JPH064502B2 - Ceramics manufacturing method - Google Patents

Ceramics manufacturing method

Info

Publication number
JPH064502B2
JPH064502B2 JP63325575A JP32557588A JPH064502B2 JP H064502 B2 JPH064502 B2 JP H064502B2 JP 63325575 A JP63325575 A JP 63325575A JP 32557588 A JP32557588 A JP 32557588A JP H064502 B2 JPH064502 B2 JP H064502B2
Authority
JP
Japan
Prior art keywords
binder
organic binder
water
injection
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63325575A
Other languages
Japanese (ja)
Other versions
JPH02172852A (en
Inventor
茂樹 加藤
▲れい▼敏 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63325575A priority Critical patent/JPH064502B2/en
Priority to DE19893942666 priority patent/DE3942666A1/en
Publication of JPH02172852A publication Critical patent/JPH02172852A/en
Publication of JPH064502B2 publication Critical patent/JPH064502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックスの製造方法に関するものであ
り、詳しくは坏土を用い射出成形するセラミックスの製
造方法に関するものである。
The present invention relates to a method for producing ceramics, and more particularly to a method for producing ceramics by injection molding using kneaded clay.

〔従来の技術〕[Conventional technology]

従来タービンホイール等の複雑な形状を有する製造用セ
ラミック部品の成形法としては、鋳込成形法、射出成形
法が知られている。
Conventionally, a casting method and an injection molding method are known as molding methods for manufacturing ceramic parts having a complicated shape such as a turbine wheel.

鋳込成形法は、石膏等の鋳込型にセラミックス粉体の泥
漿を流し込み、固化させて成形体を得る方法である。石
膏等の鋳込型は、複雑形状の成形が可能であるが、型の
精度及び成形体の精度が悪くなることがあった。また、
媒体として一般に多量の水が用いられるため、成形に長
時間を必要とする。
The cast molding method is a method in which a slurry of ceramic powder is poured into a casting mold such as gypsum and solidified to obtain a molded body. The casting mold of gypsum or the like can form a complicated shape, but the precision of the mold and the precision of the molded body sometimes deteriorate. Also,
Since a large amount of water is generally used as a medium, a long time is required for molding.

射出成形法は、通常セラミックス粉体に可塑剤として1
種または数種の熱可塑性高分子即ち有機バインダーを添
加し、混合加熱し、金型に射出し冷却固化させて成形体
を得る方法である。この射出成形法は複雑形状の成形が
可能で量産にも適しているが、有機バインダー除去いわ
ゆる脱脂工程において、成形体の亀裂、変形防止のため
通常100時間以上の長時間の加熱を要し、その上肉薄
の部品にしか適用できなかった。また得られた成形体を
脱脂、焼成する過程においてヒビ割れ等が多く、改良が
望まれていた。
The injection molding method usually involves adding 1 as a plasticizer to ceramic powder.
This is a method in which one or several kinds of thermoplastic polymers, that is, organic binders are added, mixed and heated, injected into a mold and cooled and solidified to obtain a molded body. This injection molding method can mold complicated shapes and is suitable for mass production, but in the organic binder removal so-called degreasing process, it usually requires a long time heating of 100 hours or more to prevent cracking and deformation of the molded body, Moreover, it was only applicable to thin parts. Further, there are many cracks and the like in the process of degreasing and firing the obtained molded body, and improvement has been desired.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は上記した従来技術の欠点をなくし、坏土を用い
た射出成形により成形体を得て、有機バインダーを除
去、焼成するセラミックスの製造方法において工程日数
を減らし、さらにバインダー除去及び焼成からなる工程
を通しセラミックスの歩留の向上を目的とする。
The present invention eliminates the above-mentioned drawbacks of the prior art, obtains a molded body by injection molding using kneaded clay, removes the organic binder, reduces the number of process days in the method of manufacturing a ceramic for firing, and further comprises binder removal and firing. The aim is to improve the yield of ceramics throughout the process.

そのため発明者らは、従来射出成形には用いられていな
かった主に水を可塑化媒体とし、有機バインダーを可塑
剤として使用した坏土を射出成形に適用するとともに従
来の製造工程について鋭意検討した結果、本発明に至っ
た。
For this reason, the inventors have mainly applied water to a plasticizing medium, which has not been conventionally used for injection molding, and applied a kneaded material using an organic binder as a plasticizer to the injection molding, and have diligently studied the conventional manufacturing process. As a result, the present invention has been achieved.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によれば、セラミックス粉末、焼結助剤、水及び
有機バインダーを含む坏土を射出成形して得られた成形
体を乾燥、バインダー除去し、次いで焼成することによ
りなるセラミックスの製造方法であって、前記バインダ
ー除去前に静水圧等方加圧することを特徴とするセラミ
ックスの製造方法が提供される。
According to the present invention, there is provided a method for producing ceramics, which comprises drying a binder obtained by injection-molding a kneaded material containing a ceramic powder, a sintering aid, water and an organic binder, removing the binder, and then firing it. Therefore, there is provided a method for producing ceramics, characterized in that isostatic pressing is performed before the binder is removed.

〔作 用〕[Work]

本発明は、焼結助剤を含む無機固体材料等セラミックス
粉末に可塑剤として水及び有機バインダーを添加し得ら
れた坏土を用いて射出成形し、成形体を寸法精度よくか
つ離型歩留りよく製造し、その後乾燥、有機バインダー
除去、焼成するセラミックスの製造であって、従来の射
出成形によるセラミックスの製造においては、有機バイ
ンダーの除去即ち脱脂の工程後にラバープレス等により
静水圧等方加圧を施した後に焼成していたのに対し、有
機バインダー除去前に静水圧等方加圧を実施するもので
ある。本発明は、有機バインダー除去前に静水圧等方加
圧を実施することによりバインダー除去及び焼成工程に
おけるセラミックスの歩留りの向上が図れる。
The present invention is injection-molded using a kneaded material obtained by adding water and an organic binder as a plasticizer to a ceramic powder such as an inorganic solid material containing a sintering aid, and the molded body has good dimensional accuracy and release yield. In the production of ceramics by manufacturing, then drying, removing the organic binder, and firing.In the conventional production of ceramics by injection molding, isostatic pressing with a rubber press or the like is performed after the step of removing the organic binder, that is, degreasing. In contrast to firing after application, hydrostatic isostatic pressing is performed before removing the organic binder. In the present invention, the yield of ceramics in the binder removal and firing process can be improved by performing isostatic pressing with hydrostatic pressure before removing the organic binder.

本発明の坏土に用いるセラミックス粉体は、炭化ケイ
素、窒化ケイ素、サイアロン、窒化ホウ素等の炭化物、
窒化物等の非酸化物系及びジルコニア等酸化物のいずれ
のセラミックス原料でもよい。セラミックス原料は、得
られる成形部品の使用目的に応じ、単独または2種以上
を組合せて用いる。製造する成形部品が特に構造用セラ
ミックス部品等耐高熱性で機械的強度が要求される場合
には、窒化ケイ素を主成分として用いるものが好まし
い。
Ceramic powder used for the kneaded clay of the present invention, silicon carbide, silicon nitride, sialon, carbide such as boron nitride,
Any ceramic material such as a non-oxide type such as a nitride and an oxide such as zirconia may be used. The ceramic raw materials may be used alone or in combination of two or more, depending on the intended use of the obtained molded part. When a molded part to be manufactured is required to have high heat resistance and mechanical strength, such as a structural ceramic part, it is preferable to use silicon nitride as a main component.

本発明で用いるセラミックス粉体は、(1)水及び有機バ
インダーとの混合性に優れ、真空土練により成形性、保
形性のよい均質な坏土となること、(2)粉体粒子間のす
べり抵抗が小さく、流動性に優れ、流動模様等の欠陥を
成形体に発生させないこと、(3)乾燥及びバインダー除
去の際、欠陥が発生せず、焼結体の強度を低下させない
こと等の要件を備えるものがよい。これらの要件を満た
すセラミックス粉末としては下記式で示される範囲内
の粒子であることが好ましい。
The ceramic powder used in the present invention is (1) excellent in miscibility with water and an organic binder, formability by vacuum clay kneading, and becomes a good kneaded clay with good shape retention, (2) between powder particles Has a low slip resistance, excellent fluidity, does not cause defects such as flow patterns in the molded body, (3) does not cause defects during drying and binder removal, and does not reduce the strength of the sintered body, etc. It is better to have the requirements of. The ceramic powder satisfying these requirements is preferably particles within the range represented by the following formula.

尚、本発明において上記式の粒度分布による平均粒子
径は、例えばリーズ&ノーストラップ社製マイクロトラ
ック79957-30型粒度分布測定装置にて測定されたレーザ
ー回折式による粒度分布に基づくものである。また上記
式の吸着法による比表面積粒子径は、例えば島津製作
所製フローソープ・2300形比表面積測定装置にて測定さ
れたBET吸着法による比表面積から下記式に基づき
得たものである。この場合、密度は用いるセラミックス
粉体により定まり、例えば窒化ケイ素(Si3N4)は3.18
である。
In the present invention, the average particle diameter according to the particle size distribution of the above formula is based on the particle size distribution according to the laser diffraction method measured by Microtrack 79957-30 type particle size distribution measuring device manufactured by Leeds & Northrup. Further, the specific surface area particle diameter by the adsorption method of the above formula is obtained from the specific surface area by the BET adsorption method measured by, for example, Shimazu Seisakusho Flow Soap Model 2300 Specific Surface Area Measuring Device, based on the following equation. In this case, the density depends on the ceramic powder used, for example, silicon nitride (Si 3 N 4 ) is 3.18.
Is.

吸着法による比表面積粒子径 =6/密度・比表面積… 上記式の条件を満たすセラミックス粉体を用いた坏土
は成形性に優れ、得られる成形体に欠陥の発生がなく、
焼結体にも欠陥がないものである。上記式の条件を満
たさない場合には坏土の流動性が悪くなり成形体に成形
時の流動模様が残ったり、ポアーやクラックが発生す
る。
Specific surface area particle size by adsorption method = 6 / density / specific surface area ... The kneaded material using the ceramic powder satisfying the above formula has excellent formability, and the resulting formed body has no defects.
The sintered body has no defects. If the condition of the above formula is not satisfied, the flowability of the kneaded material is deteriorated, and the flow pattern at the time of molding remains in the molded body, or pores and cracks occur.

本発明で用いる焼結助剤はアルミナ、マグネシア、ベリ
リア、酸化セリウム、酸化ストロンチウム、チタニア、
ジルコニア、イットリア等の酸化物、チタン酸ベリリウ
ム、チタン酸ジルコン酸鉛等の複合酸化物、ムライト、
チタン酸アルミニウムジルコン等の多成分系酸化物等の
酸化物である。焼結助剤は好ましくはセラミックス粉体
と同様の粒子形状とするのがよい。
The sintering aid used in the present invention is alumina, magnesia, beryllia, cerium oxide, strontium oxide, titania,
Oxides such as zirconia and yttria, beryllium titanate, complex oxides such as lead zirconate titanate, mullite,
It is an oxide such as a multi-component oxide such as aluminum zirconate titanate. The sintering aid preferably has a particle shape similar to that of the ceramic powder.

セラミックス粉体に可塑化媒体として添加する水等は、
射出成形に供する坏土中のセラミックス粉体100重量
部に対し10〜50重量部である。水分が10重量部未
満では、混練性が悪く均質な坏土が得られず、50重量
部を超えるとスラリー状態となり成形時に脱水処理が必
要となり好ましくない。
The water added as a plasticizing medium to the ceramic powder is
It is 10 to 50 parts by weight with respect to 100 parts by weight of the ceramic powder in the kneaded material to be used for injection molding. When the water content is less than 10 parts by weight, the kneading property is poor and a homogeneous kneaded material cannot be obtained. When the water content exceeds 50 parts by weight, a slurry state is formed and dehydration treatment is required at the time of molding, which is not preferable.

本発明に用いる有機バインダーは水溶性または吸水性有
機化合物、例えばメチルセルロース、ヒドロキシプロピ
ルメチルセルロース等の水溶性セルロースエーテル誘導
体、ポリビニルアルコール、ポリエチレングリコール等
の水溶性高分子及びそれらの誘導体の吸水性高分子等を
用いて。好ましくは少なくとも熱ゲル硬化(熱ゲル硬化
とは、例えば昭和59年2月開催「ニューセラミックス
接着技術講演会」における資料“メチルセルロースを使
ったニューセラミックスの押出成形について”に記載さ
れている現象をいう。)可能なもので例えばメチルセル
ロース、ヒドロキシプロピルメチルセルロース、アルキ
レンオキシドセルロース誘導体等が用いられる。有機バ
インダーは、本発明で用いる坏土の保水性をよくし可塑
性維持に作用するとともに、熱ゲル硬化可能なものを使
用すれば、射出成形の際、熱ゲル硬化し保形性を高める
と共に離型性が向上する。
The organic binder used in the present invention is a water-soluble or water-absorbing organic compound, for example, a water-soluble cellulose ether derivative such as methylcellulose or hydroxypropylmethylcellulose, a water-soluble polymer such as polyvinyl alcohol or polyethylene glycol, and a water-absorbing polymer of those derivatives. Using. Preferably, at least thermal gel curing (thermogel curing means, for example, the phenomenon described in "New ceramics extrusion molding using methylcellulose" in "New Ceramics Adhesive Technology Lecture" held in February 1984. Possible examples include methyl cellulose, hydroxypropyl methyl cellulose, and alkylene oxide cellulose derivatives. The organic binder improves the water retention of the kneaded material used in the present invention and acts to maintain the plasticity, and when a heat-gel curable material is used, the heat-gel is cured during injection molding to improve shape retention and release. The moldability is improved.

坏土中の有機バインダー含有量はセラミックス粉体10
0重量部に対し0.1〜15重量部が好ましい。0.1重量部
未満では成形体強度が低く保形性が劣り、15重量部を
越えるとバインダー除去時間が長くなると共に成形体に
クラックが発生しやすくなり好ましくない。
The content of organic binder in the kneaded clay is 10 ceramic powder.
0.1 to 15 parts by weight is preferable to 0 parts by weight. If it is less than 0.1 part by weight, the strength of the molded product is low and the shape retention is poor, and if it exceeds 15 parts by weight, the binder removal time becomes long and cracks are easily generated in the molded product, which is not preferable.

上記のセラミックス粉体、焼結助剤、水及び有機バイン
ダーの各成分を調合した後混練し真空土練により坏土を
調製する。各成分の調合は全成分を混合し坏土としても
よいが、好ましくは先ずセラミックス粉体と焼結助剤と
を調合するのがよい。この場合粉砕した上記粒子形状の
セラミックス粉体と焼結助剤とを混合してもよいが、セ
ラミックス粉体と焼結助剤との調合物を一緒に粉砕混合
し、本発明に用いる粒子形状とするのがよい。粉砕混合
は例えば窒化ケイ素等の玉石を用いて水を添加してアト
ライター等で行うことできる。
The above-mentioned ceramic powder, sintering aid, water and organic binder are mixed, then kneaded and vacuum kneaded to prepare a kneaded clay. All components may be mixed to form a kneaded clay, but it is preferable to first mix the ceramic powder and the sintering aid. In this case, the crushed ceramic powder having the above-mentioned particle shape and the sintering aid may be mixed, but the mixture of the ceramic powder and the sintering aid is crushed and mixed together to obtain the particle shape used in the present invention. It is good to say The pulverization and mixing can be carried out, for example, with an attritor by adding water using boulders such as silicon nitride.

セラミックス粉体と焼結助剤との粉砕混合物は次いで乾
燥する。必要ならば、乾燥前に脱鉄してもよい。脱鉄は
例えば湿式フェロフィルター等を用いて行うことができ
る。乾燥は好ましくはスプレードライヤーにて噴霧乾燥
するのがよい。スプレードライヤーにおける処理は乾燥
と同時に造粒することができ、後の有機バインダー除去
が容易となる利点がある。乾燥後必要ならば振動篩等で
整粒することもできる。
The ground mixture of ceramic powder and sintering aid is then dried. If necessary, you may remove iron before drying. Iron removal can be performed using, for example, a wet ferro filter. The drying is preferably spray drying with a spray dryer. The treatment in the spray dryer has an advantage that granulation can be performed at the same time as drying, and the organic binder can be easily removed later. After drying, if necessary, the particles can be sized using a vibrating screen.

乾燥した上記粉砕混合物に水と有機バインダーとを添加
し、調合物を混練する。混練物を真空土練機を用いて脱
泡し、例えば円柱形状の坏土を得る。坏土調製用土練機
(押出機)は例えばパッグミル、真空パッグミル、オー
ガマシン、ピストン型押出機等があり、またこれらを組
み合わせた土練機でもよい。真空土練機により通常は均
質な坏土が調製されるが、均質な坏土が得られにくい場
合はラバープレス機により坏土を静水圧等方加圧してさ
らに脱泡すると共に十分に均質化してもよい。上記のよ
うにして得られた坏土は射出成形に供されるが、暗冷所
にてねかした後射出成形に供してもよい。
Water and an organic binder are added to the dried pulverized mixture, and the mixture is kneaded. The kneaded material is defoamed using a vacuum clay kneader to obtain, for example, a cylindrical kneaded material. Examples of the kneading machine for preparing kneaded clay (extruder) include a pug mill, a vacuum pug mill, an auger machine, a piston type extruder, and the like, and a kneading machine combining these may be used. A homogenous kneaded clay is usually prepared by a vacuum clay kneader, but if it is difficult to obtain a homogeneous kneaded clay, isostatically press the kneaded clay with a rubber press machine to further defoam and homogenize it. May be. The kneaded material obtained as described above is subjected to injection molding, but it may be subjected to injection molding after being aged in a dark place.

本発明の射出成形(例えば縦型、横型のプランジャー型
及びインラインスクリュー型を用いる。)とは、射出成
形用ノズルを介して閉塞した金型等成形型即ち射出スプ
ルー、射出ランナー及び射出ゲートからなる、または射
出スプルー及び射出ゲートからなる成形型射出導入部及
び成形体型内に坏土を注入して行うことをいう。射出成
形用ノズルはいずれでもよく、公知のものを使用でき
る。射出導入部の形状は特に制限されないが、好ましく
は射出スプルー及び射出ランナーが射出ゲートからある
角度を持つテーパー状に形成されているものを用いるの
がよい。一般的にテーパー角度は5〜10度とされる。
The injection molding of the present invention (for example, a vertical type, a horizontal type plunger type, and an inline screw type is used) means a mold such as a mold closed through an injection molding nozzle, that is, an injection sprue, an injection runner, and an injection gate. Or, it is carried out by injecting a kneaded material into a molding die injection introducing part and a molding body die which are composed of an injection sprue and an injection gate. Any injection molding nozzle may be used, and a known one may be used. The shape of the injection introducing portion is not particularly limited, but it is preferable to use one in which the injection sprue and the injection runner are formed in a tapered shape having a certain angle from the injection gate. Generally, the taper angle is 5 to 10 degrees.

射出成形は使用する坏土、射出機、成形型等の種類によ
って成形条件を選択すればよい。本発明においては通常
加圧圧力50〜1000kg/cm2、加圧時間1〜200
秒、射出速度50〜1000cc/sec、で行えばよい。ま
た坏土温度は通常5〜20℃である。
For injection molding, the molding conditions may be selected depending on the type of kneaded clay, injection machine, molding die, and the like to be used. In the present invention, the pressure is usually 50 to 1000 kg / cm 2 , and the pressure time is 1 to 200.
The injection speed may be 50 seconds to 1000 cc / sec. The kneaded clay temperature is usually 5 to 20 ° C.

成形体型内に注入された坏土は、成形体型にて成形体に
形成される。この場合熱ゲル硬化可能有機バインダーを
添加した坏土を用いた場合は、添加した有機バインダー
の作用により熱ゲル硬化される。予め金型を熱ゲル硬化
する有機バインダーの熱ゲル硬化温度付近に加熱するこ
とにより、成形体の保形性を付与することができるため
短時間での離型ができ、熱ゲル硬化により成形体に強度
が付与されているため成形体の寸法精度がよく、ハンド
リングも容易となり成形歩留り高く成形体を製造するこ
とができる。この場合の成形型例えば金型の条件等は、
添加有機バインダーの種類及び添加量、坏土の注入温度
及び含水量、成形品の形状、大きさにより適当に選択す
る。一般的には熱ゲル硬化可能有機バインダーの熱ゲル
硬化温度Tに対して(T−10)℃から(T+25)℃
の範囲内で金型温度を設定しておけばよい。例えば、メ
チルセルロースを有機バインダーとして用いた場合に
は、金型を予め加温して処理しておくことによりゲル硬
化することができ、通常役45〜75℃で行う。
The kneaded material poured into the molded body mold is formed into a molded body by the molded body mold. In this case, when the kneaded clay to which the heat gel-curable organic binder is added is used, the heat gel is cured by the action of the added organic binder. By preheating the mold to a temperature close to the heat gel curing temperature of the organic binder for heat gel curing, the shape retention of the molded body can be imparted, so mold release can be performed in a short time, and the molded body can be thermally gel cured. Since the strength is imparted to the molded article, the dimensional accuracy of the molded article is good, the handling becomes easy, and the molded article can be manufactured with high molding yield. The molding die in this case, for example, the conditions of the die,
Appropriate selection is made according to the type and amount of the added organic binder, the injection temperature and water content of the kneaded clay, the shape and size of the molded product. Generally, the temperature is (T-10) ° C to (T + 25) ° C with respect to the heat gel curing temperature T of the heat gel curable organic binder.
The mold temperature should be set within the range. For example, when methyl cellulose is used as the organic binder, the gel can be hardened by preheating and treating the mold, and the process is usually performed at 45 to 75 ° C.

成形型は好ましくはその内表面が撥水処理されているも
のがよい。撥水処理は、水との接触角が約80゜以上と
なるものが好ましく、撥水処理はシリコーン処理したも
のでもよいし、テフロン加工されたものを用いてもよ
い。これら撥水処理された金型を用いると成形体の寸法
精度がよく、成形体表面粗さが小さく、かつ離他合歩留
りが高くなる。
The molding die preferably has a water-repellent inner surface. The water-repellent treatment preferably has a contact angle with water of about 80 ° or more. The water-repellent treatment may be silicone-treated or Teflon-treated. When these water-repellent molds are used, the dimensional accuracy of the molded product is good, the surface roughness of the molded product is small, and the separation yield is high.

射出成形後、乾燥し、静水圧等方加圧した後、仮焼し、
水分及び有機バインダーを除去した後、焼成して成形製
品を得る。乾燥は調湿乾燥、誘電乾燥、電流乾燥、誘導
加熱乾燥等で行われ、通常は恒温恒湿乾燥機を用いて調
湿乾燥を行う。乾燥温度は成形体の大きさ等により異な
るが一般には40〜100℃で行われる。乾燥は湿度を
順次下げながら行い、最終的には湿度約10%まで下げ
て行う。
After injection molding, dry, isostatically pressurize, then calcine,
After removing the water content and the organic binder, firing is performed to obtain a molded product. Drying is performed by humidity conditioning drying, dielectric drying, current drying, induction heating drying, etc. Usually, humidity conditioning drying is performed using a constant temperature and constant humidity dryer. The drying temperature varies depending on the size of the molded product and the like, but is generally 40 to 100 ° C. Drying is performed while sequentially lowering the humidity, and finally lowering the humidity to about 10%.

乾燥した射出成形体を静水圧等方加圧を施す。静水圧等
方加圧は、成形体をゴム等の可撓性の容器(ゴム型)に
封入し、これに液体を経て均一な圧力を付すものであ
り、成形体の全般に均一な圧力をかけることができる。
この静水圧等方加圧において付与する圧力は、1〜10
t/cm2が好ましく、さらに好ましくは2.5〜8t/cm2
である。成形体中に含まれる水が乾燥により除去され、
成形体は多孔質となりこの静水圧等方加圧により成形体
は約7%程度収縮した。
The dried injection-molded body is subjected to hydrostatic isostatic pressing. Hydrostatic isostatic pressing encloses a molded body in a flexible container (rubber mold) such as rubber, and applies uniform pressure to the molded body through a liquid. You can call.
The pressure applied in this isostatic pressing is 1 to 10
t / cm 2 is preferable, more preferably 2.5 to 8 t / cm 2.
Is. Water contained in the molded body is removed by drying,
The molded body became porous, and the molded body shrank by about 7% by this isostatic pressing.

従来の射出成形の乾燥・脱脂即ちバインダー除去・焼成
工程においては、静水圧等方加圧の前にバインダー除去
処理が行われ、成形体にクラックが生じ歩留は高くなか
った。また本発明で用いる坏土を同様に実施すると従来
の射出成形より歩留が向上するものの、また不十分であ
った。本発明のように静水圧等方加圧後にバインダー除
去処理を行う場合には、成形体にクラックが生ぜず、バ
インダー除去処理後の成形体の強度は、静水圧等方加圧
前にバインダー除去処理したバインダー除去後の成形体
に比し約3倍となり、その後の焼成等においてクラック
等が生じることなく歩留がさらに向上する。
In the conventional drying / degreasing process of injection molding, that is, binder removal / firing process, binder removal treatment is performed before isostatic pressing, resulting in cracks in the molded product and the yield was not high. Further, when the kneaded material used in the present invention was similarly applied, the yield was improved as compared with the conventional injection molding, but it was also insufficient. When the binder removal treatment is performed after isostatic pressing is carried out as in the present invention, no cracks are formed in the molded product, and the strength of the molded product after the binder removal treatment is the binder removal before isostatic pressing. The yield is about 3 times that of the molded product after removal of the treated binder, and the yield is further improved without the occurrence of cracks or the like during subsequent firing or the like.

静水圧等方加圧処理後、成形体より有機バインダーを除
去する。有機バインダー除去は成形体の種類にもよる
が、通常、約500℃で5〜10時間成形体を加熱する
ことにより行われ、有機バインダーを除去する。有機バ
インダー除去後必要に応じさらに静水圧等方加圧処理を
してもよい。
After the isostatic pressing treatment, the organic binder is removed from the molded body. The removal of the organic binder depends on the type of the molded product, but is usually performed by heating the molded product at about 500 ° C. for 5 to 10 hours to remove the organic binder. After removing the organic binder, a hydrostatic isostatic pressing process may be further performed if necessary.

有機バインダー除去後、成形体を焼成し焼結体を得る。
焼成条件はセラミックスの種類、使用目的等による適宜
決定される。例えば窒化ケイ素焼結体を製造する場合、
常圧焼成では1600〜1800℃、加圧焼成では17
00〜2000℃で窒素ガス雰囲気中で焼成するのが好
ましい。また炭化ケイ素焼結体を製造する場合には、常
圧焼成で1900〜2200℃のアルゴン雰囲気中で行
うのが好ましい。さらに部分安定化ジルコニア焼結体を
製造する場合には、常圧、1300〜1500℃の空気
雰囲気中で焼成するのが好ましい。
After removing the organic binder, the molded body is fired to obtain a sintered body.
The firing conditions are appropriately determined depending on the type of ceramics, purpose of use, and the like. For example, when manufacturing a silicon nitride sintered body,
1600 to 1800 ℃ in normal pressure firing, 17 in pressure firing
It is preferable to perform firing in a nitrogen gas atmosphere at 00 to 2000 ° C. In the case of producing a silicon carbide sintered body, it is preferable to carry out firing under normal pressure in an argon atmosphere at 1900 to 2200 ° C. Further, when producing a partially stabilized zirconia sintered body, it is preferable to perform firing in an air atmosphere at 1300 to 1500 ° C. under normal pressure.

〔実施例〕〔Example〕

以下に実施例により、本発明をさらに詳しく説明する。
但し、本発明は本実施例に限定されるものでない。
Hereinafter, the present invention will be described in more detail with reference to examples.
However, the present invention is not limited to this embodiment.

(坏土の調製) 窒化ケイ素100重量部、酸化ストロンチウム2重量
部、マグネシア3重量部、酸化セリウム3重量部をアト
ライターにて湿式粉砕混合した。粉砕後の粉砕混合物の
平均粒径は0.6μm、比表面積6.3m2/gであった。この場
合の前記式の値は、窒化ケイ素の密度3.18として2.0
であった。粉砕湿式フェロフィルターミニシフターに
て、粉砕混合物から脱鉄し、その後スプレードライヤー
にて脱水乾燥した。
(Preparation of Kneaded Material) 100 parts by weight of silicon nitride, 2 parts by weight of strontium oxide, 3 parts by weight of magnesia, and 3 parts by weight of cerium oxide were wet-ground and mixed with an attritor. The crushed mixture after crushing had an average particle size of 0.6 μm and a specific surface area of 6.3 m 2 / g. The value of the above formula in this case is 2.0 as the density of silicon nitride 3.18.
Met. The crushed mixture was deironed with a crushed wet type ferrofilter mini-shifter, and then dehydrated and dried with a spray dryer.

上記のようにして得られた乾燥した粉砕混合物100重
量部、メチルセルロース(商品名:SM−4000)7
重量部、及び界面活性剤(商品名:セドランFF−20
0)1重量部、水30重量部をオープンニーダーで冷却
しながら混練した。次いで真空土練機を用いて真空度が
700mmHg以上で3回押出しし、直径52mm、長さ50
0mmの円柱形状の坏土とした。さらにラバープレス機に
て、圧力2.5t/cm2でプラスし、均質な坏土を得た。(射
出成形) 前記の坏土を12℃の冷蔵庫で一夜ねかした後、射出成
形に用いた。
100 parts by weight of the dried and ground mixture obtained as described above, methyl cellulose (trade name: SM-4000) 7
Parts by weight and surfactant (trade name: Cedran FF-20
0) 1 part by weight and 30 parts by weight of water were kneaded while cooling with an open kneader. Then, using a vacuum kneader, extrude three times at a vacuum degree of 700 mmHg or more, diameter 52 mm, length 50
It was a 0 mm columnar kneaded clay. A rubber press machine was used to add pressure at 2.5 t / cm 2 to obtain a homogeneous kneaded clay. (Injection molding) The kneaded material was aged in a refrigerator at 12 ° C overnight and then used for injection molding.

(1)タービンホイール焼結体 第1図に示した工程図に沿って第2図に示した直径13
0mmタービンホイール焼結体を製造した。成形体は、第
3図に模式図的に示した方式で一体射出成形した。用い
た金型は、上型及び下型共にその内側を圧さ20μmの
テフロン加工したもので、水との接触角が105度のも
のであった。坏土温度12℃、金型温度60℃に予め加
温し、加圧力300kg/cm2、加圧時間10秒、射出速
度300cc/secで成形し、熱ゲル硬化のため3分間放置
した。
(1) Turbine wheel sintered body Diameter 13 shown in FIG. 2 along with the process chart shown in FIG.
A 0 mm turbine wheel sintered body was manufactured. The molded body was integrally injection-molded by the method schematically shown in FIG. The dies used were Teflon processed with a pressure of 20 μm on the inside of both the upper and lower dies, and had a contact angle with water of 105 degrees. The kneaded clay temperature was 12 ° C., the mold temperature was 60 ° C., the pressure was 300 kg / cm 2 , the pressing time was 10 seconds, and the injection rate was 300 cc / sec.

射出成形後、成形体を型から取出し乾燥した。乾燥は6
0℃に加温した恒温恒湿器内で60℃で2時間保持しそ
の後10℃/hrで昇温し100℃で3時間保持して行っ
た。恒温恒湿器内の湿度は、当初98%であったが、約
10%/hrで降湿し、湿度20%まで乾燥した。
After the injection molding, the molded body was taken out of the mold and dried. Dry 6
In a thermo-hygrostat heated to 0 ° C., the temperature was kept at 60 ° C. for 2 hours, then the temperature was raised at 10 ° C./hr, and the temperature was kept at 100 ° C. for 3 hours. The humidity inside the thermo-hygrostat was initially 98%, but the humidity was reduced to about 10% / hr and the humidity was dried to 20%.

乾燥後、成形体を7tの圧力でラバープレスにて静水圧
等方加圧を施した。
After drying, the molded body was subjected to isostatic pressing with a rubber press at a pressure of 7 tons.

ラバープレス後、有機バインダー除去処理した。バイン
ダー除去処理は空気中で50℃/hr昇温して500℃で
5時間加熱し、有機バインダーを除去した。得られた成
形体を焼成した。焼成は窒素雰囲気通700℃/hrで昇
温し、1650℃で約1時間保持して行い、タービンホイー
ル焼結体を得た。上記全工程に要した日数は10日間で
あった。この場合の乾燥、バインダー除去、焼成を通じ
ての歩留は100%であった。結果を表−1に示した。
After the rubber press, the organic binder was removed. In the binder removal treatment, the temperature was raised in air at 50 ° C./hr and heated at 500 ° C. for 5 hours to remove the organic binder. The obtained molded body was fired. The firing was carried out by raising the temperature in a nitrogen atmosphere at 700 ° C./hr and holding at 1650 ° C. for about 1 hour to obtain a turbine wheel sintered body. The number of days required for all the above steps was 10 days. In this case, the yield through drying, binder removal and firing was 100%. The results are shown in Table-1.

〔比較例〕[Comparative example]

静水圧等方加圧を成形体のバインダー除去後に行った以
外は、実施例と同様にしてタービンホイール焼結体を得
た。結果を表−1に示した。
A turbine wheel sintered body was obtained in the same manner as in the example, except that isostatic pressing was performed after removing the binder of the molded body. The results are shown in Table-1.

〔発明の効果〕 本発明によれば、可塑化媒体として主に水を使用してい
るため可塑剤としての有機バインダーの使用量を少量と
することができる。有機バインダーとして水溶性または
吸水性の高分子を使用し、好ましくはゲル化可能で水溶
性または吸水性高分子例えばメチルセルロースを用いた
坏土を射出成形して、乾燥、バインダー除去、焼成する
ことによりセラミックスを得る工程において、静水圧等
方加圧処理をバインダー除去前に実施することでバイン
ダー除去後の歩留がほぼ100%に向上する。
EFFECTS OF THE INVENTION According to the present invention, since water is mainly used as the plasticizing medium, the amount of the organic binder used as the plasticizer can be reduced. By using a water-soluble or water-absorbing polymer as the organic binder, preferably by injection-molding a kneaded material using a gelable water-soluble or water-absorbing polymer such as methylcellulose, drying, removing the binder, and firing. In the step of obtaining the ceramics, the hydrostatic isostatic pressing treatment is performed before removing the binder, so that the yield after removing the binder is improved to almost 100%.

また、従来の射出成形では一体成形が不可能であった複
数形状であり肉厚部を有する成形体をも成形性、保形性
が良く一体的に射出成形して得たうえで、最終セラミッ
クスを極めて高い歩留で製造することができる。
In addition, molded products with multiple shapes and thick parts that could not be integrally molded by conventional injection molding were obtained by integrally injection molding with good moldability and shape retention. Can be manufactured with an extremely high yield.

さらに、本発明の方法によれば従来の射出成形では長時
間要した脱脂を約2日間で終了することができ、その
上、従来の射出成形品と同等の精度、性能を有するセラ
ミックスを歩留よく得ることができる。また、本発明で
は上記したように従来の射出成形より肉厚の成形品焼結
体も製造でき、複雑形状の構造用セラミックス部品を射
出成形により得ることができ、工業上極めて有用であ
る。
Further, according to the method of the present invention, degreasing, which took a long time in the conventional injection molding, can be completed in about 2 days, and moreover, the ceramics having the same accuracy and performance as the conventional injection molded product can be obtained. You can get well. Further, in the present invention, as described above, a molded product sintered body having a wall thickness larger than that of conventional injection molding can be manufactured, and a structural ceramic component having a complicated shape can be obtained by injection molding, which is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のセラミックス焼結体の製造方法の工
程ブロック図である。第2図はタービンホイール成形体
断面図であり、第3図は、射出成形方式の断面模式図で
ある。 1…坏土、2…ピストン、3…シリンダー、 4…ノズル、5…可動盤、6…金型上型、 7…金当下型、8…成形体、9…排気孔。
FIG. 1 is a process block diagram of the method for producing a ceramics sintered body of the present invention. FIG. 2 is a sectional view of a turbine wheel molded body, and FIG. 3 is a schematic sectional view of an injection molding system. DESCRIPTION OF SYMBOLS 1 ... Kneaded clay, 2 ... Piston, 3 ... Cylinder, 4 ... Nozzle, 5 ... Movable plate, 6 ... Mold upper mold, 7 ... Metal lower mold, 8 ... Molded body, 9 ... Exhaust hole.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミックス粉末、焼結助剤、水及び有機
バインダーを含む坏土を射出成形して得られた成形体を
乾燥、バインダー除去し、次いで焼成することよりなる
セラミックスの製造方法であって、前記乾燥の後、バイ
ンダー除去前に静水圧等方加圧することを特徴とするセ
ラミックスの製造方法。
1. A method for producing ceramics, which comprises drying a binder obtained by injection-molding a kneaded material containing a ceramic powder, a sintering aid, water and an organic binder, removing the binder, and then firing. Then, after the drying, a hydrostatic pressure isotropically applied before removing the binder.
JP63325575A 1988-12-23 1988-12-23 Ceramics manufacturing method Expired - Lifetime JPH064502B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63325575A JPH064502B2 (en) 1988-12-23 1988-12-23 Ceramics manufacturing method
DE19893942666 DE3942666A1 (en) 1988-12-23 1989-12-22 Injection moulded ceramic article prodn. - involving hydrostatic pressing before organic binder removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325575A JPH064502B2 (en) 1988-12-23 1988-12-23 Ceramics manufacturing method

Publications (2)

Publication Number Publication Date
JPH02172852A JPH02172852A (en) 1990-07-04
JPH064502B2 true JPH064502B2 (en) 1994-01-19

Family

ID=18178418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325575A Expired - Lifetime JPH064502B2 (en) 1988-12-23 1988-12-23 Ceramics manufacturing method

Country Status (2)

Country Link
JP (1) JPH064502B2 (en)
DE (1) DE3942666A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238627A (en) * 1988-06-01 1993-08-24 Ngk Insulators, Ltd. Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor
DE68902279T2 (en) * 1988-06-01 1993-03-11 Ngk Insulators Ltd METHOD FOR THE PRODUCTION OF SINTERED CERAMIC ITEMS.
IT1242741B (en) * 1990-07-02 1994-05-17 Sebring Fontebasso Srl PROCEDURE AND PLANT FOR OBTAINING DISHES AND / OR DISHES.
US5258152A (en) * 1990-08-24 1993-11-02 Ngk Insulators, Ltd. Method for manufacturing ceramic products
EP0483468B1 (en) * 1990-10-29 1994-07-27 Corning Incorporated Stiffening of extrudates with RF energy
JPH07106942B2 (en) * 1991-03-08 1995-11-15 日本碍子株式会社 Ceramic product manufacturing method
DE4134462A1 (en) * 1991-10-18 1993-04-22 Bosch Gmbh Robert SUBSTRATE MATERIAL FOR MICROSTRIP STRIP CIRCUITS AND METHOD FOR PRODUCING SUBSTRATES
JP2997180B2 (en) * 1995-03-28 2000-01-11 日本碍子株式会社 Manufacturing method of ceramic products
DE19744862C2 (en) * 1997-10-10 2001-05-23 Rieter Werke Haendle Press mold, in particular for pressing roof tiles
KR20020051045A (en) * 2000-12-22 2002-06-28 신현준 Liquid phase sintered silicon carbide by slip casting and a method for manufacturing the same
KR100470316B1 (en) * 2002-05-24 2005-02-07 신일산업 주식회사 Ceramic heating element and method of the same
JP4330086B1 (en) * 2009-02-09 2009-09-09 株式会社テクネス Method for producing non-oxide ceramic products
CN110723966B (en) * 2019-11-13 2022-04-01 中国航发南方工业有限公司 Preparation method of fan-shaped flaky ceramic core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198105A (en) * 1983-04-26 1984-11-09 トヨタ自動車株式会社 Manufacture of ceramic product
JPS61177301A (en) * 1985-02-01 1986-08-09 Sumitomo Heavy Ind Ltd Method for forming and degreasing molded body of powder of heat resistant material
US4708838A (en) * 1985-03-26 1987-11-24 Gte Laboratories Incorporated Method for fabricating large cross section injection molded ceramic shapes

Also Published As

Publication number Publication date
DE3942666A1 (en) 1990-06-28
DE3942666C2 (en) 1992-05-07
JPH02172852A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
US5238627A (en) Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor
Leo et al. Near‐net‐shaping methods for ceramic elements of (body) armor systems
JPH064502B2 (en) Ceramics manufacturing method
EP0487172B1 (en) Molding method and molding apparatus for producing ceramics
CN110357589A (en) A kind of Aqueous injection moulding process of structural ceramics
US5190898A (en) Pourable molding compound containing sinterable powders
JPH064504B2 (en) Method for manufacturing ceramics sintered body
KR100434830B1 (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
US4970181A (en) Process for producing ceramic shapes
JP2651864B2 (en) Molding method of non-plastic material
JPH0663684A (en) Production of ceramic core for casting
KR100349499B1 (en) Molding slurry composition containing coupling agent, and molding method using the same
JP3224645B2 (en) Ceramics molding method
JP2006306681A (en) Method for manufacturing large-sized thin-walled ceramic body
JP2513905B2 (en) Ceramic injection molding method and molding die used therefor
JPS61101447A (en) Manufacture of ceramic formed body
KR100213832B1 (en) Composition of ceramic filter
JPH0723248B2 (en) Method for manufacturing ceramic molded body
JP3175455B2 (en) Ceramics molding method
JPH08108415A (en) Ceramic molding method
Kennard Ceramic Component Fabrication
JPH05200711A (en) Method for molding powder
JPH06227873A (en) Production of ceramics porous material
KR960008883B1 (en) Method of article by low pressure forming and sublimative drying