding, the molded body obtained together with the phenolic resin mold was heated for 20 seconds using a conventional microwave oven, and the molded body was heated to about 75°C. As a result, a relatively hard second molded body was obtained. This second molded product had sufficient hardness even when removed from the phenol resin mold and was easy to handle. Next, this second molded body was heated at 110°C for 15 hours, and then heated to 45°C for 2 hours.
The temperature was raised to 0° C. to remove the plasticizer, and a ceramic molded body made of ceramic was obtained.

又得られたセラミックス成形体を窒素ガス雰囲気中、1
750℃、4時間の条件で焼結し、セラミックス焼結体
を得た。得られたセラミックス焼結体はクラック等の欠
点が見られなかった。
In addition, the obtained ceramic molded body was heated in a nitrogen gas atmosphere for 1
Sintering was performed at 750° C. for 4 hours to obtain a ceramic sintered body. The obtained ceramic sintered body showed no defects such as cracks.

[実施例2] イツトリアで部分安定化したジルコニア粉末(比表面積
的15m”/a)とメチルセルロースとポリビニルアル
コールと澱粉及び水を第1表に示す割合に配合し、ニー
ダで混練して成形原料を得た。この成形原料を用いて、
第3図にその断面図を示す外形60ミリメートル、深さ
25ミリメートル、肉厚約10ミリメートルの直噴型デ
ィーゼルエンジンの燃焼室を成形し、第1成形体を得た
。この成形は、ポリカーボネイトで作りた外型と、金属
で作った内型を用い、内型が回転するプレス機でプレス
成形したものである。プレス成形後、外型のポリカーボ
ネイト型と得られた成形型をプレス成形機より取り外し
、電子レンジに入れ約20秒間電磁波を加えて第1成形
体を加熱した。
[Example 2] Zirconia powder partially stabilized with ittria (specific surface area: 15 m''/a), methyl cellulose, polyvinyl alcohol, starch and water were blended in the proportions shown in Table 1, and kneaded in a kneader to form a forming raw material. Using this molding raw material,
A combustion chamber of a direct injection diesel engine having an outer diameter of 60 mm, a depth of 25 mm, and a wall thickness of approximately 10 mm, whose cross-sectional view is shown in FIG. 3, was molded to obtain a first molded body. This molding uses an outer mold made of polycarbonate and an inner mold made of metal, and is press-molded using a press machine in which the inner mold rotates. After press molding, the outer polycarbonate mold and the obtained mold were removed from the press molding machine, and placed in a microwave oven to heat the first molded body by applying electromagnetic waves for about 20 seconds.

これにより得られた第2成形体をポリカーボネイト型よ
り外し、65℃に保った空気循環式乾燥機に移し約10
時間乾燥した。さらにその後ステン第1表 レス金網上に配置し、大気雰囲気中で昇温速度3〜b 他の可塑化剤である有機物を分解除去した。この成形工
程及び乾燥分解工程におけ、る成形原料の正常及びセラ
ミックス成形体を得るまでの最短時間を第1表に合せて
示す。第1表より明らかなように水が30%の場合には
、充分な可塑化性が得られなかった。又セラミックス粉
末の配合量が35%と少ない場合には乾燥時に成形体に
クラックが生じた。
The second molded body thus obtained was removed from the polycarbonate mold and transferred to an air circulation dryer kept at 65°C for about 10 minutes.
Dry for an hour. After that, it was placed on a stainless steel wire mesh with a surfaceless surface, and the organic matter, which is another plasticizer, was decomposed and removed in the air at a heating rate of 3-b. In this molding step and dry decomposition step, the normality of the molding raw material and the minimum time required to obtain a ceramic molded body are shown in Table 1. As is clear from Table 1, sufficient plasticization was not obtained when the water content was 30%. Furthermore, when the amount of ceramic powder blended was as low as 35%, cracks occurred in the molded product during drying.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はセラミックス粉末、可塑化剤、水の3成分の体
積比を表わす図、第2図は実施例1で成形されたセラミ
ックス成形体の斜視図、第3図は実施例2で成形された
セラミックス成形体の中央断面図である。
Figure 1 is a diagram showing the volume ratio of the three components of ceramic powder, plasticizer, and water, Figure 2 is a perspective view of the ceramic molded body molded in Example 1, and Figure 3 is a diagram showing the volume ratio of the three components of ceramic powder, plasticizer, and water. FIG. 2 is a central sectional view of a ceramic molded body.

Claims (7)

【特許請求の範囲】[Claims] (1) セラミックス粉末と、水および加熱によりゲル
化するゲル化成分を含む可塑化剤とをもつ成形原料を得
る第1工程、 該ゲル化成分のゲル化前に該成形原料を型面に当接させ
第1成形体を得る第2工程、 該第1成形体を高温に保持し、該第1成形体中の該ゲル
化成分をゲル化させ硬化した第2成形体を得る第3工程
、 該第2成形体を加熱して該可塑化剤を除去し、セラミッ
クス粉末よりなる第3成形体を得る第4工程とを順次実
施することを特徴とするセラミックス成形体の製造方法
(1) The first step of obtaining a molding raw material containing ceramic powder and a plasticizer containing a gelling component that gels with water and heating, in which the molding raw material is applied to the mold surface before the gelling component gels. a second step of contacting to obtain a first molded body; a third step of holding the first molded body at a high temperature and gelling the gelling component in the first molded body to obtain a hardened second molded body; A method for manufacturing a ceramic molded body, comprising sequentially performing a fourth step of heating the second molded body to remove the plasticizer and obtaining a third molded body made of ceramic powder.
(2) 第3工程はゲル化成分のゲル化温度以上に加熱
することにより行なう特許請求の範囲第1項記載の製造
方法。
(2) The manufacturing method according to claim 1, wherein the third step is carried out by heating to a temperature higher than the gelling temperature of the gelling component.
(3) 第3工程を型内で行なう特許請求の範囲第2項
記載の製造方法。
(3) The manufacturing method according to claim 2, wherein the third step is performed in a mold.
(4) 型は誘電損失係数の低い材料で形成され、第1
成形体を高温に保持するため誘電加熱により型内の該第
1成形体を加熱する特許請求の範囲第3項記載の製造方
法。
(4) The mold is made of a material with a low dielectric loss coefficient, and the first
4. The manufacturing method according to claim 3, wherein the first molded body in the mold is heated by dielectric heating to maintain the molded body at a high temperature.
(5) 型はゲル化温度に加熱されており、該型により
第1成形体が加熱される特許請求の範囲第3項記載の製
造方法。
(5) The manufacturing method according to claim 3, wherein the mold is heated to a gelling temperature, and the first molded body is heated by the mold.
(6) 第3工程は第1成形体を型より取り出した後加
熱によりなされる特許請求の範囲第1項記載の製造方法
(6) The manufacturing method according to claim 1, wherein the third step is performed by heating the first molded body after taking it out of the mold.
(7) 加熱は誘電加熱によりなされる特許請求の範囲
第6項記載の製造方法。
(7) The manufacturing method according to claim 6, wherein the heating is performed by dielectric heating.
JP59220666A 1984-10-19 1984-10-19 Manufacture of ceramic formed body Pending JPS61101447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220666A JPS61101447A (en) 1984-10-19 1984-10-19 Manufacture of ceramic formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220666A JPS61101447A (en) 1984-10-19 1984-10-19 Manufacture of ceramic formed body

Publications (1)

Publication Number Publication Date
JPS61101447A true JPS61101447A (en) 1986-05-20

Family

ID=16754545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220666A Pending JPS61101447A (en) 1984-10-19 1984-10-19 Manufacture of ceramic formed body

Country Status (1)

Country Link
JP (1) JPS61101447A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271954A (en) * 1989-04-11 1990-11-06 Nok Corp Production of honeycomb ceramics
EP0631499A1 (en) * 1992-02-11 1995-01-04 HUBBARD, William G. Soft tissue augmentation material
US6432437B1 (en) 1992-02-11 2002-08-13 Bioform Inc. Soft tissue augmentation material
US7060287B1 (en) 1992-02-11 2006-06-13 Bioform Inc. Tissue augmentation material and method
US7968110B2 (en) 1992-02-11 2011-06-28 Merz Aesthetics, Inc. Tissue augmentation material and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271954A (en) * 1989-04-11 1990-11-06 Nok Corp Production of honeycomb ceramics
EP0631499A1 (en) * 1992-02-11 1995-01-04 HUBBARD, William G. Soft tissue augmentation material
EP0631499A4 (en) * 1992-02-11 1995-02-15 William G Hubbard Soft tissue augmentation material.
EP1080699A1 (en) * 1992-02-11 2001-03-07 Bioform Inc. Process for producing ceramic particles
EP1080737A1 (en) * 1992-02-11 2001-03-07 Bioform Inc. Carrier for a soft tissue augmentation material
EP1080698A1 (en) * 1992-02-11 2001-03-07 Bioform Inc. Soft tissue augmentation material
US6432437B1 (en) 1992-02-11 2002-08-13 Bioform Inc. Soft tissue augmentation material
US6558612B1 (en) 1992-02-11 2003-05-06 Bioform Inc. Process for producing spherical biocompatible ceramic particles
US7060287B1 (en) 1992-02-11 2006-06-13 Bioform Inc. Tissue augmentation material and method
US7968110B2 (en) 1992-02-11 2011-06-28 Merz Aesthetics, Inc. Tissue augmentation material and method
US8067027B2 (en) 1992-02-11 2011-11-29 Merz Aesthetics, Inc. Tissue augmentation material and method

Similar Documents

Publication Publication Date Title
US5746957A (en) Gel strength enhancing additives for agaroid-based injection molding compositions
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
EP0487172B1 (en) Molding method and molding apparatus for producing ceramics
JPS61101447A (en) Manufacture of ceramic formed body
JPH064502B2 (en) Ceramics manufacturing method
JP2612878B2 (en) Method for producing silicon carbide honeycomb structure
JPH09169572A (en) Composition for extrusion molding
JPH02147202A (en) Molding method of nonplastic material
JPH02279553A (en) Ceramic molded body and its production
JP3224645B2 (en) Ceramics molding method
JPH05345304A (en) Forming method for ceramic formed body
JPH06227854A (en) Production of formed ceramic article
JP3175455B2 (en) Ceramics molding method
JPS61176439A (en) Production of ceramic core
JPH10138215A (en) Method for manufacturing ceramics sintered body and ceramics mixture used therefor
JPH05345305A (en) Forming method of ceramic formed body
JPS6197166A (en) Manufacture of silicon carbide sintered body
JPS6213303A (en) Slip casting molding method
JP3198920B2 (en) Ceramic product and method of manufacturing the same
MXPA99007130A (en) Gel strength enhancing additives for agaroid-based injection molding compositions
JPS62142701A (en) Molding method using ceramic and metallic powder
JPH0283263A (en) Production of sintered material of silicon nitride
JPH01301558A (en) Production of sintered magnesia
JPH02248358A (en) Production of ceramic base plate
JP2003137659A (en) Method of producing ceramic sintered compact