JP2513905B2 - Ceramic injection molding method and molding die used therefor - Google Patents
Ceramic injection molding method and molding die used thereforInfo
- Publication number
- JP2513905B2 JP2513905B2 JP15745890A JP15745890A JP2513905B2 JP 2513905 B2 JP2513905 B2 JP 2513905B2 JP 15745890 A JP15745890 A JP 15745890A JP 15745890 A JP15745890 A JP 15745890A JP 2513905 B2 JP2513905 B2 JP 2513905B2
- Authority
- JP
- Japan
- Prior art keywords
- gate
- molding
- cavity
- shape
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Producing Shaped Articles From Materials (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミックスを射出成形する場合におい
て、性能の優れた射出成形品を製造するセラミックスの
射出成形方法、およびそれに用いる成形型に関する。Description: TECHNICAL FIELD The present invention relates to a ceramics injection molding method for producing an injection-molded article having excellent performance in the case of injection-molding ceramics, and a molding die used therefor.
(従来の技術) 窒化珪素、炭化珪素、サイアロン等のシリコンセラミ
ックスは、金属よりも高温で安定であり、酸化腐食やク
リープ変形を受け難いところから、近年、それをエンジ
ン部品として利用する研究が活発に行われている。例え
ば、これらセラミックス材料からなるラジアル型タービ
ンロータは、金属製ロータに較べて、軽量でエンジンの
作動温度を高めることができ、熱効率に優れているため
に、自動車用ターボチャーヂャーロータ或いはガスター
ビンロータ等として注目を集めている。(Prior Art) Silicon ceramics such as silicon nitride, silicon carbide, and sialon are more stable at high temperatures than metals and are less susceptible to oxidative corrosion and creep deformation. In recent years, therefore, active use of them as engine parts has been actively researched. Has been done in. For example, the radial turbine rotor made of these ceramic materials is lighter in weight and can increase the operating temperature of the engine as compared with the metal rotor, and is excellent in thermal efficiency. Therefore, the turbocharger rotor for automobiles or the gas turbine rotor is used. Has attracted attention as such.
このような、タービンロータは、複雑な三次元形状を
成す翼部を有しているため、焼結された単純な形状の、
例えば緻密な窒素珪素、炭化珪素焼結体等の棒状或いは
角状など単純な形状の素材を研削加工によって所望の形
状に仕上げることは、極めて困難である。Such a turbine rotor has blades forming a complicated three-dimensional shape, and therefore has a simple sintered shape.
For example, it is extremely difficult to finish a material having a simple shape such as a rod-like shape or a square shape such as a dense silicon nitride or silicon carbide sintered body into a desired shape by grinding.
セラミックスの成形法としては、押出し成形等成形材
料の可塑性を利用する塑性成形法、セラミックス原料粉
末を水中に懸濁させた泥漿を型に注入する泥漿鋳込み成
形法、調製された粉末を金型に入れ加圧によって成形す
る乾式加圧成形法等がよく知られている。これらの他の
プラスチックスでよく用いられている射出成形法は、近
年、不規則な形状のセラミックスや複雑な形状のセラミ
ックスに用いられるようになった。Ceramics molding methods include plastic molding methods that utilize the plasticity of molding materials such as extrusion molding, sludge casting molding methods that inject sludge in which ceramic raw material powder is suspended in water into molds, and prepared powders into molds. A dry pressure molding method in which molding is performed by putting and pressing is well known. The injection molding method, which is often used for these other plastics, has recently come to be used for irregularly shaped ceramics and complicatedly shaped ceramics.
セラミックスの射出成形においては、従来セラミック
スの原料微粉末自体はプラスチックスと異なり可塑性が
ないため、原料微粉末に熱可塑性樹脂を添加して可塑化
した成形材料、ペレット、または出願人が特開昭64−24
707号にて提案した水を添加して得る成形材料(坏土)
を射出成形に用いている。In the injection molding of ceramics, the raw material fine powder itself of ceramics has no plasticity unlike plastics, and therefore, a molding material, a pellet, or a plasticizing material obtained by adding a thermoplastic resin to the raw material fine powder has been disclosed by the applicant. 64-24
Molding material obtained by adding water proposed in No. 707 (kneaded clay)
Is used for injection molding.
すなわち、セラミックス粉末にポリエチレン、ポリス
チレン等の熱可塑性樹脂、可塑剤、分散剤、ワックス等
からなる有機バインダーを混合し、この混合原料を加熱
して可塑性をもたせ、成形用金型内に射出して成形する
方法であり、得られた成形体を脱脂し、焼成することに
よってセラミックス焼結体を得ることができる。またセ
ラミックス粉末に可塑化媒体として主に水を可塑剤とし
て有機バインダーを混合し、この混合原料を冷却して可
塑性をもたせ、成形用金型内に射出して成形する方法で
あり、得られた成形体をバインダー除去し焼成すること
によって、セラミックス焼結体を得ることができる。こ
れらの成形方法によれば、他の方法ではかなりの工数を
必要とするような複雑な部品を1回の操作で、迅速に且
つ精密で、仕上げ代の少ない成形品を得ることができ
る。That is, a ceramic powder is mixed with a thermoplastic resin such as polyethylene or polystyrene, a plasticizer, a dispersant, an organic binder made of wax or the like, and the mixed raw material is heated to have plasticity and injected into a molding die. This is a molding method, and a ceramic sintered body can be obtained by degreasing the obtained molded body and firing it. It is a method of mixing ceramic powder mainly with water as a plasticizing medium and an organic binder with a plasticizer, cooling the mixed raw material to give it plasticity, and injecting it into a molding die for molding. A ceramic sintered body can be obtained by removing the binder from the molded body and firing it. According to these molding methods, it is possible to quickly and accurately obtain a molded product with a small finishing allowance in a single operation for a complicated part that requires a considerable number of steps in other methods.
しかし、これらセラミックスを含有する成形材料は熱
可塑性プラスチックスのみの成形材料に比し、流動性が
悪く、射出成形機から成形型への押込みにおいて空泡が
入り込んだり、均質的でなかったりすることがあった。However, molding materials containing these ceramics have poorer fluidity than molding materials containing only thermoplastics, and may contain air bubbles when pushed into the mold from the injection molding machine, or may not be homogeneous. was there.
一方、従来から行われている射出成形方法において
は、成形用金型の温度について通常金型温度を入口部か
ら先端部まで一定にすることにより成形が行われてい
た。On the other hand, in the conventional injection molding method, the molding is performed by keeping the temperature of the molding die constant from the inlet to the tip.
しかしながら、成形用金型の温度を一定にした場合に
は射出成形に際して金型入口部と先端部との間で成形材
料の温度差が生じ、得られる成形体の密度分布が不均一
となり、その結果、該成形体を焼成してできる焼結体に
はクラックまたは変形等が生じ、寸法精度、強度などが
不均一となり均一な焼結体を得ることができなかった。However, when the temperature of the molding die is kept constant, a temperature difference of the molding material occurs between the die inlet portion and the tip portion during injection molding, resulting in a non-uniform density distribution of the obtained molded body. As a result, cracks or deformations occurred in the sintered body formed by firing the molded body, and the dimensional accuracy, strength, etc. became non-uniform, and a uniform sintered body could not be obtained.
(発明が解決しようとする課題) 発明者らは、上記現状に鑑みセラミックスの射出成形
において、成形材料を均質的に金型に射出する方法につ
いて鋭意検討し、特定形状の成形型を用いると効果的で
あることを見出し、さらにまた、成形用金型に温度勾配
を設けるようにして成形材料を均一な温度に制御し得る
ことを見出し、本発明に到達した。(Problems to be Solved by the Invention) In view of the above situation, the inventors of the present invention have diligently studied a method of homogeneously injecting a molding material into a mold in ceramics injection molding, and it is advantageous to use a mold having a specific shape. The present invention has been accomplished, and further, it has been found that the molding material can be controlled to a uniform temperature by providing a temperature gradient in the molding die, and the present invention has been accomplished.
本発明の目的は、ポア、ウェルドライン等の欠陥がな
い均質なセラミックス成形体を提供するにある。An object of the present invention is to provide a homogenous ceramic molded body having no defects such as pores and weld lines.
他の目的は、クラックや変形がなく、高い寸法精度
と、均一な強度を有する均質なセラミックス成形体を提
供するにある。Another object of the present invention is to provide a homogeneous ceramic molded body having high dimensional accuracy and uniform strength without cracks or deformation.
更に他の目的は、形状複雑にして且つ均質なセラミッ
クス成形体を高い歩留りを以て効率良く取得するための
射出成形法並びにそれに用いる成形型を提供するにあ
る。Still another object is to provide an injection molding method and a molding die used therefor for efficiently obtaining a ceramic molded body having a complicated shape and a homogeneous shape with a high yield.
(課題を解決するための手段) 上記目的を達成するための本発明成形方法は、セラミ
ックス成形材料を射出成形機により成形型のキャビティ
にゲートを経て射出することよりなるセラミックスの射
出成形方法において、前記ゲートがゲート側から見た前
記キャビティの最大横断面積の少なくとも20%の面積を
有してなる成形型を用い、かつ加圧終了時、成形型内の
成形体温度分布が±0.5℃以内となるように成形型の温
度勾配を制御することを特徴とする。(Means for Solving the Problems) The molding method of the present invention for achieving the above object is a ceramics injection molding method, which comprises injecting a ceramics molding material into a cavity of a molding die through a gate by an injection molding machine. When the molding die is used in which the gate has an area of at least 20% of the maximum cross-sectional area of the cavity as viewed from the gate side, and at the end of pressurization, the temperature distribution of the molded body in the molding die is within ± 0.5 ° C. The temperature gradient of the mold is controlled so that
上記本発明方法に用いる成形型の前記ゲートの形状を
該ゲート側から見たキャビティの投影形状と実質的に相
似形となし、それによって該ゲートを通過した成形材料
がキャビティの形状に沿って流れるよう制御すれば、さ
らに効果的である。The shape of the gate of the molding die used in the method of the present invention is substantially similar to the projected shape of the cavity viewed from the gate side, whereby the molding material passing through the gate flows along the shape of the cavity. It is more effective if controlled in this way.
また前記キャビティがそれぞれ少なくとも1つの肉厚
部と肉薄部とよりなる場合は、射出した成形材料を肉厚
部から肉薄部へ向かって充填するよう、前記ゲートを各
肉厚部に開口せしめることが好ましい。When each of the cavities has at least one thick part and a thin part, the gate may be opened in each thick part so that the injected molding material is filled from the thick part to the thin part. preferable.
本発明方法においては、成形型の温度勾配を下記不等
式を満足するように設定することにより最良の効果が得
られる。In the method of the present invention, the best effect is obtained by setting the temperature gradient of the molding die so as to satisfy the following inequality.
x≦y≦5x ただし上式中、xはゲートから測温部位までの成形材料
の移動時間(秒)であり、yはゲート測温部位との間に
おける成形型の温度差(℃)である。x ≦ y ≦ 5x However, in the above formula, x is the moving time (seconds) of the molding material from the gate to the temperature measurement site, and y is the temperature difference (° C.) of the mold with the gate temperature measurement site. .
上記本発明方法に好適に用いられる成形型は、成形体
形状に対応する形状を有するキャビティと射出ノズルか
ら該キャビティへ成形材料を導くための成形材料導入部
からなるセラミックス成形用射出成形型において、ゲー
トの面積がゲート側から見た前記キャビティの最大横断
面積の少なくとも20%であるとともに前記キャビティの
ゲート近傍から内奥部へ向かう複数の区画にそれぞれ加
熱手段と温度制御手段と成形体温度測定手段とを具えて
なることを特徴とする。The molding die suitably used in the method of the present invention is a ceramics molding injection molding die comprising a cavity having a shape corresponding to the shape of the molded body and a molding material introducing portion for guiding the molding material from the injection nozzle to the cavity, The area of the gate is at least 20% of the maximum cross-sectional area of the cavity as seen from the gate side, and the heating means, the temperature control means, and the molded body temperature measuring means are respectively provided in a plurality of sections extending from the vicinity of the gate to the inner depth of the cavity. It is characterized by comprising and.
また、前記キャビティが少なくとも1つの肉厚部を含
んでなる場合は、該少なくとも1つの肉厚部にそれぞれ
直接開口するゲートを設けると共に、該ゲートの面積を
ゲート側から見た前記キャビティの最大横断面積の少な
くとも20%となすことによって本発明の目的を達成する
ことができる。When the cavity includes at least one thick portion, each of the at least one thick portion is provided with a gate that directly opens, and the area of the gate is the maximum crossing of the cavity when viewed from the gate side. The object of the present invention can be achieved by forming at least 20% of the area.
さらにまた、前記ゲートの形状が該ゲート側から見た
キャビティの投影形状と実質的に相似形をなすことが、
さらに好ましい。Furthermore, the shape of the gate may be substantially similar to the projected shape of the cavity viewed from the gate side,
More preferable.
本発明において、「ゲート側から見たキャビティの最
大横断面積」とは、ゲートを通過する成形材料の移動方
向に垂直なキャビティの最大横断面の面積を意味するも
のとし、単に「キャビティの最大横断面積」ということ
がある。In the present invention, the "maximum cross-sectional area of the cavity viewed from the gate side" means the area of the maximum cross-section of the cavity perpendicular to the moving direction of the molding material passing through the gate, and simply "maximum cross-sectional area of the cavity". Sometimes called "area."
また、「ゲート側から見たキャビティの投影形状」と
は、ゲートを通過する成形材料の移動方向に垂直な平面
上へのキャビティの投影形状を意味するものとし、単に
「キャビティの投影図形」ということがある。Further, "the projected shape of the cavity viewed from the gate side" means the projected shape of the cavity on a plane perpendicular to the moving direction of the molding material passing through the gate, and is simply referred to as "the projected shape of the cavity". Sometimes.
さらにまた、本発明において、肉厚部及び肉薄部と
は、成形体形状に内接する最大の球の直径をその成形体
の最大肉厚としたとき、成形体の各部位ごとに内接する
最大球の直径を求め、その直径が最大肉厚の40%以上で
ある部位を肉厚部と、また40%未満である部位を肉薄部
という。肉厚部を複数有する成形体とは、上記肉厚部と
肉厚部の間に上記肉薄部を1以上有する成形体という。Furthermore, in the present invention, the thick portion and the thin portion are the maximum spheres inscribed in each part of the molded body when the diameter of the largest sphere inscribed in the molded body shape is the maximum wall thickness of the molded body. The diameter is calculated, and the part where the diameter is 40% or more of the maximum thickness is called the thick part, and the part where the diameter is less than 40% is called the thin part. The molded body having a plurality of thick portions is referred to as a molded body having one or more thin portions between the thick portions.
(作用) 以下、本発明の構成をその作用とともにその具体的態
様について詳述する。(Operation) Hereinafter, the configuration of the present invention will be described in detail with respect to its operation and specific embodiments thereof.
セラミックスの射出成形は、射出成形機のプランジャ
ー又はスクリュー等によりペレットまたは坏土(以下、
成形材料という。)を射出成形型中に押込んで成形する
ものである。射出成形型は、一般に成形体形状に対応す
るキャビティと、射出用ノズルから成形材料をキャビテ
ィへ導くスプルー、ランナー及びゲートからなる成形材
料導入部分とからなる。スプルー及びランナーの勾配は
通常2〜10゜程度であるのが好ましい。Injection molding of ceramics is carried out by pellets or kneaded clay (hereinafter,
It is called a molding material. ) Is pressed into an injection molding die for molding. The injection mold generally comprises a cavity corresponding to the shape of the molded body, and a molding material introduction portion including a sprue, a runner and a gate for guiding the molding material from the injection nozzle to the cavity. The slope of the sprue and runner is preferably about 2 to 10 °.
本発明のセラミックス射出成形方法は、上記の射出成
形型として、ゲート面積がゲート側からみたキャビティ
の最大横断面積の20%以上である成形型を用いる。ゲー
ト面積がゲート側からみたキャビティの最大横断面積の
20%以上であると、ゲートを通過した成形材料は成形体
形状に沿って流れ、キャビティ内の空気排出が均一にな
り、欠陥のない成形体が得られる。一方、20%未満の射
出成形型を用いるとゲートを通過した成形材料が成形体
形状に沿って流れず、キャビティ内の空気排出が不均一
となり、得られる成形体にポア、ウェルドライン等の欠
陥が発生し、成形体の歩留りが悪くなる。In the ceramics injection molding method of the present invention, a molding die having a gate area of 20% or more of the maximum cross-sectional area of the cavity as viewed from the gate side is used as the injection molding die. The gate area is the maximum cross-sectional area of the cavity viewed from the gate side.
When it is 20% or more, the molding material that has passed through the gate flows along the shape of the molded body, the air discharge in the cavity is uniform, and a molded body without defects is obtained. On the other hand, if an injection mold of less than 20% is used, the molding material that has passed through the gate will not flow along the shape of the molded body, resulting in uneven air discharge in the cavity, resulting in defects such as pores and weld lines in the molded body. Occurs and the yield of the molded product deteriorates.
一般にゲートとは、キャビティ(製品部)内に成形材
料が流入する入口をいう。しかし、第1図に示すような
いわゆるダイレクトゲートの場合には、例えばスプルー
部又はランナー部とキャビティ(製品部)2が混在し、
ゲート部を規定できないことがある。このような場合、
製品部2のノズル部1に近い部位であるG部をゲートと
みなし、このような場合のゲート横断面積はG部横断面
積とすることが好ましい。Generally, a gate means an inlet into which a molding material flows into a cavity (product part). However, in the case of a so-called direct gate as shown in FIG. 1, for example, the sprue portion or runner portion and the cavity (product portion) 2 are mixed,
In some cases, the gate part cannot be specified. In such a case,
It is preferable that the G portion, which is a portion near the nozzle portion 1 of the product portion 2, is regarded as a gate, and the gate cross-sectional area in such a case is the G portion cross-sectional area.
さらに本発明の場合、射出成形型のゲート形状Gがゲ
ート側からみたキャビティの投影形状Pと実質的に相似
形、すなわち相似形あるいは近似相似形になるように形
成すると、ゲートを通過した成形材料を成形体形状に沿
って流れるようにコントロールでき、成形体に発生する
欠陥を更に効果的に防止できる。この効果は特にゲート
横断面積が増大すると大きくなる。尚、上記の場合、ゲ
ートはキャビティのゲート取付面の中心に設けることが
好ましい。これは、第2a〜2d図において、ゲート横断面
形状Gとキャビティの投影図形Pとの非重複部分におけ
る最小幅をA、最大幅をBとしたとき、形状Gと投影図
形Pとが、第2a図および第2b図に示すように互いに実質
的に相似形である場合は、第2c図および第2d図に示すよ
うな非相似形の場合に比べ、B/Aの値が小さくなる(1
に近付く)ため、A部,B部への成形材料の充填速度がほ
ぼ一定となり、キャビティ内の空気排出が均一となって
欠陥のない成形体が得られるからである。一方、非相似
形の如くB/Aが大きくなると、A部よりの充填速度が早
くB部よりの充填速度が遅いためキャビティ内の空気の
排出が不規則となり、成形体に空気を巻き込む不良とな
る。Further, in the case of the present invention, when the gate shape G of the injection molding die is formed so as to have a substantially similar shape to the projected shape P of the cavity viewed from the gate side, that is, a similar shape or an approximate similar shape, the molding material that has passed through the gate. Can be controlled so as to flow along the shape of the molded body, and defects that occur in the molded body can be more effectively prevented. This effect becomes particularly large as the gate cross-sectional area increases. In the above case, the gate is preferably provided at the center of the gate mounting surface of the cavity. 2A to 2d, when the minimum width in the non-overlapping portion of the gate cross-sectional shape G and the projected figure P of the cavity is A and the maximum width is B, the shape G and the projected figure P are When the shapes are substantially similar to each other as shown in FIGS. 2a and 2b, the value of B / A becomes smaller than that of the dissimilar shape shown in FIGS. 2c and 2d (1
Therefore, the filling speed of the molding material into the parts A and B becomes almost constant, the air discharge in the cavity becomes uniform, and a defect-free molded product can be obtained. On the other hand, when the B / A becomes large like the non-similar shape, the filling speed from the A part is faster and the filling speed from the B part is slower, so that the discharge of the air in the cavity becomes irregular and the air is trapped in the molded product. Become.
また、例えば相似形(第2a図、第2b図)と非相似形
(第2c図、第2d図)の関係を示すと、第1表の通りとな
る。尚、ゲート面積/キャビティ(成形体)最大横断面
積は50%である。Table 1 shows the relationship between the similar figures (Figs. 2a and 2b) and the non-similar figures (Figs. 2c and 2d). The maximum cross-sectional area of gate area / cavity (molded body) is 50%.
また、第3a,3b図のように、ゲート面積/キャビティ
(成形体)最大横断面積が90%で同一であっても、第3b
図の場合にはゲートが成形体横断面よりはみだして非効
率的となり、相似形が優れることがわかる。さらにま
た、ゲートの横断面積が大きくなる程、相似形状のゲー
トB/A値は非相似形状のゲートのB/A値よりも小さくな
る。このことから、横断面積が大きく相似形状のゲート
を用いるとより一層、キャビティ内の空気排出が均一に
行われ効果的であることが判る。 Moreover, as shown in FIGS. 3a and 3b, even if the maximum cross-sectional area of gate area / cavity (molded body) is 90%,
In the case of the figure, it can be seen that the gate is inefficient beyond the cross section of the molded body, and the similar shape is excellent. Furthermore, the larger the cross-sectional area of the gate, the smaller the B / A value of the gate having the similar shape becomes smaller than the B / A value of the gate having the non-similar shape. From this, it can be seen that the use of a gate having a large cross-sectional area and a similar shape is more effective because the air in the cavity is evenly discharged.
本書を通じて、ゲートの横断面形状について、実質的
相似形、すなわち、相似形状又は近似相似形状とは、例
えば第4a図〜第7c図に示すような形状を意味する。な
お、第4a図〜第7c図においては、Pはゲート側から見た
キャビティ投影図形、GおよびG′はそれぞれ、それと
相似形および近似相似形のゲート形状を示す。例えば第
4a〜4c図の形状、P,G,G′のすべては円形と考えるが、
第5a〜5c図に示す四角形については、G′のような形状
を近似相似形と見做す。多角形、例えば第6a図に示すよ
うな八角形の場合には第6c図の円形G、を近似相似形と
見做すが、これはB/A値が極めて小さくなるからであ
る。ゲート側からみたキャビティ投影図形Pが多角形
(三角以上)の場合、いずれかの角度(θ)が120゜以
上の場合にはG′のような円形を近似相似形としてもよ
い。さらに、第7a図に示すタービンロータのように複雑
な形状Pでは、第7b図のような相似形状Gでもよいが、
金型作製に困難を来たしたり、スプルー部又はランナー
部における成形材料の流動性が悪くなったりするため、
第7c図のように形状Pの翼部4の翼先端3を結んだ九角
形G′のような多角形状としてもよく、また九角形にお
いては角度(θ)が140゜となるため円形としてもよ
い。Throughout this document, with respect to the cross-sectional shape of the gate, a substantially similar shape, that is, a similar shape or an approximate similar shape means, for example, a shape as shown in FIGS. 4a to 7c. In FIGS. 4a to 7c, P indicates a cavity projection figure viewed from the gate side, and G and G'represent gate shapes similar to and similar to them, respectively. For example
Although the shapes in Figures 4a to 4c, P, G, and G ', are all considered to be circular,
Regarding the quadrangle shown in FIGS. 5a to 5c, a shape such as G ′ is regarded as an approximate similar shape. A polygon, for example, a circle G in FIG. 6c in the case of an octagon as shown in FIG. 6a, is regarded as an approximate similarity because the B / A value is extremely small. When the cavity projection figure P viewed from the gate side is a polygon (triangle or more), if any angle (θ) is 120 ° or more, a circle such as G ′ may be an approximate similar shape. Further, in a complicated shape P such as the turbine rotor shown in FIG. 7a, a similar shape G as shown in FIG. 7b may be used.
This may cause difficulty in mold making, or the fluidity of the molding material in the sprue part or runner part may deteriorate.
As shown in FIG. 7c, a polygonal shape such as a hexagon G ′ that connects the blade tips 3 of the blade portion 4 having the shape P may be used, and in the case of a hexagon, the angle (θ) is 140 °, and thus may be circular. Good.
肉厚差のある複数部分よりなるセラミックス成形体の
成形型においては、成形体型への導入口即ちゲートは、
成形体の肉厚部に相当するキャビティの拡大部分(肉厚
部)に直接開口するよう配置することが好ましい。例え
ば、第8a図に示したような成形体M1を射出成形する場
合、従来の射出成形であれば通常、第8b図に示したよう
なスプルーS及びゲートGの配置方式が考えられるが、
本発明の成形型は、第8c図のようにキャビティの肉厚部
5に射出ゲートGを設けしかも成形体形状に沿ってスプ
ルー部を漸次太くしたもので、成形材料は肉厚部から成
形体型内に射出された成形される。In a mold of a ceramics molded body composed of a plurality of parts having different wall thicknesses, the inlet or gate to the molded body mold is
It is preferable to dispose so as to directly open to the enlarged portion (thickness portion) of the cavity corresponding to the thickened portion of the molded body. For example, in the case of injection molding the molded body M 1 as shown in FIG. 8a, in the case of conventional injection molding, the arrangement method of the sprue S and the gate G as shown in FIG. 8b is usually considered.
As shown in FIG. 8c, the molding die of the present invention has an injection gate G provided in the thick wall portion 5 of the cavity, and the sprue portion is gradually thickened along the shape of the molding body. Molded injected into.
このようにゲートをキャビティを肉厚部に直接開口す
るよう配置することにより、得られる成形体では「ファ
インセラミックスの射出成形技術」(日刊工業新聞社発
行)の第122頁図6・24及び第123頁図6・27に示される
ような従来方法で見られたウェルドラインやジェッティ
ングによるポアの巻き込み等の欠陥の発生が防止され
る。これらの理由は、肉厚部から成形材料を成形体形状
に沿って太く射出することにより成形材料がジェッティ
ングを起こさず、しかも材料が冷えにくく流動性が長く
維持できるための材料の流動性不足により発生するウェ
ルドラインが防止できるためである。By arranging the gate in such a manner that the cavity is directly opened in the thick portion, the resulting molded article has a fine ceramics injection molding technology (published by Nikkan Kogyo Shimbun), page 122, FIG. It is possible to prevent the occurrence of defects such as a weld line and the entrapment of pores due to jetting, which are seen in the conventional method as shown in FIGS. The reason for this is that the molding material does not cause jetting by thickly injecting the molding material along the shape of the molded body from the thick portion, and the material is hard to cool and the fluidity can be maintained for a long time. This is because the weld line generated by
また、肉厚部を複数有する肉厚差のあるセラミックス
成形体の成形型、例えば第9a図及び第9b図に正面図及び
側面図を示した成形体M2のように肉厚部が5′及び5″
の2個所以上にある場合には、第9c図または第9d図に示
すように、スプルーS及びゲートGを、または第9e図に
示すように、スプルーS、ランナーR及びR′並びにゲ
ートG及びG′を配置することが考えられるが、本発明
の成形型は第9e図のように各肉厚部5′及び5″に射出
ゲートG及びG′を設け、各射出ゲートG,G′から成形
体型の肉厚部5′,5″に成形材料を射出し成形する。こ
の場合、複数の肉厚部のうち少なくともいずれか1つの
肉厚部への成形材料射出量を最大とするのが好ましい。
これは各肉厚部へ流入する成形材料を肉薄部で接合させ
るより肉厚部で接合させる方が、ポア、ウェルドライン
等の欠陥を防止できるためである。例えば第9e図におい
ては、ゲートGへのランナーRの口径をゲートG′への
ランナーR′の口径より大きくしたり、スプルーSに接
続するランナーRの距離をランナーR′より短くするこ
と等により、肉厚部5′への射出量を肉厚部5″への射
出量より多くするように制御することができる。勿論こ
の場合同一形状及び長さのランナーでも肉薄部での成形
材料の接合がなければ制御する必要はない。In addition, a molding die of a ceramics molded body having a plurality of thickened portions and having different thicknesses, for example, a molded body M 2 whose front view and side view are shown in FIGS. 9a and 9b, has a thickened portion 5 ′. And 5 "
, The sprue S and the gate G as shown in FIG. 9c or 9d, or the sprue S, the runners R and R ′ and the gate G and G as shown in FIG. 9e. Although it is conceivable to dispose G ′, the molding die of the present invention is provided with injection gates G and G ′ in the thick portions 5 ′ and 5 ″ as shown in FIG. The molding material is injected and molded into the thick portions 5 ', 5 "of the molding body. In this case, it is preferable to maximize the injection amount of the molding material into at least one of the thick portions.
This is because joining the molding material flowing into each thick portion at the thick portion can prevent defects such as pores and weld lines from joining at the thick portion. For example, in FIG. 9e, the diameter of the runner R to the gate G is made larger than the diameter of the runner R'to the gate G ', or the distance of the runner R connected to the sprue S is made shorter than the runner R'. , The injection amount into the thick portion 5'can be controlled to be larger than the injection amount into the thick portion 5 ". Of course, in this case, even if the runners of the same shape and length join the molding material in the thin portion. Without it there is no need to control.
さらに、本発明の成形型の導入部即ち射出スプルー・
ゲートまたは射出スプルー、ランナー及びゲートは、射
出ゲートからスプルーへ連続する部分またはランナー部
が一定のテーパーを有するものであってもよい。特に射
出がスプルー及びゲートからなるスプルー・ゲートの場
合には上記テーパーを有するものが好ましい。テーパー
角度は用いる成形材料等により適宜選択すればよいが、
一般には約1〜10゜である。テーパーを持たせる理由は
射出される成形材料が射出成形機ノズルからゲートを介
してキャビティ即ち成形体型へ円滑に流れるよう広がり
を持たせるためと型からのスムーズな離型のためであ
る。Further, the introduction part of the molding die of the present invention, that is, the injection sprue
The gate or the injection sprue, the runner, and the gate may have a constant taper in a portion or a runner portion continuous from the injection gate to the sprue. Particularly, in the case of a sprue gate whose injection is composed of a sprue and a gate, those having the above-mentioned taper are preferable. The taper angle may be appropriately selected depending on the molding material used,
Generally, it is about 1-10 °. The reason for providing the taper is to allow the injected molding material to spread so as to smoothly flow from the injection molding machine nozzle through the gate to the cavity, that is, the molding die, and to smoothly release the molding material from the die.
更に本発明においては、射出成形の加圧終了時の成形
体温度分布が±0.5℃以内となるように金型の温度を制
御する。そのためには、例えば成形用金型温度をゲート
部Gから金型先端部へ勾配を有するように設定する方
法、もしくは金型内に成形材料を充填する速度(射出速
度)をコントロールする方法等がある。本発明における
具体的な例としては、第10図に示す如く、金型ゲート部
から測温部位までの成形材料到達時間x(sec)、金型
ゲート部から測温部位までの金型の温度差y(℃)とし
たとき、x≦y≦5xの範囲になるように金型の温度勾配
を設定する。y=xからy=5xの範囲となる理由は、
成形材料中の有機バインダーの種類及び添加量、又はセ
ラミックス粉末の種類及び添加量によって成形材料の比
熱又は熱伝導率が異なるため、成形体の形状及び肉厚
が異なるため、成形条件等が異なるため、等である。
比熱が大きく熱伝導率が小さい成形材料では金型温度の
影響を受けにくいため、成形材料到達時間xが長くても
金型温度差yを小さくでき、例えばy=xとなる。又、
比熱が小さく熱伝導率が大きい成形材料では金型温度の
影響を受けやすいため、成形材料到達時間xが長くなる
と金型温度差yを大きくしなければならず、例えばy=
5xとなる。より具体的には、例えばセラミックス材料の
組成が、セラミックス粉末48〜60vol%、有機バインダ
ー52〜40vol%で、かつ該有機バインダーの組成として
分子量1万〜5万が3〜15wt%、分子量200〜1000が85
〜97wt%であり、又成形する条件が成形材料温度60〜80
℃、金型温度40〜52℃である場合には、x≦y≦5xの範
囲が好ましい。Further, in the present invention, the temperature of the mold is controlled so that the temperature distribution of the molded product at the end of the pressurization of the injection molding is within ± 0.5 ° C. For that purpose, for example, a method of setting the temperature of the molding die so as to have a gradient from the gate portion G to the tip of the die, or a method of controlling the speed (injection speed) of filling the molding material into the mold, etc. is there. As a concrete example of the present invention, as shown in FIG. 10, the molding material arrival time x (sec) from the mold gate portion to the temperature measuring portion, and the temperature of the mold from the mold gate portion to the temperature measuring portion. When the difference is y (° C.), the temperature gradient of the mold is set so that x ≦ y ≦ 5x. The reason for the range from y = x to y = 5x is
Since the specific heat or thermal conductivity of the molding material differs depending on the type and addition amount of the organic binder in the molding material, or the type and addition amount of the ceramic powder, the shape and wall thickness of the molded body differ, so the molding conditions etc. differ. , Etc.
Since a molding material having a large specific heat and a small thermal conductivity is not easily affected by the mold temperature, the mold temperature difference y can be reduced even if the molding material arrival time x is long, for example, y = x. or,
Since a molding material having a small specific heat and a large thermal conductivity is easily affected by the mold temperature, the mold temperature difference y must be increased when the molding material arrival time x becomes long, for example, y =
It will be 5x. More specifically, for example, the composition of the ceramic material is 48 to 60 vol% of ceramic powder and 52 to 40 vol% of the organic binder, and the composition of the organic binder has a molecular weight of 10,000 to 50,000 of 3 to 15 wt% and a molecular weight of 200 to 200. 1000 is 85
〜97wt%, molding conditions are molding material temperature 60〜80
When the temperature is 0 ° C and the mold temperature is 40 to 52 ° C, the range of x≤y≤5x is preferable.
上記のように金型温度勾配を設定すると、射出成形さ
れた成形体の温度が部位に拘らず全体に設定温度の±0.
5℃以内とほぼ均一となって、均質な成形体の作製、お
よびそれに引続く均質な焼結体の製造のために好まし
い。成形体の温度分布が設定温度の±0.5℃を超える
と、得られる成形体の密度分布が不均一となり、その結
果、該成形体を焼成してできる焼結体にはクラックまた
は変形等が生じ、寸法精度、強度などが不均一となり均
一な焼結体を得ることが困難となる。When the mold temperature gradient is set as described above, the temperature of the injection-molded body is ± 0.
It becomes almost uniform within 5 ° C., which is preferable for producing a homogeneous molded body and subsequent production of a homogeneous sintered body. When the temperature distribution of the molded body exceeds the set temperature ± 0.5 ° C, the density distribution of the obtained molded body becomes non-uniform, and as a result, the sintered body formed by firing the molded body is cracked or deformed. However, the dimensional accuracy and strength become non-uniform, making it difficult to obtain a uniform sintered body.
また、成形体の温度分布が設定温度の±0.5℃以内で
あることが必要な時点は、加圧終了時である。一般に、
射出成形は成形材料を充填した後所定時間高圧加圧し、
次いで成形体形状付与又は成形体内部に発生するヒケ等
の欠陥を防止するため所定時間低圧にて保持される。加
圧終了時とは上記所定時間実施される高圧加圧処理の終
了時をいう。Moreover, the time when the temperature distribution of the molded body needs to be within ± 0.5 ° C. of the set temperature is when the pressurization is completed. In general,
Injection molding is high pressure for a predetermined time after filling the molding material,
Then, the molded body is kept at a low pressure for a predetermined time in order to impart the shape of the molded body or prevent defects such as sink marks generated inside the molded body. The end of pressurization means the end of the high-pressure pressurization process carried out for the predetermined time.
原料の調合粉末に結合剤、ワックス、滑剤等多量の有
機バインダーを添加して混練する有機バインダーを用い
る射出成形法にあっては、射出成形用材料温度が金型温
度よりも高いため、成形用材料がゲート部から先端部に
行くに従って冷やされ、成形体の温度もゲート部から先
端部に行くに従って低くなる。これを補い成形体の温度
を一定にするため、上記のような金型の好ましい温度条
件は、金型の温度をゲート部から先端部に行くに従って
上昇させる。金型の加温方法は、例えば一般的なヒータ
ー(棒、バンド等)を用いてもよいし、液体(水、油)
を用いてもよい。In the injection molding method using an organic binder in which a large amount of a binder, wax, lubricant, etc. are added to the raw material powder and kneaded, the injection molding material temperature is higher than the mold temperature. The material is cooled as it goes from the gate to the tip, and the temperature of the molded body also becomes lower as it goes from the gate to the tip. In order to compensate for this and to keep the temperature of the molded body constant, the preferable temperature condition of the die as described above is such that the temperature of the die is increased from the gate portion to the tip portion. As a method for heating the mold, for example, a general heater (rod, band, etc.) may be used, or a liquid (water, oil)
May be used.
また、原料の調合粉末に少量の有機バインダーと主に
水を添加してなる坏土を用いる射出成形法にあっては、
坏土(成形用材料)の温度が金型温度よりも低いため、
成形用材料がゲート部から先端部に行くに従って高くな
る。この温度差を補い成形体の温度を一定にするため、
金型の温度をゲート部から先端部に行くに従って下降さ
せる。In addition, in the injection molding method using the kneaded material obtained by adding a small amount of an organic binder and mainly water to the raw material powder,
Since the temperature of the clay (molding material) is lower than the mold temperature,
The molding material becomes higher from the gate portion to the tip portion. In order to compensate for this temperature difference and keep the temperature of the molded body constant,
The temperature of the mold is lowered from the gate to the tip.
本発明で使用するセラミックス粉末としては、従来よ
り知られた酸化物であるアルミナ、ジルコニア等のほ
か、いわゆるニューセラミックスとして知られる窒化珪
素等の窒化物、炭化珪素等の炭化物、およびこれらの複
合材料等が挙げられる。成形材料としては、有機バイン
ダーを可塑剤に用いる射出成形材料(ペレット)、およ
び主に水を可塑化媒体、有機バインダーを可塑剤に用い
る射出成形材料(坏土)のいずれも用いることができ
る。Examples of the ceramic powder used in the present invention include conventionally known oxides such as alumina and zirconia, as well as so-called new ceramics such as nitrides such as silicon nitride, carbides such as silicon carbide, and composite materials thereof. Etc. As the molding material, both an injection molding material (pellet) using an organic binder as a plasticizer and an injection molding material (kneaded clay) mainly using water as a plasticizing medium and an organic binder as a plasticizer can be used.
(実施例) 以下、本発明を実施例に基づきさらに詳細に説明する
が、本発明はこれらの実施例に限られるものではない。(Examples) Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
実施例1 第11図に示したフローチャートに従い、有機バインダ
ーを用いた射出成形を説明する。Example 1 Injection molding using an organic binder will be described with reference to the flowchart shown in FIG.
セラミックス原料(Si3N4)粉末100重量部に焼結助剤
としてSrO:2重量部、MgO:3重量部およびCeO2:3重量部を
調合した後、この混合物をアトライタにて水を添加して
平均粒径0.5μmまで湿式混合粉砕した。次いでこれを
スプレードライし、平均粒径30μmの顆粒を得た後、こ
れを2.5ton/cm2の圧力にて静水圧等方加圧して造粒し
た。Mix 100 parts by weight of ceramic raw material (Si 3 N 4 ) powder with 2 parts by weight of SrO, 3 parts by weight of MgO and 3 parts by weight of CeO 2 as a sintering aid, and add water to this mixture with an attritor. Then, the mixture was wet-mixed and ground to have an average particle size of 0.5 μm. Next, this was spray-dried to obtain granules having an average particle size of 30 μm, and the granules were isostatically pressurized at a pressure of 2.5 ton / cm 2 for granulation.
次に造粒物を平均粒径30μmに解砕した後、得られた
粉末100重量部に対し、結合剤(エチレン酢酸ビニル共
重合体)3重量部、可塑剤(パラフィンワックス)15重
量部、滑剤(ステアリン酸)2重量部を加えて混練し、
押出機により押出してペレット化し、次いでこれを材料
温度68℃、成形型温度50℃、射出圧力400kg/cm2、射出
スピード200cc/secの条件下、第2表に示す形状の射出
成形型を用いて射出成形し第12図〜第14図に示すM3,M4,
M5の成形体を得た。なお、第14図の成形体M5たるタービ
ンロータは翼部を除いたハブ部6の最大径部分(φ70m
m)の横断面積を最大横断面積とした。Next, after crushing the granulated product to an average particle size of 30 μm, 3 parts by weight of a binder (ethylene vinyl acetate copolymer), 15 parts by weight of a plasticizer (paraffin wax), relative to 100 parts by weight of the obtained powder, Add 2 parts by weight of lubricant (stearic acid), knead,
It is extruded by an extruder and pelletized, and then this is used under the conditions of material temperature 68 ℃, mold temperature 50 ℃, injection pressure 400kg / cm 2 and injection speed 200cc / sec, using the injection mold of the shape shown in Table 2. M 3, M 4 shown in FIG. 12-FIG. 14 were injection molded Te,
A molded body of M 5 was obtained. The turbine rotor, which is the molded body M 5 in FIG. 14, has a maximum diameter portion (φ70 m) of the hub portion 6 excluding the blade portion.
The maximum cross-sectional area was defined as m).
結果を第2表および第15図〜第17図に示す。 The results are shown in Table 2 and FIGS. 15 to 17.
実施例2 第18図に示したフローチャートに従い、坏土を用いた
射出成形を説明する。 Example 2 Injection molding using kneaded clay will be described with reference to the flowchart shown in FIG.
原料調合、混合粉砕およびスプレードライ工程までは
実施例1と同様に行った。スプレードライ工程より得ら
れた平均粒径30μmの顆粒を得、次いでこの顆粒100重
量部に対して界面活性剤セドランFF−200、三洋化成工
業社製、商品名)1重量部、可塑剤(メチルセルロー
ス)7重量部、水30重量部を加えて混練した。次に、こ
の混練物に真空度70mmHgで真空土練を行い、直径52mm、
長さ500mmの坏土を得た後これに2.5ton/cm2の圧力で静
水圧等方加圧を行った。次いでこれを材料温度12℃、成
形型温度60℃、射出圧力300kg/cm2、射出スピード200cc
/secの条件下、第3表に示す形状の射出成形型を用いて
射出成形し第12図〜第14図に示すM6,M7,M8の成形体を得
た。結果を第3表および第19図〜第21図に示す。The same processes as in Example 1 were carried out up to the raw material preparation, mixed pulverization and spray drying steps. Granules with an average particle size of 30 μm obtained from the spray-drying step were obtained, and then 100 parts by weight of the granules, Cedran FF-200 surfactant, 1 part by weight of Sanyo Chemical Industry Co., Ltd., a plasticizer (methyl cellulose) ) 7 parts by weight and 30 parts by weight of water were added and kneaded. Next, vacuum kneading is performed on this kneaded material at a vacuum degree of 70 mmHg to obtain a diameter of 52 mm,
After obtaining a kneaded material having a length of 500 mm, isostatic pressing with a pressure of 2.5 ton / cm 2 was performed. Next, the material temperature is 12 ℃, mold temperature is 60 ℃, injection pressure is 300kg / cm 2 , injection speed is 200cc.
Under the condition of / sec, injection molding was performed using an injection mold having a shape shown in Table 3 to obtain molded bodies of M 6 , M 7 , and M 8 shown in FIGS. 12 to 14. The results are shown in Table 3 and FIGS. 19 to 21.
以上の結果から明らかなように、射出成形型としてゲ
ート面積がゲート側からみたキャビティの最大横断面積
の20%以上のものを用いると、ポア、ウェルドライン等
の欠陥のない成形体が成形でき、成形歩留りが大幅に向
上する。又、ゲート面積率が大きくなるに従って相似形
又は近似相似形の成形歩留りが向上する。 As is clear from the above results, when an injection mold having a gate area of 20% or more of the maximum cross-sectional area of the cavity as viewed from the gate side is used, a molded body having no defects such as pores and weld lines can be molded, The molding yield is greatly improved. Further, as the gate area ratio increases, the molding yield of the similar shape or the similar shape is improved.
実施例3 第22図に示した工程図に従い有機系成形材料の射出成
形について説明する。Example 3 Injection molding of an organic molding material will be described with reference to the process chart shown in FIG.
原料調合は、セラミックス原料Si3N4粉末100重量部と
焼結助剤としてSrO粉末2重量部、MgO粉末3重量部及び
CeO23重量部を混合し、平均粒径0.5μmまで粉砕した。
次にスプレードライにより噴霧乾燥させ、平均粒径30μ
mの顆粒状物を得た。この顆粒状物を静水圧等方加圧方
式にて3t/cm2の圧力にて加圧した。The raw material was prepared by mixing 100 parts by weight of Si 3 N 4 powder for ceramics, 2 parts by weight of SrO powder as a sintering aid, 3 parts by weight of MgO powder and
3 parts by weight of CeO 2 was mixed and ground to an average particle size of 0.5 μm.
Next, spray dry by spray drying to obtain an average particle size of 30μ.
m granular material was obtained. This granular material was pressurized at a pressure of 3 t / cm 2 by a hydrostatic isotropic pressure method.
加圧後、解砕し再度平均粒径30μmとする方式(方
式という。)、大気中450℃で5時間仮焼した後、
解砕して平均粒径30μmとする方式(方式という。)
との2方式の調製を行った。解砕後,得られた粉末100
重量部、結合剤3重量部、可塑剤15重量部、滑剤2重量
部を混合し、ニーダーにより混練し有機系成形材料を得
た。得られた成形材料を押出し機によりペレット状とし
た。得られたペレットを射出成形機にて、第8a図及び第
9a,9b図にそれぞれ示した成形体の金型M1,M2中に射出充
填した。成形体M9の充填法は、第8b図及び第8c図に示す
金型を用いて実施し、それぞれ充填法1及び充填法2と
した。充填法1のスプルー部の角度は2゜で、充填法2
では5゜であった。また成形体M10の充填法は、第9c
図、第9b図及び第9e図に示す金型を用いて実施し、それ
ぞれ充填法3、充填法4及び充填法5とした。充填法3
のスプルー部のテーパー角度は10゜、充填法4のスプル
ー部のテーパー角度は5゜であった。充填法5において
ランナーR及びR′の長さ、直径を同一とし、テーパー
角度は共に5度とした。ランナーRの直径をランナー
R′の直径よりも小径とし、ランナーRのテーパー角度
が5゜、ランナーR′のテーパー角度が10゜で成形材料
の流量をコントロールする以外は充填法5と同一として
実施したものを充填法6とした。それぞれの充填過程模
式図を第23図に、また成形結果を第4表に示した。After pressing, crushing and crushing again to an average particle size of 30 μm (called “method”), calcining in air at 450 ° C. for 5 hours,
A method of crushing to obtain an average particle size of 30 μm (called method)
The following two methods were prepared. Powder obtained after disintegration 100
By weight, 3 parts by weight of the binder, 15 parts by weight of the plasticizer and 2 parts by weight of the lubricant were mixed and kneaded with a kneader to obtain an organic molding material. The obtained molding material was pelletized by an extruder. The pellets thus obtained are then injection-molded into a machine as shown in Fig. 8a and Fig. 8a.
Injection molding was performed in the molds M 1 and M 2 of the molded body shown in FIGS. 9a and 9b, respectively. The filling method of the molded body M 9 was carried out by using the molds shown in FIGS. 8b and 8c, and were designated as the filling method 1 and the filling method 2, respectively. The angle of the sprue part of the filling method 1 is 2 °, and the filling method 2
It was 5 °. The method for filling the molded body M 10 is 9c.
It carried out using the metal mold | die shown in FIG. 9, FIG. 9b, and FIG. 9e, and set it as the filling method 3, the filling method 4, and the filling method 5, respectively. Filling method 3
The taper angle of the sprue part of No. 2 was 10 °, and the taper angle of the sprue part of the filling method 4 was 5 °. In the filling method 5, the runners R and R'have the same length and diameter, and the taper angles are both 5 degrees. The same as Filling Method 5 except that the diameter of the runner R is smaller than that of the runner R ', the taper angle of the runner R is 5 ° and the taper angle of the runner R'is 10 °, and the flow rate of the molding material is controlled. This was designated as filling method 6. A schematic diagram of each filling process is shown in FIG. 23, and molding results are shown in Table 4.
第23図の充填過程模式図からわかるように、成形体M9
において成形体の肉薄部から成形材料を充填した充填法
1は肉厚部で成形材料のジェッティングを起こし好まし
くない。これに対して成形体M9の肉厚部から成形体形状
に沿って成形材料を充填した充填法2はジェッティング
も起こらず、均一に材料が充填され好ましく、更に第4
表に示したように成形歩留りも向上した。As can be seen from the schematic diagram of the filling process in FIG. 23, the molded body M 9
In the filling method 1 in which the molding material is filled from the thin portion of the molded article, the jetting of the molding material occurs in the thick portion, which is not preferable. On the other hand, in the filling method 2 in which the molding material is filled from the thick portion of the molded body M 9 along the shape of the molded body, jetting does not occur and the material is uniformly filled, which is preferable.
As shown in the table, the molding yield was also improved.
また肉厚部5′,5″を複数有する成形体M10において
は、成形体の肉厚部の一方から充填する充填法3及び5
は他方の肉厚部への充填が、肉薄部から充填される結果
となり、上記1の充填法と同一の問題が起こり好ましく
ないことがわかる。これに対して両方の肉厚部5′,5″
から充填する充填法5及び6は、均一に成形材料が充填
され好ましく、また第4表に示したように成形歩留りが
向上した。さらに充填法5に比べ6は、成形材料の接合
が肉厚部で行われるように調整したため欠陥の発生がよ
り少なく好ましい結果となった。The thick portion 5 ', the moldings in M 10 having a plurality of 5 "filling method 3 and 5 is filled from one of the thick portion of the molded body
As a result, the other thick portion is filled from the thin portion, which is not preferable because the same problem as in the above filling method 1 occurs. On the other hand, both thick parts 5 ', 5 "
The filling methods 5 and 6 in which the molding material is uniformly filled with the molding material are preferable, and the molding yield is improved as shown in Table 4. Further, as compared with the filling method 5, 6 was adjusted so that the joining of the molding material was performed at the thick portion, and thus the occurrence of defects was less and a favorable result was obtained.
実施例4 第24図に示した工程図に従い水系成形材料の射出成形
について説明する。 Example 4 Injection molding of a water-based molding material will be described with reference to the process chart shown in FIG.
原料調合、混合粉砕及びスプレードライまでは実施例
3と同様に行った。スプレードライにより得られた平均
粒径30μmの顆粒状物100重量部、水30重量部、結合剤
7重量部及び界面活性剤1重量部を混合し、ニーダーに
て混練し、水系成形材料を得た。得られた水系成形材料
を真空押出機により直径52mm、長さ340mmの円柱状に
し、円柱状成形材料をラバープレスにて、2.5t/cm2の圧
力で静水圧等方加圧した。得られた水系成形材料を、射
出成形機により実施例3と同様にして成形体M11及びM12
を射出成形した。Preparation of raw materials, mixed pulverization, and spray drying were performed in the same manner as in Example 3. 100 parts by weight of a granular material having an average particle size of 30 μm obtained by spray drying, 30 parts by weight of water, 7 parts by weight of a binder and 1 part by weight of a surfactant were mixed and kneaded with a kneader to obtain an aqueous molding material. It was The obtained water-based molding material was formed into a columnar shape having a diameter of 52 mm and a length of 340 mm by a vacuum extruder, and the columnar molding material was isostatically pressurized by a rubber press at a pressure of 2.5 t / cm 2 . The obtained water-based molding material was molded using an injection molding machine in the same manner as in Example 3 to obtain molded articles M 11 and M 12.
Was injection molded.
それぞれの充填過程模式図を第25図に、また成形結果
を第5表に示した。これらより実施例3の有機系成形材
料とほぼ同様の結果が得られることがわかる。A schematic diagram of each filling process is shown in FIG. 25, and molding results are shown in Table 5. From these, it can be seen that almost the same results as the organic molding material of Example 3 can be obtained.
実施例5 有機バインダーを用いる射出成形方法を実施した。以
下、第26図の有機バインダーを用いる射出成形方法を示
すフローチャートに従って説明する。 Example 5 An injection molding method using an organic binder was carried out. Hereinafter, the injection molding method using the organic binder of FIG. 26 will be described with reference to the flowchart.
セラミックス原料の窒化珪素粉末100重量部に対し
て、焼結助剤としてSrO:2重量部、MgO:3重量部、CeO2:3
重量部を添加し、これらを粉砕混合して平均粒径0.5μ
mの調合粉末とし、次いでスプレードライによって平均
粒径30μmの顆粒を得た後、2.5ton/cm2の圧力で静水圧
等方加圧を行って造粒し、これを解砕して平均粒径30μ
mの粒子を得た。次に、この調合粉末100重量部に対し
て、結合剤:3重量部、ワックス:15重量部、滑剤:2重量
部を加えて混練し、これをペレット状とし、次いでこれ
を材料温度68℃、射出圧力400kg/cm2、射出速度100〜30
0cc/sec、加圧時間15secで、第6表に示す金型温度によ
ってX,Y,Z各部の温度を制御しつつ第27図に示す成形用
金型内に射出成形を行った。この金型のゲートの形状は
キャビティ形状とほぼ相似形状であり、そのゲート面積
がゲート側から見たキャビティ最大横断面積の20%以上
であった。その結果長さ150mm、幅65mm、厚さ15mmの成
形体を得た。その際の成形体の温度を第6表に示す。As a sintering aid, SrO: 2 parts by weight, MgO: 3 parts by weight, CeO 2 : 3 with respect to 100 parts by weight of silicon nitride powder as a ceramic raw material.
Part by weight is added, and these are crushed and mixed to obtain an average particle size of 0.5μ.
m mixed powder, and then spray-dried to obtain granules with an average particle size of 30 μm, isostatically pressurizing with a pressure of 2.5 ton / cm 2 to granulate, and then crush it to obtain average particles. Diameter 30μ
m particles were obtained. Next, to 100 parts by weight of this prepared powder, a binder: 3 parts by weight, a wax: 15 parts by weight, and a lubricant: 2 parts by weight were added and kneaded to form a pellet, which was then heated to a material temperature of 68 ° C. , Injection pressure 400kg / cm 2 , injection speed 100 ~ 30
Injection molding was carried out in a molding die shown in FIG. 27 while controlling the temperature of each part of X, Y and Z by the die temperature shown in Table 6 at 0 cc / sec and a pressurizing time of 15 sec. The shape of the gate of this mold was almost similar to the shape of the cavity, and the gate area was 20% or more of the maximum cross-sectional area of the cavity seen from the gate side. As a result, a molded body having a length of 150 mm, a width of 65 mm and a thickness of 15 mm was obtained. Table 6 shows the temperature of the molded body at that time.
ここで、第27図の金型には、金型温度制御用熱電対1
0,10′,10″、成形体温度測定用熱電対11,11′,11″お
よび金型加温用ヒーター12,12′,12″が設けられ、金型
温度の制御と成形体温度の測定が行われる。なお、Gは
金型ゲート(入口部)、13,13′,13″は金型内圧力検出
センサーを示す。これらセンサーの温度及び圧力のサン
プリング間隔は10μsecで行った。Here, the mold shown in FIG. 27 includes a thermocouple 1 for controlling the mold temperature.
0,10 ', 10 ", thermocouples for measuring molded body temperature 11,11', 11" and heaters for heating mold 12,12 ', 12 "are provided to control mold temperature and mold temperature. Measurement is carried out, where G is a mold gate (inlet), and 13, 13 ', 13 "are pressure sensors inside the mold. The sampling interval of temperature and pressure of these sensors was 10 μsec.
次に、成形体を1〜3℃/hの昇温速度で400℃まで昇
温し、その温度で5時間保持して脱脂処理を行い、次い
で7ton/cm2の圧力で静水圧等方加圧を行った後常圧の窒
素雰囲気下1700℃にて1時間焼成を行い角型の焼結体を
得た。得られた焼結体の寸法精度および強度を第6表に
示す。Next, the molded body is heated to 400 ° C. at a heating rate of 1 to 3 ° C./h, held at that temperature for 5 hours for degreasing treatment, and then isostatically applied at a pressure of 7 ton / cm 2. After pressurizing, it was fired at 1700 ° C. for 1 hour in a nitrogen atmosphere at atmospheric pressure to obtain a rectangular sintered body. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.
比較例1,2 成形用金型の制御温度を第6表に示す条件とした以外
はすべて実施例5と同じ条件によって成形体を作製し、
角型の焼結体を得た。得られた焼結体の寸法精度および
強度を第6表に示す。Comparative Examples 1 and 2 A molded body was produced under the same conditions as in Example 5, except that the control temperature of the molding die was set to the condition shown in Table 6.
A rectangular sintered body was obtained. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.
実施例6 実施例5と同じ原料を使用し、第28図に示す金型を用
いて成形を行った。この金型のゲート形状はキャビティ
形状とほぼ相似形状であり、そのゲート面積がゲート側
から見たキャビティの最大横断面積の20%以上であっ
た。Example 6 Using the same raw material as in Example 5, molding was carried out using the mold shown in FIG. The gate shape of this mold was almost similar to the cavity shape, and the gate area was 20% or more of the maximum cross-sectional area of the cavity seen from the gate side.
金型の制御温度と第6表に示すように変えた以外は実
施例5と同じ方法で射出成形を行い、直径30mmφ、長さ
200mmの成形体を得、更に実施例5と同じ方法で脱脂お
よび焼成を行い丸棒型の焼結体を得た。得られた焼結体
の寸法精度および強度を第6表に示す。Injection molding was carried out in the same manner as in Example 5 except that the mold control temperature was changed as shown in Table 6, and the diameter was 30 mmφ and the length was 30 mmφ.
A 200 mm compact was obtained, and degreasing and firing were carried out in the same manner as in Example 5 to obtain a round rod-type sintered body. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.
比較例3 成形用金型の制御温度を第6表に示す条件とした以外
はすべて実施例6と同じ条件によって作製し、丸棒型の
焼結体を得た。得られた焼結体の寸法精度および強度を
第6表に示す。Comparative Example 3 A round rod-shaped sintered body was obtained under the same conditions as in Example 6, except that the control temperature of the molding die was set as shown in Table 6. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.
実施例7 実施例5と同じ原料を使用し、第29a図、第29b図に示
す少なくとも1つ以上の肉厚部を有し、かつそのゲート
形状がキャビティ形状とほぼ相似形状であり、そのゲー
ト面積がゲート側から見たキャビティの最大横断面積の
20%以上である金型を用いてその制御温度を第6表に示
すように変えた以外は実施例と同じ方法で射出成形を行
い、チップ径150mmφ、翼高100mmのタービンロータ成形
体を得、更に実施例2と同じ方法で脱脂および焼成を行
いタービンロータ焼結体を得た。得られた焼結体の寸法
精度を第6表に示す。Example 7 The same raw material as in Example 5 was used, and it had at least one or more thick-walled portions shown in FIGS. 29a and 29b, and its gate shape was substantially similar to the cavity shape. The area of the maximum cross-sectional area of the cavity seen from the gate side
Injection molding was carried out in the same manner as in Example except that the control temperature was changed as shown in Table 6 by using a mold of 20% or more to obtain a turbine rotor molded body with a tip diameter of 150 mmφ and a blade height of 100 mm. Further, degreasing and firing were performed in the same manner as in Example 2 to obtain a turbine rotor sintered body. Table 6 shows the dimensional accuracy of the obtained sintered body.
比較例4 成形用金型の制御温度を第6表に示す条件とした以外
はすべて実施例7と同じ条件によって作製し、タービン
ロータの焼結体を得た。得られた焼結体の寸法精度を第
6表に示す。Comparative Example 4 A sintered body of a turbine rotor was obtained under the same conditions as in Example 7, except that the control temperature of the molding die was set as shown in Table 6. Table 6 shows the dimensional accuracy of the obtained sintered body.
上記の実施例5〜7および比較例1〜4から明らかな
ように、金型の制御温度を入口部より先端部に行くに従
って上げ、しかもその温度上昇が、第10図に示す如き温
度勾配の範囲内になった場合には加圧終了時の成形体温
度は何れの部位においても設定温度の±0.5℃以内とな
り、寸法精度がよく、強度の高い焼結体が得られること
が分かる。As is clear from the above Examples 5 to 7 and Comparative Examples 1 to 4, the control temperature of the mold is increased from the inlet to the tip, and the temperature rise is caused by the temperature gradient as shown in FIG. When the temperature is within the range, the temperature of the compact at the end of pressurization is within ± 0.5 ° C of the set temperature at any part, and it can be seen that a sinter with high dimensional accuracy and high strength can be obtained.
実施例8 坏土を用いる射出成形方法を実施した。以下、第30図
の水系射出成形方法のフローシートに従って説明する。 Example 8 An injection molding method using kneaded clay was carried out. Hereinafter, description will be given according to the flow sheet of the water-based injection molding method of FIG.
セラミックス原料の窒化珪素粉末100重量部に対し
て、焼結助剤としてSrO:2重量部、CeO2:3重量部を添加
し、これらを粉砕混合して平均粒径0.6μmの調合粉末
とし、次いでスプレードライによって平均粒径30μm程
度の顆粒を得た。この顆粒100重量部に対して、有機バ
インダー(メチルセルロース:7重量部、セドランFF−20
0:1重量部)8重量部、更に水を約30重量部加えて混練
し、次に真空度70mmHgで真空土練を行い、直径52mm、長
さ500mmの坏土を得た。これを2.5ton/cm2の圧力で静水
圧等方加圧を行い、次いで温度12℃の冷暗所で一晩ねか
し、次に坏土温度12℃、射出圧力150〜300kg/cm2、射出
速度100〜300cc/sec、ゲル硬化時間1〜3分で、第7表
に示す金型温度によってX,Y,Z各部の温度を制御しつつ
実施例5と同形状の第27図に示す成形用金型内に射出成
形を行い、長さ150mm、幅65mm、厚さ15mmの成形体を得
た。その際の成形体の温度を第7表に示す。To 100 parts by weight of silicon nitride powder as a ceramic raw material, SrO: 2 parts by weight and CeO 2 : 3 parts by weight were added as a sintering aid, and these were pulverized and mixed to obtain a compounded powder having an average particle size of 0.6 μm, Then, by spray drying, granules having an average particle size of about 30 μm were obtained. To 100 parts by weight of the granules, an organic binder (methyl cellulose: 7 parts by weight, Cedran FF-20
0: 1 parts by weight) 8 parts by weight and about 30 parts by weight of water were further added and kneaded, and then vacuum kneading was performed at a vacuum degree of 70 mmHg to obtain a kneaded clay having a diameter of 52 mm and a length of 500 mm. This is hydrostatically isostatically pressed at a pressure of 2.5 ton / cm 2 , then aged in a cool and dark place at a temperature of 12 ° C overnight, then at a kneaded material temperature of 12 ° C, an injection pressure of 150 to 300 kg / cm 2 , and an injection speed of 100. ~ 300cc / sec, gel hardening time 1 ~ 3 minutes, molding metal shown in Fig. 27 having the same shape as that of Example 5 while controlling the temperature of each part of X, Y, Z by the mold temperature shown in Table 7. Injection molding was performed in the mold to obtain a molded body having a length of 150 mm, a width of 65 mm and a thickness of 15 mm. Table 7 shows the temperature of the molded body at that time.
次いで、成形体を恒温恒湿器で温度を60℃から100℃
まで昇温し、湿度を98%から20%まで下げて乾燥し、次
に50℃/hの昇温速度で500℃まで昇温し、その温度で5
時間保持してバインダー除去を行い、次いで7ton/cm2の
圧力で静水圧等方加圧を行った後、常圧の窒素雰囲気下
で、700℃/hで1650℃まで昇温し、その温度で1時間焼
成を行い角型の焼結体を得た。得られた焼結体の寸法精
度および強度を第7表に示す。Then, the molded body is heated at a constant temperature and humidity to a temperature of 60 to 100 ° C.
The temperature is raised to 98%, the humidity is reduced from 98% to 20% and dried, then the temperature is raised to 500 ° C at a heating rate of 50 ° C / h, and the temperature is increased to 5 ° C.
Perform binder removal and retention time, and then after the hydrostatic isostatic pressing at a pressure of 7 ton / cm 2, under a nitrogen atmosphere at normal pressure, the temperature was raised to 1650 ° C. at 700 ° C. / h, the temperature By firing for 1 hour, a rectangular sintered body was obtained. Table 7 shows the dimensional accuracy and strength of the obtained sintered body.
比較例5,6 成形用金型の制御温度を第7表に示す条件とした以外
はすべて実施例8と同じ条件によって作製し、角型の焼
結体を得た。得られた焼結体の寸法精度および強度を第
7表に示す。Comparative Examples 5 and 6 All were manufactured under the same conditions as in Example 8 except that the control temperature of the molding die was set to the conditions shown in Table 7 to obtain a rectangular sintered body. Table 7 shows the dimensional accuracy and strength of the obtained sintered body.
実施例9 実施例8と同じ原料を使用し、第28図に示す金型を用
いその制御温度を第7表に示すように変えた以外は実施
例8と同じ方法で射出成形を行い、直径30mmφ、長さ20
0mmの成形体を得、更に実施例8と同じ方法でバインダ
ー除去および焼成を行い丸棒型の焼結体を得た。得られ
た焼結体の寸法精度および強度を第7表に示す。Example 9 Injection molding was performed in the same manner as in Example 8 except that the same raw material as in Example 8 was used and the control temperature was changed as shown in Table 7 using the mold shown in FIG. 28. 30mmφ, length 20
A 0 mm compact was obtained, and the binder was removed and fired in the same manner as in Example 8 to obtain a round rod-shaped sintered body. Table 7 shows the dimensional accuracy and strength of the obtained sintered body.
比較例7 成形用金型の制御温度を第7表に示す条件とした以外
はすべて実施例9と同じ条件によって作製し、丸棒型の
焼結体を得た。得られた焼結体の寸法精度および強度を
第7表に示す。Comparative Example 7 A round rod-shaped sintered body was obtained under the same conditions as in Example 9 except that the control temperature of the molding die was set as shown in Table 7. Table 7 shows the dimensional accuracy and strength of the obtained sintered body.
実施例10 実施例8と同じ原料を使用し、第29a図および第29b図
に示す金型を用いてその制御温度を第7表に示すように
変えた以外は実施例8と同じ方法で射出成形を行い、チ
ップ径150mmφ、翼高100mmのタービンロータ成形体を
得、更に実施例8と同じ方法でバインダー除去および焼
成を行いタービンロータの焼結体を得た。得られた焼結
体の寸法精度を第7表に示す。Example 10 Injection was performed in the same manner as in Example 8 except that the same raw material as in Example 8 was used and the control temperature was changed as shown in Table 7 using the mold shown in FIGS. 29a and 29b. Molding was performed to obtain a turbine rotor molded body having a tip diameter of 150 mmφ and a blade height of 100 mm. Further, binder removal and firing were performed in the same manner as in Example 8 to obtain a turbine rotor sintered body. The dimensional accuracy of the obtained sintered body is shown in Table 7.
比較例8 成形用金型の制御温度を第7表に示す条件とした以外
はすべて実施例10と同じ条件によって作製し、タービン
ロータの焼結体を得た。得られた焼結体の寸法精度を第
7表に示す。Comparative Example 8 A turbine rotor sintered body was obtained under the same conditions as in Example 10, except that the control temperature of the molding die was set as shown in Table 7. The dimensional accuracy of the obtained sintered body is shown in Table 7.
上記の実施例8,9,10および比較例5,6,7,8より、金型
の制御温度を入口部より先端部に行くに従って下げ、し
かもその温度降下が、第10図に示す温度勾配の範囲内で
ある場合には加圧終了時の成形体温度が設定温度の±0.
5℃以内となり、寸法精度がよく、強度の高い焼結体が
得られることが分かる。From the above Examples 8, 9 and 10 and Comparative Examples 5, 6, 7 and 8, the control temperature of the mold was lowered from the inlet to the tip, and the temperature drop was the temperature gradient shown in FIG. If it is within the range of, the molded body temperature at the end of pressurization is ± 0 of the set temperature.
It can be seen that the temperature is within 5 ° C, the dimensional accuracy is good, and a sintered body with high strength can be obtained.
(発明の効果) 以上説明した通り、本発明によれば次の効果が奏せら
れる。 (Effects of the Invention) As described above, the present invention has the following effects.
本発明の射出成形方法によれば、ゲート面積がゲート
側からみたキャビティの最大横断面積の20%以上の射出
成形型を用いて射出成形するので、欠陥のない均質な成
形体を得ることができる。According to the injection molding method of the present invention, since the injection molding is performed using the injection molding die in which the gate area is 20% or more of the maximum cross-sectional area of the cavity viewed from the gate side, it is possible to obtain a defect-free homogeneous molded body. .
また射出成形型のゲート形状をキャビティ(成形体)
の投影図形と相似形あるいは近似相似形とすれば更に効
果的に成形体の欠陥発生を防止できる。In addition, the gate shape of the injection mold is a cavity (molded body)
If a similar figure or an approximate similar figure to the projected figure is used, it is possible to more effectively prevent the occurrence of defects in the molded body.
また本発明により肉厚差のある成形体を射出成形によ
り製造する場合、成形体型の肉厚部に直接開口する射出
ゲートを設けることにより、ウェルドライン、ポア等の
欠陥のない成形体を歩留りよく得ることができる。ま
た、肉厚部が複数ある場合には、各肉厚部に直接開口す
る射出ゲートを設けて射出成形することにより、同様に
欠陥のない成形体を得ることができる。Further, when a molded product having a difference in wall thickness is manufactured by injection molding according to the present invention, a molded product having no defects such as weld lines and pores can be produced with a good yield by providing an injection gate that directly opens in the thick wall portion of the molded product mold. Obtainable. Further, when there are a plurality of thick portions, an injection gate having a direct opening is provided in each thick portion and injection molding is performed to obtain a similarly molded product having no defects.
更に本発明によれば成形体の温度分布を均一に制御す
ることにより、全体に均質な成形体が得られ、その結
果、寸法精度が良く、高強度で均質なセラミックス焼結
体を得ることができる。Further, according to the present invention, by uniformly controlling the temperature distribution of the molded body, a homogeneous molded body can be obtained as a whole, and as a result, a dimensional accuracy is good, and a high-strength, homogeneous ceramic sintered body can be obtained. it can.
本発明はいわゆる有機系成形材料及び水系成形材料の
いずれにも適用でき工業上極めて有用である。The present invention can be applied to both so-called organic molding materials and water-based molding materials and is extremely useful industrially.
第1図は、本発明成形型のダイレクトゲートの場合の説
明図、 第2a図〜第2d図は、それぞれゲート形状とキャビティ
(成形体)投影図形の関係を示す説明図、 第3a図および第3b図は、ゲート面積/キャビティ(成形
体)最大横断面積が90%であるゲート形状とキャビティ
(成形体)投影図形の関係を示す説明図、 第4a〜4c図,第5a〜5c図,第6a〜6c図および第7a〜7c図
は、それぞれ、ゲート側からみたキャビティ投影図形、
その相似形状および近似相似形状を示す説明図、 第8a図は成形体の中心軸に沿った縦断面図、 第8b図および第8c図は、第8a図の成形体の成形型の該要
図、 第9a図および第9b図は成形体のそれぞれ正面図および側
面図、 第9c〜9e図は、第9aおよび第9b図の成形体を製造するた
めの、成形型のそれぞれ概要側面図、 第10図は、本発明における成形用金型の温度勾配を示す
グラフ、 第11図は、有機系射出成形材料の射出成形を示すフロー
チャート、 第12〜14図は、それぞれ成形体とゲートの形状を示す説
明図、 第15〜17図は、それぞれゲート面積率に対する成形歩留
りを示すグラフ、 第18図は、水系射出成形材料の射出成形を示すフローチ
ャート、 第19〜21図は、それぞれゲート面積率に対する成形歩留
りを示すグラフ、 第22図は、有機系成形材料の調製、射出成形の別の工程
図、 第23図は、有機系成形材料の射出充填過程の模式図、 第24図は、水系成形材料の調製、射出成形の別の工程
図、 第25図は、水系成形材料の射出充填過程の模式図、 第26図は有機系射出成形方法の一例を示す更に別のフロ
ーシート、 第27図,第28図及び第29a図はそれぞれ本発明で用いる
成形用金型における温度制御例を示す概要図、 第29b図は、第29a図におけるD方向から見た成形体の概
要図であり、 第30図は水系射出成形方法の一例を示す更に別のフロー
シートである。FIG. 1 is an explanatory view in the case of a direct gate of a molding die of the present invention, FIGS. 2a to 2d are explanatory views showing the relationship between a gate shape and a cavity (molding) projection figure, FIG. 3a and FIG. FIG. 3b is an explanatory view showing the relationship between the gate shape / cavity (molded body) maximum cross-sectional area of 90% and the projected figure of the cavity (molded body), FIGS. 4a to 4c, 5a to 5c, and FIG. Figures 6a to 6c and 7a to 7c show cavity projection figures viewed from the gate side,
Explanatory drawing showing the similar shape and the approximate similar shape, FIG. 8a is a longitudinal sectional view taken along the central axis of the molded body, and FIGS. 8b and 8c are the main views of the molding die of the molded body of FIG. 8a. Figures 9a and 9b are front and side views, respectively, of the shaped body; Figures 9c-9e are schematic side views, respectively, of the mold for producing the shaped bodies of Figures 9a and 9b. FIG. 10 is a graph showing the temperature gradient of the molding die in the present invention, FIG. 11 is a flowchart showing the injection molding of an organic injection molding material, and FIGS. 12 to 14 show the shapes of the molded body and the gate, respectively. Explanatory diagram showing, FIGS. 15 to 17 are graphs showing molding yields with respect to gate area ratios, FIG. 18 is a flow chart showing injection molding of water-based injection molding materials, and FIGS. 19 to 21 are against gate area ratios, respectively. Graph showing molding yield, Fig. 22 shows preparation of organic molding compound Another process drawing of injection molding, FIG. 23 is a schematic diagram of injection filling process of organic molding material, FIG. 24 is another process drawing of water-based molding material preparation, injection molding, and FIG. 25 is water-based FIG. 26 is a schematic view of the injection filling process of the molding material, FIG. 26 is another flow sheet showing an example of the organic injection molding method, and FIGS. 27, 28 and 29a are molding dies used in the present invention. Fig. 29b is a schematic diagram showing an example of temperature control in Fig. 29b, and Fig. 29b is a schematic diagram of the molded body viewed from the direction D in Fig. 29a. Fig. 30 is still another flow sheet showing an example of the water-based injection molding method. .
Claims (7)
成形型のキャビティにゲートを経て射出することよりな
るセラミックスの射出成形方法において、前記ゲートが
ゲート側から見た前記キャビティの最大横断面積の少な
くとも20%の面積を有してなる成形型を用い、かつ加圧
終了時、成形型内の成形体温度分布が±0.5℃以内とな
るように成形型の温度勾配を制御することを特徴とする
成形方法。1. A ceramics injection molding method comprising injecting a ceramics molding material into a cavity of a mold through an injection molding machine through a gate, wherein the gate has at least 20 of the maximum cross-sectional area of the cavity as viewed from the gate side. Molding characterized by using a mold having an area of 100% and controlling the temperature gradient of the mold so that the temperature distribution of the molded body within the mold is within ± 0.5 ° C when the pressing is completed. Method.
ャビティの投影形状と実質的に相似形となし、それによ
って該ゲートを通過した成形材料がキャビティの形状に
沿って流れるよう制御する請求項1の成形方法。2. The shape of the gate is substantially similar to the projected shape of the cavity viewed from the gate side, whereby the molding material passing through the gate is controlled to flow along the shape of the cavity. Item 1. The molding method according to item 1.
の肉厚部と肉薄部とよりなり、前記ゲートを各肉厚部に
開口せしめることにより、射出した成形材料を肉厚部か
ら肉薄部へ向かって充填する請求項1または2の成形方
法。3. The cavity comprises at least one thick part and a thin part, and the gate is opened in each thick part to fill the injected molding material from the thick part to the thin part. The molding method according to claim 1 or 2.
ように設定する請求項1,2または3の成形方法。 x≦y≦5x ただし、xはゲートから測温部位までの成形材料の移動
時間(秒)であり、yはゲートと測温部位との間におけ
る成形型の温度差(℃)である。4. The molding method according to claim 1, 2 or 3, wherein the temperature gradient of the molding die is set so as to satisfy the following inequality. x ≦ y ≦ 5x where x is the moving time (seconds) of the molding material from the gate to the temperature measurement site, and y is the temperature difference (° C.) of the mold between the gate and the temperature measurement site.
ティと射出ノズルから該キャビティへ成形材料を導くた
めの成形材料導入部からなるセラミックス成形用射出成
形型において、ゲートの面積がゲート側から見た前記キ
ャビティの最大横断面積の少なくとも20%であるととも
に前記キャビティのゲート近傍から内奥部へ向かう複数
の区画にそれぞれ加熱手段と温度制御手段と成形体温度
測定手段とを具えてなることを特徴とする成形型。5. An injection molding die for ceramics molding, comprising: a cavity having a shape corresponding to the shape of a molded body; and a molding material introducing portion for guiding a molding material from the injection nozzle to the cavity. Further, at least 20% of the maximum cross-sectional area of the cavity is provided, and a plurality of sections extending from the vicinity of the gate of the cavity toward the inner depth are provided with heating means, temperature control means, and molded body temperature measuring means, respectively. Mold to be.
ティと射出ノズルから該キャビティへ成形材料を導くた
めの成形材料導入部とからなるセラミックス成形用射出
成形型において、前記キャビティが少なくとも1つの肉
厚部を含んでなり、かつ該少なくとも1つの肉厚部にそ
れぞれ直接開口するゲートを具えてなると共に、該ゲー
トの面積がゲート側から見た前記キャビティの最大横断
面積の少なくとも20%であることを特徴とする成形型。6. An injection molding die for ceramics molding, comprising: a cavity having a shape corresponding to a shape of a molded body and a molding material introducing section for guiding a molding material from an injection nozzle to the cavity, wherein the cavity has at least one wall. Comprising a thick portion and having a gate opening directly into each of said at least one thick portion, the area of said gate being at least 20% of the maximum cross-sectional area of said cavity as seen from the gate side. Molding tool characterized by.
ャビティの投影形状と実質的に相似形をなす請求項5ま
たは6の成形型。7. The mold according to claim 5, wherein the shape of the gate is substantially similar to the projected shape of the cavity as viewed from the gate side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15745890A JP2513905B2 (en) | 1990-06-18 | 1990-06-18 | Ceramic injection molding method and molding die used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15745890A JP2513905B2 (en) | 1990-06-18 | 1990-06-18 | Ceramic injection molding method and molding die used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0449003A JPH0449003A (en) | 1992-02-18 |
JP2513905B2 true JP2513905B2 (en) | 1996-07-10 |
Family
ID=15650104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15745890A Expired - Fee Related JP2513905B2 (en) | 1990-06-18 | 1990-06-18 | Ceramic injection molding method and molding die used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2513905B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5829159B2 (en) * | 2012-03-16 | 2015-12-09 | 株式会社デンソー | Gas sensor element and manufacturing method thereof |
JP5892104B2 (en) * | 2013-04-12 | 2016-03-23 | 株式会社デンソー | Lambda sensor element and manufacturing method thereof |
JP5892105B2 (en) | 2013-04-12 | 2016-03-23 | 株式会社デンソー | A / F sensor element and manufacturing method thereof |
-
1990
- 1990-06-18 JP JP15745890A patent/JP2513905B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0449003A (en) | 1992-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5238627A (en) | Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor | |
CN105563616B (en) | The forming method of zirconia ceramic product | |
US4906424A (en) | Reaction injection molding of ceramic or metallic greenbodies | |
US5066449A (en) | Injection molding process for ceramics | |
CN106670470A (en) | Novel manufacturing method for tungsten alloy prefabricated fragment | |
EP0356461A1 (en) | Forming of complex high performance ceramic and metallic shapes. | |
EP0487172B1 (en) | Molding method and molding apparatus for producing ceramics | |
JP2513905B2 (en) | Ceramic injection molding method and molding die used therefor | |
JPH064502B2 (en) | Ceramics manufacturing method | |
EP0765848B1 (en) | Method for forming parts from inorganic particulate material | |
Zhang et al. | Injection moulding of silicon carbide using an organic vehicle based on a preceramic polymer | |
Chinn et al. | Powder injection molding of silicon carbide: processing issues | |
US20140077403A1 (en) | Process for manufacturing coloured ceramic parts by pim | |
RU2707307C1 (en) | Method of forming semi-finished articles of complex shape from silicon powder | |
US4126653A (en) | Method of manufacturing silicon nitride products | |
JPH0244882B2 (en) | ||
JPH02171207A (en) | Ceramic injection-molded body and its molding method | |
JPH0798332B2 (en) | Ceramic injection molding method | |
US10093587B2 (en) | Processes for the manufacture of lightweight ceramic materials and articles produced thereby | |
JPH0470122B2 (en) | ||
JPH0641601B2 (en) | Molding composition | |
CN116967441A (en) | Material for powder metallurgy flow pressure swing injection of large component and application thereof | |
JPH0469843B2 (en) | ||
Bose et al. | Near net shapes by ceramic injection molding | |
CN112475287A (en) | Metal powder forming process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |