JPH0449003A - Ceramic injection molding method and molding die used for said method - Google Patents

Ceramic injection molding method and molding die used for said method

Info

Publication number
JPH0449003A
JPH0449003A JP15745890A JP15745890A JPH0449003A JP H0449003 A JPH0449003 A JP H0449003A JP 15745890 A JP15745890 A JP 15745890A JP 15745890 A JP15745890 A JP 15745890A JP H0449003 A JPH0449003 A JP H0449003A
Authority
JP
Japan
Prior art keywords
gate
cavity
molding
mold
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15745890A
Other languages
Japanese (ja)
Other versions
JP2513905B2 (en
Inventor
Shigeki Kato
茂樹 加藤
Katsuhiro Inoue
勝弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP15745890A priority Critical patent/JP2513905B2/en
Publication of JPH0449003A publication Critical patent/JPH0449003A/en
Application granted granted Critical
Publication of JP2513905B2 publication Critical patent/JP2513905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a homogeneous ceramic molded form, which is not cracked nor deformed and has high dimensional accuracy and uniform strength, by using a molding die, in which a gate has at least 20% area of the maximum cross-sectional area of a cavity, and controlling the temperature gradient of the molding die so that the temperature distribution of a molded form is kept within + or -0.5 deg.C when pressurization is completed. CONSTITUTION:A molding die, the area of a gate of which is 20% or more of the maximum cross-sectional area of a cavity viewed from the gate side, is used as an injection molding die. Consequently, a molding material passing through the gate flows along a molded form shape, and air in the cavity is discharged uniformly, thus obtaining a molded form having no defect. When a gate shape G is formed so as to be substantially a similar figure to the projection shape P of the cavity viewed from the gate side, the molding mate rial can be controlled so as to flow along the molded form shape. The temperature gradient of a mold is set so that the temperature distribution of the molded form at the time of the pressure completion of injection molding is kept within + or -0.5 deg.C, and speed where the molding material is filled is controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミックスを射出成形する場合において、
性能の優れた射出成形品を製造するセラミックスの射出
成形方法、およびそれに用いる成形型に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a method for injection molding ceramics.
The present invention relates to a ceramic injection molding method for producing injection molded products with excellent performance, and a mold used therein.

(従来の技術) 窒化珪素、炭化珪素、サイアロン等のシリコンセラミッ
クスは、金属よりも高温で安定であり、酸化腐食やクリ
ープ変形を受は難いところから、近年、それをエンジン
部品として利用する研究が活発に行われている。例えば
、これらセラミックス材料からなるラジアル型タービン
ロータは、金属製ロータに較べて、軽量でエンジンの作
動温度を高めることかでき、熱効率に優れているために
、自動車用ターホチャージャーロータ或いはガスタービ
ンロータ等として注目を集めている。
(Prior art) Silicon ceramics such as silicon nitride, silicon carbide, and sialon are more stable at high temperatures than metals and are less susceptible to oxidative corrosion and creep deformation, so in recent years, research has been conducted into using them as engine parts. It is being actively carried out. For example, radial turbine rotors made of these ceramic materials are lighter than metal rotors, can raise the operating temperature of the engine, and have excellent thermal efficiency, so they are used in automotive turbo charger rotors or gas turbine rotors. etc., is attracting attention.

このような、ター・ビンロータは、複雑な三次元形状を
成す翼部を有しているため、焼結された単純な形状の、
例えば緻密な窒化珪素、炭化珪素焼結体等の棒状或いは
角状など単純な形状の素材を研削加工によ−)で所望の
形状に仕上けることは、極めて困難である。
Turbine rotors like this have blades with a complex three-dimensional shape, so they can be sintered with a simple shape.
For example, it is extremely difficult to finish a material with a simple shape such as a bar or square shape, such as a dense silicon nitride or silicon carbide sintered body, into a desired shape by grinding.

セラミックスの成形法としては、押出し成形等成形材料
の可塑性を利用する塑性成形法、セラミックス涼料扮禾
を水中に懸濁させた泥漿を型に注入する泥漿鋳込み成形
法、調製された粉末を金型に入れ加圧によって成形する
乾式加圧成形法等がよく知られている。これらの他にプ
ラスチックスてよく用いられている射出成形法は、近年
、不規則な形状のセラミックスや複雑な形状のセラミッ
クスに用いられるようになった。
Ceramic molding methods include plastic molding methods that utilize the plasticity of the molding material such as extrusion molding, slurry casting molding methods that inject a slurry made by suspending ceramic coolant in water into a mold, and molding methods that involve molding the prepared powder into gold. A dry pressure molding method in which the material is placed in a mold and molded under pressure is well known. In addition to these methods, injection molding, which is often used for plastics, has recently come to be used for ceramics with irregular shapes or complex shapes.

セラミックスの射出成形においては、従来セラミックス
の原料微粉末自体はプラスチックスと異なり可塑性かな
いため、原料微粉末に熱可塑性樹脂を添加して可塑化し
た成形材料、ペレット、または出願人か特開昭64−2
4707号にて提案した水を添加して得る成形材料(坏
土)を射出成形に用いている。
Conventionally, in injection molding of ceramics, the raw material fine powder of ceramics itself is not plastic unlike plastics, so molding materials made by adding thermoplastic resin to the raw material fine powder and plasticized, pellets, or the applicant's JP-A-64 -2
A molding material (clay) obtained by adding water proposed in No. 4707 is used for injection molding.

すなわち、セラミックス粉末にポリエチレン、ポリスチ
レン等の熱1−iT塑性樹脂、可塑剤、分散剤、ワック
ス等からなる有機バインダーを混合し、この混合原料を
加熱して可塑性をもたせ、成形用金型内に射出して成形
する方法であり、得られた成形体を税脂し、焼成するこ
とによってセラミックス焼結体を得ることかできる。ま
たセラミックス粉末に可堂化媒体として主に水を可塑剤
として有機バインダーを混合し、この混合原料を冷却し
て可塑性をもたせ、成形用金型内に射出して成形する方
法であり、得られた成形体をバインダー除去し焼成する
ことによって、セラミックス焼結体を得ることかできる
。これらの成形方法によれば、他の方法ではかなりの工
数を必要とするような複雑な部品を1回の操作で、迅速
に且つ精密で、仕上げ代の少ない成形品を得ることかで
きる。
That is, an organic binder consisting of a thermal 1-iT plastic resin such as polyethylene or polystyrene, a plasticizer, a dispersant, a wax, etc. is mixed with ceramic powder, and this mixed raw material is heated to give it plasticity, and then placed in a mold for molding. This is a method of injection molding, and a ceramic sintered body can be obtained by molding the obtained molded body and firing it. Another method is to mix ceramic powder with an organic binder, mainly water as a plasticizer, as a plasticizing medium, cool the mixed raw material to give it plasticity, and inject it into a mold for molding. A ceramic sintered body can be obtained by removing the binder from the molded body and firing it. According to these molding methods, complex parts that would require a considerable number of man-hours using other methods can be quickly and precisely molded with a small amount of finishing allowance in a single operation.

しかし、これらセラミ・7・クスを含有する成形材料は
熱可塑性プラスチックスのみの成形材料に比(7、流動
性か悪く、射出成形機から成形型への押込みにおいて空
泡か入り込んだり、均質的でなかったりすることかあっ
た。
However, molding materials containing these Ceramic 7 Sometimes it wasn't.

一方、従来から行われている射出成形方法においては、
成形用金型の温度について通常金型温度を入口部から先
端部まで一定にすることにより成形が行われていた。
On the other hand, in the conventional injection molding method,
Regarding the temperature of the mold for molding, molding is usually performed by keeping the mold temperature constant from the inlet to the tip.

しかしながら、成形用金型の温度を一定にした場合には
射出成形に際して金型入口部と先端部との間で成形材料
の温度差が生じ、得られる成形体の密度分布が不均一と
なり、その結果、該成形体を焼成してできる焼結体には
クラックまたは変形等が生じ、寸法精度、強度などが不
均一となり均一な焼結体を得ることができなかった。
However, when the temperature of the molding die is kept constant, a temperature difference occurs in the molding material between the mold entrance and the tip during injection molding, resulting in uneven density distribution of the resulting molded product. As a result, cracks or deformation occurred in the sintered body produced by firing the molded body, resulting in nonuniform dimensional accuracy, strength, etc., and it was not possible to obtain a uniform sintered body.

(発明が解決しようとする課題) 発明者らは、上記現状に鑑みセラミックスの射出成形に
おいて、成形材料を均質的に金型に射出する方法につい
て鋭意検討し、特定形状の成形型を用いると効果的であ
ることを見出し、さらにまた、成形用金型に温度勾配を
設けるようにして成形材料を均一な温度に制御し得るこ
とを見出し、本発明に到達した。
(Problems to be Solved by the Invention) In view of the above-mentioned current situation, the inventors have conducted intensive studies on a method for homogeneously injecting molding material into a mold in ceramic injection molding, and have found that using a mold with a specific shape is effective. Furthermore, the inventors have discovered that the temperature of the molding material can be controlled to be uniform by providing a temperature gradient in the molding die, and have arrived at the present invention.

本発明の目的は、ボア、ウェルドライン等の欠陥がない
均質なセラミックス成形体を提供するにある。
An object of the present invention is to provide a homogeneous ceramic molded body free from defects such as bores and weld lines.

他の目的は、クラックや変形がなく、高い寸法精度と、
均一な強度を有する均質なセラミックス成形体を提供す
るにある。
Other objectives are no cracks or deformation, high dimensional accuracy,
The object of the present invention is to provide a homogeneous ceramic molded body having uniform strength.

更に他の目的は、形状複雑にして且つ均質なセラミック
ス成形体を高い歩留りを以て効率良く取得するための射
出成形法並びにそれに用いる成形型を提供するにある。
A further object of the present invention is to provide an injection molding method for efficiently obtaining a homogeneous ceramic molded body having a complex shape with a high yield, and a mold for use in the injection molding method.

(課題を解決するための手段) 上記目的を達成するための本発明成形方法は、セラミッ
クス成形材料を射出成形機により成形型のキャビティに
ゲートを経て射出することよりなるセラミックスの射出
成形方法において、前2己ゲートがゲート側から見た前
記キャビティの最大横断面積の少なくとも20%の面積
を有してなる成形型を用い、かつ加圧終了時、成形型内
の成形体温度分布が±0.5℃以内となるように成形型
の温度勾配を制御することを特徴とする。
(Means for Solving the Problems) The molding method of the present invention to achieve the above object is a ceramic injection molding method comprising injecting a ceramic molding material into a cavity of a mold through a gate using an injection molding machine. A mold is used in which the front gate has an area of at least 20% of the maximum cross-sectional area of the cavity as viewed from the gate side, and the temperature distribution of the molded body within the mold is ±0. It is characterized by controlling the temperature gradient of the mold to within 5°C.

上記本発明方法に用いる成形型の前記ゲートの形状を該
ゲート側から見たキャビティの投影形状と実質的に相似
形となし、それによって該ゲートを通過した成形材料が
キャビティの形状に沿って流れるよう制御すれば、さら
に効果的である。
The shape of the gate of the mold used in the method of the present invention is substantially similar to the projected shape of the cavity seen from the gate side, so that the molding material passing through the gate flows along the shape of the cavity. If controlled in this way, it will be even more effective.

また前記キャビティかそれぞれ少なくとも1つの肉厚部
と肉薄部とよりなる場合は、射出した成形材料を肉厚部
から肉薄部へ向かって充填するよう、前記ゲートを各肉
厚部に開口せしめることが好ましい。
Further, in the case where each of the cavities has at least one thick wall portion and at least one thin wall portion, the gate may be opened in each thick wall portion so that the injected molding material is filled from the thick wall portion to the thin wall portion. preferable.

本発明方法においては、成形型の温度勾配を下記不等式
を満足するように設定することにより最良の効果が得ら
れる。
In the method of the present invention, the best effect can be obtained by setting the temperature gradient of the mold so as to satisfy the following inequality.

X≦y≦5X ただし上式中、Xはゲートから測温部位までの成形材料
の移動時間(秒)であり、yはゲート測温部位との間に
おける成形型の温度差(’C)である。
X≦y≦5X However, in the above formula, be.

上記本発明方法に好適に用いられる成形型は、成形体形
状に対応する形状を有するキャビティと射出ノズルから
該キャビティへ成形材料を導くための成形材料導入部か
らなるセラミックス成形用射出成形型において、ゲート
の面積がゲート側から見た前記キャビティの最大横断面
積の少なくとも20%であるとともに前記キャビティの
ゲート近傍から内奥部へ向かう複数の区画にそれぞれ加
熱手段と温度制御手段と成形体温度測定手段とを具えて
なることを特徴とする。
The mold preferably used in the method of the present invention is an injection mold for ceramic molding, which comprises a cavity having a shape corresponding to the shape of the molded object and a molding material introduction part for guiding the molding material from the injection nozzle to the cavity. The area of the gate is at least 20% of the maximum cross-sectional area of the cavity as viewed from the gate side, and a heating means, a temperature control means, and a molded body temperature measuring means are provided in a plurality of sections of the cavity from the vicinity of the gate toward the innermost part, respectively. It is characterized by comprising the following.

また、前記キャビティか少なくとも1つの肉厚部を含ん
でなる場合は、該少なくとも1つの肉厚部にそれぞれ直
接開口するケートを設けると共に、該ケートの面積をゲ
ート側から見た前記キャビティの最大横断面積の少なく
とも20%となすことによって本発明の目的を達成する
ことかできる。
Further, when the cavity includes at least one thick walled portion, a cage is provided that opens directly into the at least one thick walled portion, and the area of the cage is determined by the maximum cross section of the cavity when viewed from the gate side. The object of the present invention can be achieved by making it at least 20% of the area.

さらにまた、前記ケートの形状か該ゲート側から見たキ
ャビティの投影形状と実質的に相似形をなすことか、さ
らに好ましい。
Furthermore, it is more preferable that the shape of the gate is substantially similar to the projected shape of the cavity as viewed from the gate side.

本発明において、「ケート側から見たキャビティの最大
横断面積」とは、ゲートを通過する成形材料の移動方向
に垂直なキャビティの最大横断面の面積を意味するもの
とし、単に「キャビティの最大横断面積」ということが
ある。
In the present invention, "the maximum cross-sectional area of the cavity as seen from the gate side" means the area of the maximum cross-sectional area of the cavity perpendicular to the direction of movement of the molding material passing through the gate, and is simply "the maximum cross-sectional area of the cavity as seen from the gate side". Sometimes called "area."

また、「ゲート側から見たキャビティの投影形状」とは
、ゲートを通過する成形材料の移動方向に垂直な平面上
へのキャビティの投影形状を意味するものとし、単に「
キャビティの投影図形」ということかある。
In addition, "the projected shape of the cavity as seen from the gate side" means the projected shape of the cavity on a plane perpendicular to the direction of movement of the molding material passing through the gate, and is simply "
It could be called the projected figure of the cavity.

さらにまた、本発明において、肉厚部及び肉薄部とは、
成形体形状に内接する最大の球の直径をその成形体の最
大肉厚としたとき、成形体の各部位ごとに内接する最大
法の直径を求め、その直径が最大肉厚の40%以上であ
る部位を肉厚部と、また40%未満である部位を肉薄部
という。肉厚部を複数有する成形体とは、上記肉厚部と
肉厚部の間に上記肉薄部を1以上有する成形体をいう。
Furthermore, in the present invention, the thick part and the thin part are:
When the diameter of the largest sphere inscribed in the shape of the molded object is the maximum wall thickness of the molded object, find the diameter of the maximum diameter inscribed for each part of the molded object, and check that the diameter is 40% or more of the maximum wall thickness. A certain part is called a thick part, and a part where the thickness is less than 40% is called a thin part. A molded article having a plurality of thick portions refers to a molded article having one or more of the thin portions between the thick portions.

(作用) 以下、本発明の構成をその作用とともにその具体的態様
について詳述する。
(Function) Hereinafter, the structure of the present invention, its function, and specific embodiments will be described in detail.

セラミックスの射出成形は、射出成形機のプランジャー
又はスクリュー等によりペレットまたは坏±(以下、成
形材料という。)を射出成形型中に押込んで成形するも
のである。射出成形型は、一般に成形体形状に対応する
キャビティと、射出用ノズルから成形材料をキャビティ
へ導くスプル、ランナー及びゲートからなる成形材料導
入部分とからなる。スプルー及びランナーの勾配は通常
2〜lO°程度であるのが好ましい。
Ceramic injection molding involves pushing pellets or molding materials (hereinafter referred to as molding material) into an injection mold using a plunger or screw of an injection molding machine. An injection mold generally consists of a cavity that corresponds to the shape of the molded object, and a molding material introduction section that includes a sprue, a runner, and a gate that guides the molding material from the injection nozzle into the cavity. It is preferable that the slope of the sprue and runner is usually about 2 to 10°.

本発明のセラミックス射出成形方法は、上記の射出成形
型として、ゲート面積かゲート側からみたキャビティの
最大横断面積の20%以上である成形型を用いる。ゲー
ト面積がゲート側からみたキャビティの最大横断面積の
20%以上であると、ゲートを通過した成形材料は成形
体形状に沿って流れ、キャビティ内の空気排出か均一に
なり、欠陥のない成形体が得られる。一方、20%未満
の射出成形型を用いるとゲートを通過した成形材料が成
形体形状に沿って流れず、キャビティ内の空気排出が不
均一となり、得られる成形体にボア、ウェルドライン等
の欠陥が発生し、成形体の歩留りが悪くなる。
The ceramic injection molding method of the present invention uses a mold whose gate area is 20% or more of the maximum cross-sectional area of the cavity as viewed from the gate side. When the gate area is 20% or more of the maximum cross-sectional area of the cavity as viewed from the gate side, the molding material passing through the gate will flow along the shape of the molded object, and the air in the cavity will be discharged uniformly, resulting in a molded object without defects. is obtained. On the other hand, if an injection mold with a ratio of less than 20% is used, the molding material that has passed through the gate will not flow along the shape of the molded object, resulting in uneven air discharge within the cavity, resulting in defects such as bores and weld lines in the resulting molded object. occurs, and the yield of molded products becomes poor.

一般にゲートとは、キャビティ(製品部)内に成形材料
か流入する入口をいう。しかし、第1図に示すようない
わゆるダイレクトゲートの場合には、例えばスプル一部
又はランナ一部とキャビティ(製品部)2かl産性し、
ケート部を規定できないことかある。このような場合、
製品部2のノズル部lに近い部位であるG部をケートと
みなし、このような場合のゲート横断面積はG部横断面
積とすることか好ましい。
Generally, a gate refers to an entrance through which molding material flows into a cavity (product part). However, in the case of a so-called direct gate as shown in Fig. 1, for example, part of the sprue or part of the runner and the cavity (product part) 2 are separated,
In some cases, it may not be possible to specify the Kate part. In such a case,
It is preferable that the G part, which is a part of the product part 2 close to the nozzle part l, be regarded as the gate, and the gate cross-sectional area in such a case should be the G part cross-sectional area.

さらに本発明の場合、射出成形型のケート形状Gかゲー
ト側からみたキャビティの投影形状Pと実質的に相似形
、すなわち相似形あるいは近似相似形になるように形成
すると、ケートを通過した成形材料を成形体形状に沿っ
て流れるようにコントロールでき、成形体に発生する欠
陥を更に効果的に防止できる。この効果は特にゲート横
断面積か増大すると大きくなる。尚、上記の場合、ケー
トはキャビティのケート取付面の中心に設けることか好
ましい。これは、第2a〜2d図において、ゲート横断
面形状Gとキャビティの投影図形Pとの非重複部分にお
ける最小幅をA、最大幅をBとしたとき、形状Gと投影
図形Pとか、第2a図および第2b図に示すように互い
に実質的に相似形である場合は、第2c図および第2d
図に示すような非相似形の場合に比べ、B/Aの値か小
さくなる(lに近付く)ため、A部、B部への成形材料
の充填速度かほぼ一定となり、キャビティ内の空気排出
か均一となって欠陥のない成形体か得られるからである
。一方、非相似形の如<B/Aか大きくなると、A部よ
りの充填速度が早くB部よりの充填速度か遅いためキャ
ビティ内の空気の排出か不規則となり、成形体に空気を
巻き込む不良となる。
Furthermore, in the case of the present invention, if the molding mold is formed so that the shape G of the injection mold is substantially similar to the projected shape P of the cavity viewed from the gate side, that is, the shape is similar or approximately similar, the molding material that passes through the gate can be controlled so that it flows along the shape of the molded object, and defects that occur in the molded object can be more effectively prevented. This effect becomes particularly significant as the gate cross-sectional area increases. In the above case, it is preferable that the cage is provided at the center of the cage mounting surface of the cavity. In FIGS. 2a to 2d, when A is the minimum width and B is the maximum width in the non-overlapping portion of the gate cross-sectional shape G and the projected shape P of the cavity, 2c and 2d, if they are substantially similar to each other as shown in FIGS.
Compared to the case of non-similar shapes as shown in the figure, the value of B/A is smaller (approaches l), so the filling rate of molding material into parts A and B remains almost constant, and the air is discharged from the cavity. This is because the molded product is uniform and has no defects. On the other hand, if <B/A is large, as in the case of non-similar shapes, the filling speed in the A part is faster and the filling speed in the B part is slower, so the air in the cavity is discharged irregularly, resulting in a defect that causes air to be drawn into the molded body. becomes.

また、例えば相似形(第2a図、第2b図)と非相似形
(第2c図、第2d図)の関係を示すと、第1表の通り
となる。尚、ゲート面積/キャビティ(成形体)最大横
断面積は50%である。
Furthermore, for example, the relationship between similar shapes (FIGS. 2a and 2b) and dissimilar shapes (FIGS. 2c and 2d) is as shown in Table 1. Note that the gate area/cavity (molded body) maximum cross-sectional area is 50%.

第1表 また、第3a、 3b図のように、ゲート面積/キャビ
ティ(成形体)最大横断面積が90%で同一であっても
、第3b図の場合にはゲートが成形体横断面よりはみだ
して非効率的となり、相似形が優れることがわかる。さ
らにまた、ゲートの横断面積が大きくなる程、相似形状
のゲートのB/A値は非相似形状のゲートのB/A値よ
りも小さくなる。
Table 1 Also, as shown in Figures 3a and 3b, even if the gate area/cavity (molded body) maximum cross-sectional area is 90% and the same, in the case of Figure 3b, the gate protrudes beyond the cross-sectional area of the molded body. It can be seen that similar shapes are superior. Furthermore, as the cross-sectional area of the gate increases, the B/A value of gates with similar shapes becomes smaller than the B/A value of gates with dissimilar shapes.

このことから、横断面積が大きく相似形状のゲートを用
いるとより一層、キャビティ内の空気排出が均一に行わ
れ効果的であることが判る。
From this, it can be seen that the use of gates with a large cross-sectional area and similar shapes is more effective in discharging air within the cavity evenly.

本書を通じて、ゲートの横断面形状について、実質的相
似形、すなわち、相似形状又は近似相似形状とは、例え
ば第4a図〜第7C図に示すような形状を意味する。な
お、第4a図〜第7C図においては、Pはゲート側から
見たキャビティ投影図形、GおよびG′はそれぞれ、そ
れと相似形および近似相似形のゲート形状を示す。例え
ば第4a〜40図の形状、P、 G、 G’のすべては
円形と考えるが、第5a〜5c図に示す四角形について
は、G′のような形状を近似相似形と見做す。多角形、
例えば第6a図に示すようなへ角形の場合には第6C図
の円形G、を近似相似形と見做すが、これはB/A値が
極めて小さくなるからである。ゲート側からみたキャビ
ティ投影図形Pが多角形(三角以上)の場合、いずれか
の角度(θ)が120°以上の場合にはG′のような円
形を近似相似形としてもよい。さらに、第7a図に示す
タービンロータのように複雑な形状Pては、第7b図の
ような相似形状Gでもよいか、金型作製に困難を来たし
たり、スプル一部又はランナ一部における成形材料の流
動性か悪くなったりするため、第7c図のように形状P
の翼部4の翼先端3を結んだ九角形G′のような多角形
状としてもよく、また九角形においては角度(θ)か1
40゜となるため円形としてもよい。
Throughout this document, regarding the cross-sectional shape of the gate, a substantially similar shape, that is, a similar shape or an approximately similar shape means a shape as shown in FIGS. 4a to 7C, for example. In FIGS. 4a to 7C, P indicates a cavity projected figure as seen from the gate side, and G and G' indicate gate shapes similar and approximately similar thereto, respectively. For example, the shapes P, G, and G' in FIGS. 4a to 40 are all considered to be circular, but as to the rectangles shown in FIGS. 5a to 5c, a shape such as G' is considered to be an approximately similar shape. Polygon,
For example, in the case of a hexagonal shape as shown in FIG. 6a, the circle G in FIG. 6C is regarded as an approximately similar shape, since the B/A value becomes extremely small. When the cavity projected figure P seen from the gate side is a polygon (triangle or more), if any angle (θ) is 120° or more, a circle like G' may be used as an approximate similar figure. Furthermore, for a complex shape P like the turbine rotor shown in Fig. 7a, it is acceptable to use a similar shape G as shown in Fig. 7b, or it may be difficult to make a mold, or it may cause molding in part of the sprue or part of the runner. Since the fluidity of the material may deteriorate, the shape P as shown in Figure 7c is
It may also be a polygonal shape such as a nonagonal G' connecting the blade tips 3 of the wing parts 4, and in a nonagonal shape, the angle (θ) or 1
Since the angle is 40°, it may be circular.

肉厚差のある複数部分よりなるセラミックス成形体の成
形型においては、成形体型への導入口即ちゲートは、成
形体の肉厚部に相当するキャビティの拡大部分(肉厚部
)に直接開口するよう配置することが好ましい。例えば
、第9a図に示したような成形体M1を射出成形する場
合、従来の射出成形であれば通常、第9b図に示したよ
うなスプルーS及びゲートGの配置方式が考えられるが
、本発明の成形型は、第9c図のようにキャビティの肉
厚部5に射出ゲートGを設けしかも成形体形状に沿って
スプル一部を漸次太くしたもので、成形材料は肉厚部か
ら成形体型内に射出され成形される。
In a mold for a ceramic molded body consisting of multiple parts with different wall thicknesses, the inlet to the molded body, that is, the gate, opens directly into the enlarged part (thick part) of the cavity corresponding to the thickened part of the molded body. It is preferable to arrange it like this. For example, when injection molding a molded body M1 as shown in FIG. 9a, in conventional injection molding, the sprue S and gate G arrangement method as shown in FIG. 9b is usually considered. The mold of the invention is provided with an injection gate G in the thick part 5 of the cavity as shown in Fig. 9c, and a part of the sprue is gradually made thicker along the shape of the molded body, and the molding material is applied from the thick part to the molded body. It is injected and molded inside.

このようにゲートをキャビティの肉厚部に直接開口する
よう配置することにより、得られる成形体では[ファイ
ンセラミックスの射出成形技術」(日刊工業新聞社発行
)の第122頁図6・24及び第123頁図6・27に
示されるような従来方法で見られたウェルトラインやン
エッテインクによるボアの巻き込み等の欠陥の発生か防
止される。これらの理由は、肉厚部から成形材料を成形
体形状に沿って太く射出することにより成形材料かシェ
ッテインクを起こさず、しかも材料か冷えにくく流動性
か長く維持てきるため材料の流動性不足により発生する
ウェルトラインか防止できるためである。
By arranging the gate so as to open directly into the thick part of the cavity, the molded body obtained is as shown in Figures 6 and 24 on page 122 of ``Fine Ceramics Injection Molding Technology'' (published by Nikkan Kogyo Shimbun). This prevents the occurrence of defects such as welt lines and bore entrainment due to wet ink, which were observed in the conventional method as shown in Figures 6 and 27 on page 123. These reasons are due to the lack of fluidity of the material, as the molding material is injected thickly from the thick part along the shape of the molded object, so that the molding material does not cause ink, and the material does not cool easily and maintains its fluidity for a long time. This is because it can prevent welt lines from occurring.

また、肉厚部を複数有する肉厚差のあるセラミックス成
形体の成形型、例えば第10a図及び第1(lb図に正
面図及び側面図を示した成形体M2のように肉厚部か5
′及び5″の2個所以上にある場合には、第10c図ま
たは第10d図に示すように、スプルーS及びゲートG
を、または第toe図に示すように、スプルーS、ラン
ナーR及びR′並びにゲートG及びG′を配置すること
が考えられるか、本発明の成形型は第10e図のように
各肉厚部5′及び5″に射出ケ−1−G及びG′を設け
、各射出ゲートG、G′から成形体型の肉厚部5′、5
″に成形材料を射出し成形する。この場合、複数の肉厚
部のうち少なくともいずれか1つの肉厚部への成形材料
射出量を最大とするのが好ましい。これは各肉厚部へ流
入する成形材料を肉薄部で接合させるより肉厚部で接合
させる方が、ボア、ウェルドライン等の欠陥を防止でき
るためである。例えば第10e図においては、ゲートG
へのランナーRの口径をゲートG′へのランナーR′の
口径より大きくしたり、スプルーSに接続するランナー
Rの距離をランナーR′より短くすること等により、肉
厚部5′への射出量を肉厚部5′への射出量より多くす
るように制御することかできる。勿論この場合同一形状
及び長さのランナーでも肉薄部での成形材料の接合がな
ければ制御する必要はない。
In addition, a mold for a ceramic molded body having a plurality of thick portions with different wall thicknesses, for example, a molded body M2 whose front view and side view are shown in FIG. 10a and FIG.
' and 5'', as shown in Figure 10c or Figure 10d, sprue S and gate G
Or, as shown in Fig. 10e, it is conceivable to arrange the sprue S, runners R and R', and gates G and G'. Injection cages 1-G and G' are provided at 5' and 5'', and thick parts 5' and 5 of the molded body are inserted from each injection gate G and G'.
In this case, it is preferable to maximize the amount of molding material injected into at least one of the plurality of thick parts. This is because defects such as bores and weld lines can be prevented by joining molding materials at thicker parts than at thinner parts.For example, in Fig. 10e, gate G
By making the diameter of the runner R to the gate G' larger than that of the runner R' to the gate G', or by making the distance of the runner R connected to the sprue S shorter than that of the runner R', injection into the thick part 5' can be performed. The amount can be controlled to be greater than the amount injected into the thick portion 5'. Of course, in this case, even if the runners have the same shape and length, there is no need to control if there is no bonding of the molding material at the thin portion.

さらに、本発明の成形型の導入部即ち射出スプルー・ゲ
ートまたは射出スプルー、ランナー及びゲートは、射出
ゲートからスプルーへ連続する部分またはランナ一部が
一定のテーパーを有するものであってもよい。特に射出
がスプルー及びゲートからなるスプルー・ゲートの場合
には上記テーパーを有するものが好ましい。テーパー角
度は用いる成形材料等により適宜選択すればよいが、般
には約1〜lO°である。テーパーを持たせる理由は射
出される成形材料が射出成形機ノズルからゲートを介し
てキャビティ即ち成形体型へ円滑に流れるよう広がりを
持たせるためと型からのスムーズな離型のためである。
Furthermore, the introduction part of the mold of the present invention, that is, the injection sprue gate or the injection sprue, the runner, and the gate, may have a constant taper in the continuous part from the injection gate to the sprue or in a part of the runner. Particularly in the case of a sprue/gate consisting of a sprue and a gate, it is preferable to have the above-mentioned taper. The taper angle may be appropriately selected depending on the molding material used, but is generally about 1 to 10°. The reason for providing the taper is to spread the injected molding material so that it flows smoothly from the nozzle of the injection molding machine through the gate into the cavity, that is, the molded body, and to enable smooth release from the mold.

更に本発明においては、射出成形の加圧終了時の成形体
温度分布が±0.5℃以内となるように金型の温度を制
御する。そのためには、例えば成形用金型温度をゲート
部Gから金型先端部へ勾配を有するように設定する方法
、もしくは金型内に成形材料を充填する速度(射出速度
)をコントロールする方法等がある。本発明における具
体的な例としては、第1I図に示す如く、金型ゲート部
から測温部位までの成形材料到達時間x(SeC)、金
型ケート部から測温部位まての金型の温度差y(℃)と
したとき、X≦y≦5xの範囲になるように金型の温度
勾配を設定する。y=xからy=5xの範囲となる理由
は、■成形材料中の有機バインダーの種類及び添加量、
又はセラミックス粉末の種類及び添加量によって成形材
料の比熱又は熱伝導率か異なるため、■成形体の形状及
び肉厚が異なるため、■成形条件等か異なるため、等で
ある。
Further, in the present invention, the temperature of the mold is controlled so that the temperature distribution of the molded product at the end of injection molding is within ±0.5°C. For this purpose, for example, there is a method of setting the temperature of the mold so that it has a gradient from the gate part G to the tip of the mold, or a method of controlling the speed at which the molding material is filled into the mold (injection speed). be. As a specific example of the present invention, as shown in FIG. When the temperature difference is y (° C.), the temperature gradient of the mold is set so that X≦y≦5x. The reason for the range of y=x to y=5x is: ■The type and amount of organic binder in the molding material;
Or, the specific heat or thermal conductivity of the molding material differs depending on the type and amount of ceramic powder added, (2) the shape and wall thickness of the molded body differs, (2) molding conditions, etc. differ, etc.

比熱か大きく熱伝導率が小さい成形材料では金型温度の
影響を受けにくいため、成形材料到達時間Xか長くても
金型温度差yを小さくでき、例えばy=xとなる。又、
比熱か小さく熱伝導率か大きい成形材料では金型温度の
影響を受けやすいため、成形材料到達時間Xか長くなる
と金型温度差yを大きくしなければならす、例えばy=
5xとなる。
Since a molding material with a large specific heat and a low thermal conductivity is not easily affected by the mold temperature, the mold temperature difference y can be made small even if the molding material arrival time X is long, for example, y=x. or,
Molding materials with low specific heat and high thermal conductivity are easily affected by the mold temperature, so if the molding material arrival time X increases, the mold temperature difference y must be increased, for example, y =
It becomes 5x.

より具体的には、例えばセラミックス材料の組成か、セ
ラミックス粉末48〜60vo 1%、有機バインダー
52〜40vo 1%で、かつ該有機バインダーの組成
として分子量1万〜5万が3〜15wt%、分子量20
0〜1000か85〜97wt%であり、又成形する条
件か成形材料温度60〜80℃、金型温度440〜52
℃である場合には、X≦y≦5xの範囲が好ましい。
More specifically, for example, the composition of the ceramic material is 48-60vo 1% ceramic powder, 52-40vo 1% organic binder, and the composition of the organic binder is 3-15wt% with a molecular weight of 10,000-50,000, and a molecular weight of 3-15wt%. 20
0 to 1000 or 85 to 97 wt%, and the molding conditions are molding material temperature 60 to 80 ° C, mold temperature 440 to 52
℃, the range of X≦y≦5x is preferable.

上記のように金型温度勾配を設定すると、射出成形され
た成形体の温度か部位に拘らず全体に設定温度の二〇、
5℃以内とほぼ均一となって、均質な成形体の作製、お
よびそれに引続く均質な焼結体の製造のために好ましい
。成形体の温度分布か設定温度の=0.5℃を超えると
、得られる成形体の密度分布か不均一となり、その結果
、該成形体を焼成しててきる焼結体にはクラックまたは
変形等が生じ、寸法精度、強度なとか不均一となり均一
な焼結体を得る二とか困難となる。
When the mold temperature gradient is set as described above, the temperature of the entire injection molded product is 20,000 yen, regardless of the part.
The temperature is approximately uniform within 5° C., which is preferable for the production of a homogeneous molded body and the subsequent production of a homogeneous sintered body. If the temperature distribution of the compact exceeds the set temperature of 0.5°C, the density distribution of the obtained compact will become uneven, and as a result, the sintered compact obtained by firing the compact will have cracks or deformation. etc., resulting in non-uniformity in dimensional accuracy and strength, making it difficult to obtain a uniform sintered body.

また、成形体の温度分布か設定温度の±0.5℃以内で
あることか必要な時点は、加圧終了時である。一般に、
射出成形は成形材料を充填した後所定時間高圧加圧し、
次いで成形体形状付与又は成形体内部に発生するヒケ等
の欠陥を防止するため所定時間低圧にて保持される。加
圧終了時とは上記所定時間実施される高圧加圧処理の終
了時をいつ。
Further, the point at which it is necessary to check that the temperature distribution of the molded body is within ±0.5° C. of the set temperature is at the end of pressurization. in general,
In injection molding, after filling the molding material, high pressure is applied for a predetermined period of time.
Next, the molded product is held at low pressure for a predetermined time in order to impart a shape to the molded product or to prevent defects such as sink marks occurring inside the molded product. The term “completion of pressurization” refers to when the high-pressure pressurization process, which is carried out for the above-mentioned predetermined period of time, ends.

原料の調合粉末に結合剤、ワックス、滑剤等多量の有機
バインダーを添加して混練する有機バインダーを用いる
射出成形法にあっては、射出成形用材料温度が金型温度
よりも高いため、成形用材料がゲート部から先端部に行
くに従って冷やされ、成形体の温度もゲート部から先端
部に行くに従って低くなる。これを補い成形体の温度を
一定にするため、上記のような金型の好ましい温度条件
は、金型の温度をゲート部から先端部に行くに従って上
昇させる。金型の加温方法は、例えば−船釣なヒーター
(棒、バンド等)を用いてもよいし、液体(水、油)を
用いてもよい。
In the injection molding method using an organic binder, in which a large amount of organic binder such as binder, wax, lubricant, etc. is added to the raw material blended powder and kneaded, the temperature of the injection molding material is higher than the mold temperature. The material is cooled as it goes from the gate to the tip, and the temperature of the molded body also decreases as it goes from the gate to the tip. In order to compensate for this and keep the temperature of the molded body constant, the preferable temperature conditions for the mold as described above are such that the temperature of the mold increases from the gate part to the tip part. The method for heating the mold may be, for example, using a boat-type heater (rod, band, etc.) or using a liquid (water, oil).

また、原料の調合粉末に少量の有機バインダーと主に水
を添加してなる坏土を用いる射出成形法にあっては、坏
土(成形用材料)の温度が金型温度よりも低いため、成
形用材料がゲート部から先端部に行くに従って高(なる
。この温度差を補い成形体の温度を一定にするため、金
型の温度をゲート部から先端部に行くに従って下降させ
る。
In addition, in injection molding methods that use clay made by adding a small amount of organic binder and mainly water to the raw material blended powder, the temperature of the clay (molding material) is lower than the mold temperature. The temperature of the molding material increases as it goes from the gate to the tip. In order to compensate for this temperature difference and keep the temperature of the molded object constant, the temperature of the mold is lowered from the gate to the tip.

本発明で使用するセラミックス粉末としては、従来より
知られた酸化物であるアルミナ、ジルコニア等のほか、
いわゆるニューセラミックスとして知られる窒化珪素等
の窒化物、炭化珪素等の炭化物、およびこれらの複合材
料等が挙げられる。
The ceramic powder used in the present invention includes conventionally known oxides such as alumina and zirconia, as well as
Examples include nitrides such as silicon nitride, carbides such as silicon carbide, known as so-called new ceramics, and composite materials thereof.

成形材料としては、有機バインダーを可塑剤に用いる射
出成形材料(ペレット)、および主に水を可塑化媒体、
有機バインダーを可塑剤に用いる射出成形材料(坏土)
のいずれも用いることができる。
The molding materials include injection molding materials (pellets) that use an organic binder as a plasticizer, and water as a plasticizing medium.
Injection molding material that uses an organic binder as a plasticizer (kando)
Any of these can be used.

(実施例) 以下、本発明を実施例に基づきさらに詳細に説明するが
、本発明はこれらの実施例に限られるものではない。
(Examples) Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1 第12図に示したフローチャートに従い、有機バインダ
ーを用いた射出成形を説明する。
Example 1 Injection molding using an organic binder will be explained according to the flowchart shown in FIG.

セラミックス原料(313N4)粉末100重量部に焼
結助剤としてSrO:2重量部、MgO: 3重量部お
よびCen2: 3重量部を調合した後、この混合物を
アトライタにて水を添加して平均粒径0.5μmまで湿
式混合粉砕した。次いてこれをスプレードライし、平均
粒径30μmの顆粒を得た後、これを2.5ton/c
tの圧力にて静水圧等方加圧して造粒した。
After preparing 100 parts by weight of ceramic raw material (313N4) powder with 2 parts by weight of SrO, 3 parts by weight of MgO and 3 parts by weight of Cen2 as sintering aids, water was added to this mixture in an attritor to reduce the average particle size. Wet mixing and pulverization were carried out to a diameter of 0.5 μm. Next, this was spray-dried to obtain granules with an average particle size of 30 μm, and then 2.5 ton/c
The mixture was granulated by isostatic isostatic pressurization at a pressure of t.

次に造粒物を平均粒径30μmに解砕した後、得られた
粉末100重量部に対し、結合剤(エチレン酢酸ビニル
共重合体)3重量部、可塑剤(パラフィンワックス) 
15重量部、滑剤(ステアリン酸)2重量部を加えて混
練し、押出機により押出してペレット化し、次いでこれ
を材料温度68℃、成形型温度50℃、射出圧力400
 kglcrl、射出スピード200 cc/secの
条件下、第2表に示す形状の射出成形型を用いて射出成
形し第13図〜第15図に示すM、、M、、MSの成形
体を得た。なお、第15図の成形体M5たるタービンロ
ータは翼部を除いたハブ部6の最大径部分(φ70mm
)の横断面積を最大横断面積とした。
Next, after crushing the granules to an average particle size of 30 μm, 3 parts by weight of a binder (ethylene vinyl acetate copolymer) and a plasticizer (paraffin wax) are added to 100 parts by weight of the obtained powder.
15 parts by weight and 2 parts by weight of a lubricant (stearic acid) were added and kneaded, extruded using an extruder to form pellets, and then pelletized at a material temperature of 68°C, a mold temperature of 50°C, and an injection pressure of 400°C.
kglcrl and an injection speed of 200 cc/sec using an injection mold having the shape shown in Table 2 to obtain molded bodies of M, M, MS shown in FIGS. 13 to 15. . Note that the turbine rotor, which is the molded body M5 in FIG.
) was taken as the maximum cross-sectional area.

結果を第2表および第16図〜第18図に示す。The results are shown in Table 2 and Figures 16 to 18.

第2表 (注)成形結果は10個の成形体のうちの良品割合を示
す。
Table 2 (Note) The molding results show the proportion of non-defective products among 10 molded bodies.

実施例2 第19図に示したフローチャートに従い、坏土を用いた
射出成形を説明する。
Example 2 Injection molding using clay will be explained according to the flowchart shown in FIG.

原料調合、混合粉砕およびスプレードライ工程までは実
施例1と同様に行った。スプレードライ工程より得られ
た平均粒径30μmの顆粒を得、次いでこの顆粒100
重量部に対して界面活性剤セドランFF−200、三洋
化成工業社製、商品名)1重量部、可塑剤(メチルセル
ロース)7重量部、水30重量部を加えて混練した。次
に、この混練物に真空度70mmHgで真空土練を行い
、直径52岨、長さ500順の坏土を得た後これに2,
5ton/cfの圧力で静水圧等方加圧を行った。次い
でこれを材料温度12℃、成形型温度60℃、射出圧力
300 kglcrd、射出スピード200 cc/s
ecの条件下、第3表に示す形状の射出成形型を用いて
射出成形し第13図〜第15図に示すM6.M?、M、
の成形体を得た。結果を第3表および第20図〜第22
図に示す。
The steps of raw material preparation, mixing and pulverization, and spray drying were carried out in the same manner as in Example 1. Granules with an average particle diameter of 30 μm were obtained through a spray drying process, and then 100 μm of these granules were obtained.
To the parts by weight, 1 part by weight of surfactant Cedran FF-200 (manufactured by Sanyo Chemical Industries, Ltd., trade name), 7 parts by weight of a plasticizer (methyl cellulose), and 30 parts by weight of water were added and kneaded. Next, this kneaded material was subjected to vacuum kneading at a vacuum degree of 70 mmHg to obtain a kneaded clay with a diameter of 52 mm and a length of 500 mm.
Hydrostatic isostatic pressurization was performed at a pressure of 5 ton/cf. Next, this was carried out at a material temperature of 12°C, a mold temperature of 60°C, an injection pressure of 300 kglcrd, and an injection speed of 200 cc/s.
M6.EC as shown in FIGS. 13 to 15 was formed by injection molding using an injection mold having the shape shown in Table 3 under the conditions of EC. M? ,M,
A molded body was obtained. The results are shown in Table 3 and Figures 20 to 22.
As shown in the figure.

第3表 (注)成形結果は10個の成形体のうちの良品割合を示
す。
Table 3 (Note) The molding results show the proportion of non-defective products among 10 molded bodies.

以−トの結果から明らかなように、射出成形型としてゲ
ート面積かケート側からみたキャピティの最大横断面積
の209oJd上のものを用いると、ボア、ウェルトラ
イン等の欠陥のない成形体か成形でき、成形歩留りか太
幅に向上する。又、ケート面積率か大きくなるに従って
相似形又は近似相似形の成形歩留りか向上する。
As is clear from the above results, if an injection mold is used that has a gate area or a maximum cross-sectional area of the cavity viewed from the gate side of 209oJd, it is possible to mold a molded product without defects such as bores and welt lines. , the molding yield is significantly improved. Furthermore, as the cake area ratio increases, the molding yield of similar shapes or approximately similar shapes improves.

実施例3 第23図に示した工程図に従い有機系成形材料の射出成
形について説明する。
Example 3 Injection molding of an organic molding material will be explained according to the process diagram shown in FIG.

原料調合は、セラミンクス原料Si3N、粉末100重
量部と焼結助剤としてSrO粉末2重量部、MgO粉末
3重量部及びCe073重量部を混合し、平均粒径0.
5μmまで粉砕した。次にスプレードライにより噴霧乾
燥させ、平均粒径30μmの顆粒状物を得た。この顆粒
状物を静水圧等方加圧方式にて3i y′crlの圧力
にて加圧した。
The raw material was prepared by mixing 100 parts by weight of Si3N, a ceramic raw material, and 2 parts by weight of SrO powder, 3 parts by weight of MgO powder, and 3 parts by weight of Ce07 as sintering aids, and adjusting the average particle size to 0.
It was ground to 5 μm. Next, it was spray-dried to obtain granules with an average particle size of 30 μm. The granules were pressurized at a pressure of 3i y'crl using a hydrostatic isostatic pressurization method.

加圧後、■解砕し再度平均粒径30μmとする方式(方
式■という。)、■大気中450℃で5時間仮焼した後
、解砕して平均粒径30μmとする方式(方式■という
。)との2方式の調製を行った。
After pressurizing, ■ a method of crushing and re-reducing the average particle size to 30 μm (method ■), ■ a method of calcining in the atmosphere at 450°C for 5 hours, and then crushing it to an average particle size of 30 μm (method ■) ) were prepared in two ways.

解砕後、得られた粉末100重量部、結合剤3重量部、
可塑剤15重量部、滑剤2重量部を混合し、ニーダ−に
より混練し有機系成形材料を得た。得られた成形材料を
押出し機によりペレ7+〜状とした。
After crushing, 100 parts by weight of the obtained powder, 3 parts by weight of binder,
15 parts by weight of a plasticizer and 2 parts by weight of a lubricant were mixed and kneaded using a kneader to obtain an organic molding material. The obtained molding material was made into pellets of 7+ and up using an extruder.

得られたペレットを射出成形機にて、第9a図及び第1
0a、  1Ob図にそれぞれ示した成形体の金型M 
I rM2中に射出充填した。成形体M、の充填法は、
第9b図及び第9c図に示す金型を用いて実施し、それ
ぞれ充填法1及び充填法2とした。。充填法lのスプル
一部の角度は2°で、充填法2ては5°てあった。また
成形体Mhoの充填法は、第1.Oc図、第1Ob図及
び第10e図に示す金型を用いて実施し、それぞれ充填
法3、充填法4及び充填法5とした、充填法3のスプル
一部のテーパー角度はlOo、充填法4のスプル一部の
テーパー角度は5°てあった。充填法5においてランカ
ーR及びR′の長さ、直径を同一とし、テーパー角度は
共に5度とした。
The obtained pellets are molded using an injection molding machine,
Mold M for the molded product shown in Figures 0a and 1Ob, respectively.
Injection filled into I rM2. The filling method for the molded body M is as follows:
This was carried out using the molds shown in FIGS. 9b and 9c, and the methods were designated as filling method 1 and filling method 2, respectively. . The angle of the sprue part for filling method 1 was 2° and for filling method 2 it was 5°. The filling method for the molded body Mho is as follows. The taper angle of a part of the sprue of filling method 3 was carried out using the molds shown in Fig. Oc, Fig. 1 Ob, and Fig. 10e, and filling method 3, filling method 4, and filling method 5 were used, respectively. The taper angle of part of the 4th sprue was 5°. In filling method 5, the lengths and diameters of lunkers R and R' were the same, and the taper angles were both 5 degrees.

ランナーRの直径をランナーR′の直径よりも小径とし
、ランナーRのテーパー角度か5°、ランナーR′のテ
ーパー角度が10’で成形材料の流量をコントロールす
る以外は充填法5と同一として実施したものを充填法6
とした。それぞれの充填過程模式図を第24図に、また
成形結果を第4表に示した。
The diameter of runner R is smaller than that of runner R', the taper angle of runner R is 5°, and the taper angle of runner R' is 10' to control the flow rate of the molding material. Filling method 6
And so. A schematic diagram of each filling process is shown in FIG. 24, and the molding results are shown in Table 4.

第24図の充填過程模式図かられかるように、成形体M
、において成形体の肉薄部から成形材料を充填した充填
法1は肉厚部で成形材料のジェツテイングを起こし好ま
しくない。これに対して成形体M、の肉厚部から成形体
形状に沿って成形材料を充填した充填法2はジェツテイ
ングも起こらず、均一に材料が充填され好ましく、更に
第4表に示すしたよう成形歩留りも向上した。
As can be seen from the schematic diagram of the filling process in FIG.
In , filling method 1 in which the molding material is filled from the thin part of the molded body is undesirable because jetting of the molding material occurs in the thick part. On the other hand, filling method 2 in which the molding material is filled from the thick part of the molded body M along the shape of the molded body is preferable because jetting does not occur and the material is filled uniformly, and furthermore, the molding method shown in Table 4 is Yield has also improved.

また肉厚部5’、5’を複数有する成形体Mi。Moreover, the molded body Mi has a plurality of thick parts 5', 5'.

においては、成形体の肉厚部の一方から充填する充填法
3及び5は他方の肉厚部への充填が、肉薄部から充填さ
れる結果となり、上記lの充填法と同一の問題が起こり
好ましくないことがわかる。
In the case of filling methods 3 and 5 in which the molded body is filled from one of the thicker parts, the other thicker part is filled from the thinner part, resulting in the same problem as the above filling method 1. I know it's not good.

これに対して両方の肉厚部5’、5’から充填する充填
法5及び6は、均一に成形材料が充填され好ましく、ま
た第4表に示したように成形歩留りが向上した。さらに
充填法5に比ベロは、成形材料の接合が肉厚部で行われ
るように調整したため欠陥の発生がより少なく好ましい
結果となった。
On the other hand, filling methods 5 and 6, in which the molding material is filled from both the thick parts 5' and 5', are preferable because the molding material is filled uniformly, and as shown in Table 4, the molding yield is improved. Furthermore, compared to Filling Method 5, since the molding material was adjusted so that the joining was performed in the thick part, defects were less likely to occur, resulting in favorable results.

実施例4 第25図に示した工程図に従い水系成形材料の射出成形
について説明する。
Example 4 Injection molding of a water-based molding material will be explained according to the process diagram shown in FIG. 25.

原料調合、混合粉砕及びスプレードラ/までは実施例3
と同様に行った。スプレートライにより得られた平均粒
径30μmの顆粒状物100重量部、水30重量部、結
合剤7重量部及び界面活性剤1重量部を混合し、ニーダ
−にて混練し、水系成形材料を得た。得られた水系成形
材料を真空押出機により直径52mm、長さ340Mの
円柱状にし、円柱状成形材料をラバープレスにて、2.
5t/ciの圧力で静水圧等方加圧した。得られた水系
成形材料を、射出成形機により実施例3と同様にして成
形体M1、及びMI2を射出成形した。
Example 3: raw material preparation, mixing and pulverization, and spray drum/up to
I did the same thing. 100 parts by weight of granules with an average particle diameter of 30 μm obtained by spray try, 30 parts by weight of water, 7 parts by weight of binder and 1 part by weight of surfactant were mixed and kneaded in a kneader to form a water-based molding material. Obtained. The obtained aqueous molding material was formed into a cylinder with a diameter of 52 mm and a length of 340M using a vacuum extruder, and the cylindrical molding material was pressed using a rubber press.2.
Isostatic pressure was applied at a pressure of 5 t/ci. The obtained aqueous molding material was injection molded into molded bodies M1 and MI2 using an injection molding machine in the same manner as in Example 3.

それぞれの充填過程模式図を第26図に、また成形結果
を第5表に示した。これらより実施例3の有機系成形材
料とほぼ同様の結果か得られることがわかる。
A schematic diagram of each filling process is shown in FIG. 26, and the molding results are shown in Table 5. From these results, it can be seen that almost the same results as the organic molding material of Example 3 can be obtained.

第5表 実施例5 有機バインダーを用いる射出成形方法を実施した。以下
、第27図の有機バインダーを用いる射出成形方法を示
すフローシートに従って説明する。
Table 5 Example 5 An injection molding process using an organic binder was carried out. Hereinafter, a description will be given according to a flow sheet showing an injection molding method using an organic binder shown in FIG. 27.

セラミックス原料の窒化珪素粉末100重量部に対して
、焼結助剤としてSrO: 2重量部、Mg03重量部
、CeO□:3重量部を添加し、これらを粉砕混合して
平均粒径0.5μ盲の調合粉末とし、次いでスプレード
ライによって平均粒径30μmの顆粒を得た後、2.5
ton、/ crtlの圧力で静水圧等方加圧を行って
造粒し、これを解砕して平均粒径30μmの粒子を得た
。次に、この調合粉末100重量部に対して、結合剤:
3重量部、ワックス:15重1部、滑剤:2重量部を加
えて混練し、これをペレット状とし、次いでこれを材料
温度68℃、射出圧力400kg / crl、射出速
度100〜300 cc/sec、加圧時間15sec
で、第6表に示す金型温度によってX、 Y。
To 100 parts by weight of silicon nitride powder as a ceramic raw material, 2 parts by weight of SrO, 3 parts by weight of Mg0, and 3 parts by weight of CeO□ were added as sintering aids, and these were ground and mixed to give an average particle size of 0.5μ. After forming a blind blended powder and then spray drying to obtain granules with an average particle size of 30 μm, 2.5
The pellets were granulated by isostatic isostatic pressurization at a pressure of ton,/crtl, and the pellets were crushed to obtain particles with an average particle size of 30 μm. Next, with respect to 100 parts by weight of this mixed powder, binder:
3 parts by weight, 1 part by weight of wax, 1 part by weight of wax, and 2 parts by weight of lubricant are added and kneaded to form pellets, which are then made into pellets at a material temperature of 68°C, an injection pressure of 400 kg/crl, and an injection speed of 100 to 300 cc/sec. , pressurization time 15 seconds
Then, X, Y depending on the mold temperature shown in Table 6.

Z各部の温度を制御しつつ第28図に示す成形用金型内
に射出成形を行った。この金型のゲートの形状はキャビ
ティ形状とほぼ相似形状であり、そのゲート面積かゲー
ト側から見たキャビティ最大横断面積の20%以上であ
った。その結果長さ150 mm、幅65rnm、厚さ
15mmの成形体を得た。その際の成形体の温度を第6
表に示す。
Injection molding was performed in a molding die shown in FIG. 28 while controlling the temperature of each part of Z. The shape of the gate of this mold was almost similar to the shape of the cavity, and the gate area was 20% or more of the maximum cross-sectional area of the cavity as seen from the gate side. As a result, a molded body having a length of 150 mm, a width of 65 nm, and a thickness of 15 mm was obtained. The temperature of the molded body at that time was set to 6.
Shown in the table.

ここで、第28図の金型には、金型温度制御用熱電対t
o、 10’ 、 10’ 、成形体温度測定用熱電対
11゜11’ 、 11’および金型加温用ヒーター1
2.12’ 。
Here, the mold shown in FIG. 28 includes a thermocouple t for mold temperature control.
o, 10', 10', thermocouple 11°11', 11' for measuring the temperature of the molded body, and heater 1 for heating the mold.
2.12'.

12’が設けられ、金型温度の制御と成形体温度の測定
か行われる。なお、Gは金型ケート(入口部)、13、
 13’ 、  13″は金型内圧力検出センサーを示
す。
12' is provided to control the mold temperature and measure the temperature of the molded body. In addition, G is the mold cage (inlet part), 13,
13' and 13'' indicate pressure detection sensors in the mold.

これらセンサーの温度及び圧力のサンプリンク間隔はl
Oμsecで行った。
The temperature and pressure sampling interval of these sensors is l
It was performed in 0μsec.

次に、成形体を1〜3℃/hの昇温速度で40006ま
で昇温し、その温度で5時間保持して脱脂処理を行い、
次いで7 ton/carの圧力で静水圧等方加圧を行
った後常圧の窒素雰囲気下1700℃にて1時間焼成を
行い角型の焼結体を得た。得られた焼結体の寸法精度お
よび強度を第6表に示す。
Next, the molded body was heated to 40006 at a heating rate of 1 to 3°C/h, and held at that temperature for 5 hours to perform a degreasing treatment.
Then, after applying isostatic pressure at a pressure of 7 tons/car, sintering was performed at 1700° C. for 1 hour in a nitrogen atmosphere at normal pressure to obtain a square sintered body. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.

比較例1,2 成形用金型の制御温度を第6表に示す条件とした以外は
すべて実施例5と同し条件によって成形体を作製し、角
型の焼結体を得た。得られた焼結体の寸法精度および強
度を第6表に示す。
Comparative Examples 1 and 2 A molded body was produced under the same conditions as in Example 5, except that the control temperature of the molding die was set to the conditions shown in Table 6, and a rectangular sintered body was obtained. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.

実施例6 実施例5と同し原料を使用し、第29図に示す金型を用
いて成形を行った。この金型のゲート形状はキャビティ
形状とほぼ相似形状であり、そのゲート面積かケート側
から見たキャビティの最大横断面積の20%以上であっ
た。
Example 6 Using the same raw materials as in Example 5, molding was performed using the mold shown in FIG. 29. The shape of the gate of this mold was almost similar to the shape of the cavity, and the gate area was 20% or more of the maximum cross-sectional area of the cavity as seen from the gate side.

金型の制御温度を第6表に示すように変えた以外は実施
例5と同し方法で射出成形を行い、直径30mmφ、長
さ200 mmの成形体を得、更に実施例5と同じ方法
で脱脂および焼成を行い丸棒型の焼結体を得た。得られ
た焼結体の寸法精度および強度を第6表に示す。
Injection molding was carried out in the same manner as in Example 5, except that the control temperature of the mold was changed as shown in Table 6, to obtain a molded product with a diameter of 30 mmφ and a length of 200 mm, and further in the same manner as in Example 5. Degreasing and firing were performed to obtain a round bar-shaped sintered body. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.

比較例3 成形用金型の制御温度を第6表に示す条件とした以外は
すへて実施例6と同し条件によって作製し、丸棒型の焼
結体を得た。得られた焼結体の寸法精度および強度を第
6表に示す。
Comparative Example 3 A round bar-shaped sintered body was obtained by manufacturing under the same conditions as in Example 6 except that the control temperature of the molding die was set to the conditions shown in Table 6. Table 6 shows the dimensional accuracy and strength of the obtained sintered body.

実施例7 実施例5と同し原料を使用し、第30a図、第30b図
に示す少なくとも1つ以上の肉厚部を有し、かつそのケ
ート形状かキャビティ形状とほぼ相似形状であり、その
ゲート面積かゲート側から見たキャビティの最大横断面
積の20%以上である金型を用いてその制御温度を第6
表に示すように変えた以外は実施例5と同じ方法で射出
成形を行い、チツブ径150■φ、翼高100 mmの
タービンロータ成形体を得、更に実施例5と同じ方法で
脱脂および焼成を行いタービンロータ焼結体を得た。得
られた焼結体の寸法精度を第6表に示す。
Example 7 The same raw materials as in Example 5 were used, and the product had at least one thick walled portion as shown in FIGS. Using a mold whose gate area is 20% or more of the maximum cross-sectional area of the cavity as seen from the gate side, the control temperature is
Except for the changes shown in the table, injection molding was carried out in the same manner as in Example 5 to obtain a turbine rotor molded body with a tip diameter of 150 mm and a blade height of 100 mm, which was then degreased and fired in the same manner as in Example 5. A turbine rotor sintered body was obtained. Table 6 shows the dimensional accuracy of the obtained sintered body.

ル較撚ユ 成形用金型の制御温度を第6表に示す条件とした以外は
すべて実施例7と同じ条件によって作製し、タービンロ
ータの焼結体を得た。得られた焼結体の寸法精度を第6
表に示す。
A sintered body of a turbine rotor was obtained by manufacturing under the same conditions as in Example 7, except that the control temperature of the mold for forming the twister was set to the conditions shown in Table 6. The dimensional accuracy of the obtained sintered body was
Shown in the table.

上記の実施例5〜7および比較例1〜4から明らかなよ
うに、金型の制御温度を入口部より先端部に行くに従っ
て上げ、しかもその温度上昇が、第11図に示す如き温
度勾配の範囲内になった場合には加圧終了時の成形体温
度は何れの部位においても設定温度の±0.5℃以内と
なり、寸法精度がよく、強度の高い焼結体が得られるこ
とが分かる。
As is clear from the above Examples 5 to 7 and Comparative Examples 1 to 4, the control temperature of the mold was increased from the inlet to the tip, and the temperature increase had a temperature gradient as shown in Fig. 11. When the temperature falls within this range, the temperature of the compact at the end of the pressurization will be within ±0.5°C of the set temperature at any location, indicating that a sintered compact with good dimensional accuracy and high strength can be obtained. .

犬施土盈 坏土を用いる射出成形方法を実施した。以下、第31図
の水系射出成形方法のフローシートに従って説明する。
An injection molding method was carried out using Inusedo Eingdo. A description will be given below according to the flow sheet of the water-based injection molding method shown in FIG.

セラミックス原料の窒化珪素粉末100重量部に対して
、焼結助剤としてSrO:2重量部、CeO,:3重量
部を添加し、これらを粉砕混合して平均粒径0,6μm
の調合粉末とし、次いでスプレードライによって平均粒
径30μm程度の顆粒を得た。この顆粒100重量部に
対して、有機バインダー(メfルセルロース:7重量部
、セドランFF−200: 1重量部)8重量部、更に
水を約30重量部加えて混練し、次に真空度70mmH
gで真空土練を行い、直径52mm、長さ500岨の坏
土を得た。これを2.5ton/dの圧力で静水圧等方
加圧を行い、次いで温度12℃の冷暗所で一晩わかし、
次に坏土温度12℃、射出圧力150〜300 kg/
cnr、射出速度1oo〜3oocc/sec、ゲル硬
化時間1〜3分で、第7表に示す金型温度によってx、
y、z各部の温度を制御しつつ゛実施例5と同形状の第
28図に示す成形用金型内に射出成形を行い、長さ15
0+nm、幅65mm、厚さ15fflfflの成形体
を得た。その際の成形体の温度を第7表に示す。
To 100 parts by weight of silicon nitride powder as a ceramic raw material, 2 parts by weight of SrO and 3 parts by weight of CeO were added as sintering aids, and these were pulverized and mixed to obtain an average particle size of 0.6 μm.
The mixture was prepared into a powder, and then spray-dried to obtain granules with an average particle size of about 30 μm. To 100 parts by weight of the granules, 8 parts by weight of an organic binder (Mef cellulose: 7 parts by weight, Cedran FF-200: 1 part by weight) and approximately 30 parts by weight of water were added and kneaded, and then kneaded under vacuum. 70mmH
Vacuum clay kneading was carried out at 100 g to obtain a clay having a diameter of 52 mm and a length of 500 mm. This was subjected to isostatic pressurization at a pressure of 2.5 ton/d, and then boiled overnight in a cool, dark place at a temperature of 12°C.
Next, the clay temperature is 12℃ and the injection pressure is 150-300 kg/
cnr, injection speed 1oo to 3oocc/sec, gel curing time 1 to 3 minutes, and x depending on the mold temperature shown in Table 7.
While controlling the temperature of each part of y and z, injection molding was carried out in the mold shown in FIG.
A molded body having a diameter of 0+ nm, a width of 65 mm, and a thickness of 15 fflffl was obtained. Table 7 shows the temperature of the molded body at that time.

次いで、成形体を恒温恒湿器で温度を60℃から100
℃まで昇温し、湿度を98%から20%まで下げて乾燥
し、次に50℃/hの昇温速度で500℃まで昇温し、
その温度で5時間保持してバインダー除去を行い、次い
で7 ton/cnrの圧力で静水圧等方加圧を行った
後、常圧の窒素雰囲気下で、700℃/hで1650℃
まで昇温し、その温度で1時間焼成を行い角型の焼結体
を得た。得られた焼結体の寸法精度および強度を第7表
に示す。
Next, the molded body was heated in a constant temperature and humidity chamber at a temperature of 60°C to 100°C.
℃, lowered the humidity from 98% to 20% and dried, then raised the temperature to 500℃ at a heating rate of 50℃/h,
The binder was removed by holding at that temperature for 5 hours, followed by isostatic pressurization at a pressure of 7 ton/cnr, and then heated to 1650°C at 700°C/h under a nitrogen atmosphere at normal pressure.
The temperature was raised to 100.degree. C., and firing was performed at that temperature for 1 hour to obtain a square sintered body. Table 7 shows the dimensional accuracy and strength of the obtained sintered body.

比較例5,6 成形用金型の制御温度を第7表に示す条件とした以外は
すべて実施例8と同じ条件によって作製し、角型の焼結
体を得た。得られた焼結体の寸法精度および強度を第7
表に示す。
Comparative Examples 5 and 6 A rectangular sintered body was obtained by manufacturing under the same conditions as in Example 8 except that the control temperature of the molding die was set to the conditions shown in Table 7. The dimensional accuracy and strength of the obtained sintered body were
Shown in the table.

実施例9 実施例8と同じ原料を使用し、第29図に示す金型を用
いその制御温度を第7表に示すように変えた以外は実施
例8と同じ方法で射出成形を行い、直径30mmφ、長
さ200 mmの成形体を得、更に実施例8と同じ方法
でバインダー除去および焼成を行い丸棒型の焼結体を得
た。得られた焼結体の寸法精度および強度を第7表に示
す。
Example 9 Using the same raw materials as in Example 8, injection molding was carried out in the same manner as in Example 8, except that the mold shown in Figure 29 was used and the controlled temperature was changed as shown in Table 7. A molded body with a diameter of 30 mm and a length of 200 mm was obtained, and the binder was removed and fired in the same manner as in Example 8 to obtain a round bar-shaped sintered body. Table 7 shows the dimensional accuracy and strength of the obtained sintered body.

比較例7 成形用金型の制御温度を第7表に示す条件とした以外は
すべて実施例9と同じ条件によって作製し、丸棒型の焼
結体を得た。得られた焼結体の寸法精度および強度を第
7表に示す。
Comparative Example 7 A round bar-shaped sintered body was obtained by manufacturing under the same conditions as in Example 9 except that the control temperature of the molding die was set to the conditions shown in Table 7. Table 7 shows the dimensional accuracy and strength of the obtained sintered body.

害産皿旦 実施例8と同じ原料を使用し、第30a図および第30
b図に示す金型を用いてその制御温度を第7表に示すよ
うに変えた以外は実施例8と同じ方法で射出成形を行い
、チップ径150 wlφ、翼高100關のタービンロ
ータ成形体を得、更に実施例8と同し方法でバインダー
除去および焼成を行いタービンロータの焼結体を得た。
Using the same raw materials as in Example 8, Figure 30a and Figure 30
Injection molding was carried out in the same manner as in Example 8, except that the mold shown in Figure b was used and the controlled temperature was changed as shown in Table 7, to produce a molded turbine rotor with a tip diameter of 150 wlφ and a blade height of about 100. Further, the binder was removed and sintered in the same manner as in Example 8 to obtain a sintered body of a turbine rotor.

得られた焼結体の寸法精度を第7表に示す。Table 7 shows the dimensional accuracy of the obtained sintered body.

比較例8 成形用金型の制御温度を第7表に示す条件とした以外は
すべて実施例10と同し条件によって作製し、タービン
ロータの焼結体を得た。得られた焼結体の寸法精度を第
7表に示す。
Comparative Example 8 A sintered body of a turbine rotor was obtained by manufacturing under the same conditions as in Example 10 except that the control temperature of the molding die was set to the conditions shown in Table 7. Table 7 shows the dimensional accuracy of the obtained sintered body.

上記の実施例8. 9.  toおよび比較例5,6゜
7.8より、金型の制御温度を入口部より先端部に行く
に従って下げ、しかもその温度降下か、第11図に示す
温度勾配の範囲内である場合には加圧終了時の成形体温
度か設定温度の±0.5℃以内となり、寸法精度かよく
、強度の高い焼結体か得られることか分かる。
Example 8 above. 9. to and Comparative Examples 5 and 6°7.8, if the control temperature of the mold is lowered from the inlet to the tip, and the temperature drop is within the range of the temperature gradient shown in Figure 11. The temperature of the compact at the end of the pressurization was within ±0.5°C of the set temperature, indicating that a sintered compact with good dimensional accuracy and high strength was obtained.

(発明の効果) 以上説明した通り、本発明によれば次の効果が奏せられ
る。
(Effects of the Invention) As explained above, according to the present invention, the following effects can be achieved.

本発明の射出成形方法によれば、ゲート面積がゲート側
からみたキャビティの最大横断面積の20%以上の射出
成形型を用いて射出成形するので、欠陥のない均質な成
形体を得ることができる。
According to the injection molding method of the present invention, since injection molding is performed using an injection mold whose gate area is 20% or more of the maximum cross-sectional area of the cavity as seen from the gate side, a homogeneous molded product without defects can be obtained. .

また射出成形型のゲート形状をキャビティ(成形体)の
投影図形と相似形あるいは近似相似形とすれば更に効果
的に成形体の欠陥発生を防止できる。
Moreover, if the gate shape of the injection mold is made similar or approximately similar to the projected figure of the cavity (molded body), it is possible to more effectively prevent the occurrence of defects in the molded body.

また本発明により肉厚差のある成形体を射出成形により
製造する場合、成形体型の肉厚部に直接開口する射出ゲ
ートを設けることにより、ウェルドライン、ボア等の欠
陥のない成形体を歩留りよく得ることができる。また、
肉厚部が複数ある場合には、各肉厚部に直接開口する射
出ゲートを設けて射出成形することにより、同様に欠陥
のない成形体を得ることができる。
Furthermore, when molded bodies with different wall thicknesses are produced by injection molding according to the present invention, by providing an injection gate that opens directly into the thick part of the molded body, molded bodies without defects such as weld lines and bores can be produced with a high yield. Obtainable. Also,
When there are a plurality of thick parts, a molded article without defects can be similarly obtained by providing an injection gate that opens directly in each thick part and performing injection molding.

更に本発明によれば成形体の温度分布を均一に制御する
ことにより、全体に均質な成形体が得られ、その結果、
寸法精度が良く、高強度で均質なセラミックス焼結体を
得ることかできる。
Furthermore, according to the present invention, by uniformly controlling the temperature distribution of the molded body, a homogeneous molded body can be obtained as a whole, and as a result,
It is possible to obtain a ceramic sintered body with good dimensional accuracy, high strength, and homogeneity.

本発明はいわゆる有機系成形材料及び水系成形材料のい
ずれにも適用でき工業上極めて有用である。
The present invention can be applied to both so-called organic molding materials and aqueous molding materials, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明成形型のダイレクトゲートの場合の説
明図、 第2a図〜第2d図は、それぞれゲート形状とキャビテ
ィ(成形体)投影図形の関係を示す説明図、第3a図お
よび第3b図は、ゲート面積/キャビティ(成形体)最
大横断面積が90%であるゲート形状とキャビティ(成
形体)投影図形の関係を示す説明図、 第4a〜40図、第5a〜50図、第6a〜60図およ
び第7a〜70図は、それぞれ、ゲート側からみたキャ
ビティ投影図形、その相似形状および近似相似形状を示
す説明図、 第9a図は成形体の中心軸に沿った縦断面図、第9b図
および第9c図は、第9a図の成形体の成形型の該要因
、 第10a図および第10b図は成形体のそれぞれ正面図
および側面図、 第1Oc〜10e図は、第10aおよび第10b図の成
形体を製造するための、成形型のそれぞれ概要側面図、 第11図は、本発明における成形用金型の温度勾配を示
すグラフ、 第12図は、有機系射出成形材料の射出成形を示すフロ
ーチャート、 第13〜15図は、それぞれ成形体とゲートの形状を示
す説明図、 第16〜18図は、それぞれゲート面積率に対する成形
歩留りを示すグラフ、 第19図は、水系射出成形材料の射出成形を示すフロー
チャート、 第20〜22図は、それぞれゲート面積率に対する成形
歩留りを示すグラフ、 第23図は、有機系成形材料の調製、射出成形の別の工
程図、 第24図は、有機系成形材料の射出充填過程の模式図、 第25図は、水系成形材料の調製、射出成形の別の工程
図、 第26図は、水系成形材料の射出充填過程の模式第27
図は有機系射出成形方法の一例を示す更に別のフローシ
ート、 第28図、第29図及び第30a図はそれぞれ本発明で
用いる成形用金型における温度制御例を示す概要図、 第30b図は、第30a図におけるD方向から見た成形
体の概要図であり、 第31図は水系射出成形方法の一例を示す更に別のフロ
ーシートである。 FIG、 / FIG、3σ FIG、3b F7G−4σ FIG、4b FIG、4c FIG、9σ FIG、9b FIG、9c FIG、6σ FIG、6b FIG、6c l6−ll ゲニト刀゛うめ床゛i見オlキ別土−し1゛闇(sec
)FIG、/2 FIG−16 FIG、l7 FIG、18 FIG、/3 FIG、/4 FIG、15 FIG、I9 FIG−20 FIG、21 イードitt貧APC%〕 FIG、24 た 順1程 Mt。 =戸:::冥;二 X二 :広;二 FI6.23 FIG、25 FI6.26 先客Ill!dLjL tz tz 冗−I−+−冥一 =居二 巨弓二 コ渉: コ揚二 戸陽二 臣舅二 フ届二 コ厘二 FI6.28 FIG、 29 C FIG、30σ FIG、30b
Fig. 1 is an explanatory diagram of the direct gate of the mold of the present invention, Figs. 2a to 2d are explanatory diagrams showing the relationship between the gate shape and the cavity (molded body) projected figure, and Fig. 3a and Fig. Figure 3b is an explanatory diagram showing the relationship between the gate shape and the cavity (molded body) projected figure in which the gate area/cavity (molded body) maximum cross-sectional area is 90%; Figures 6a to 60 and Figures 7a to 70 are explanatory diagrams showing a cavity projected figure, a similar shape, and an approximate similar shape, respectively, as seen from the gate side; Figure 9a is a longitudinal cross-sectional view along the central axis of the molded body; Figures 9b and 9c show the factors involved in the molding die of the molded body in Figure 9a, Figures 10a and 10b are front and side views of the molded body, respectively, and Figures 1Oc to 10e are 10a and 10e. Fig. 10b is a schematic side view of a mold for producing a molded article, Fig. 11 is a graph showing the temperature gradient of the molding die in the present invention, and Fig. 12 is a graph showing the temperature gradient of the molding die in the present invention. Flowchart showing injection molding, Figures 13 to 15 are explanatory diagrams showing the shapes of the molded body and gate, respectively, Figures 16 to 18 are graphs showing molding yield with respect to gate area ratio, Figure 19 is water-based injection Flowchart showing the injection molding of the molding material, Figures 20 to 22 are graphs showing the molding yield versus gate area ratio, Figure 23 is another process chart for preparing the organic molding material and injection molding, Figure 24 is a schematic diagram of the injection filling process of an organic molding material, Figure 25 is another process diagram of the preparation and injection molding of a water-based molding material, and Figure 26 is a schematic diagram of the injection filling process of a water-based molding material.
FIG. 28, FIG. 29, and FIG. 30a are schematic diagrams showing examples of temperature control in a mold used in the present invention, and FIG. 30b is a flow sheet showing an example of an organic injection molding method. 30a is a schematic view of the molded article seen from direction D in FIG. 30a, and FIG. 31 is yet another flow sheet showing an example of the water-based injection molding method. FIG, / FIG, 3σ FIG, 3b F7G-4σ FIG, 4b FIG, 4c FIG, 9σ FIG, 9b FIG, 9c FIG, 6σ FIG, 6b FIG, 6c l6-ll Betsuto - Shi 1゛Darkness (sec
) FIG, /2 FIG-16 FIG, l7 FIG, 18 FIG, /3 FIG, /4 FIG, 15 FIG, I9 FIG-20 FIG, 21 Eid itt poor APC%] FIG, 24 Ta-order 1 Mt. =door:::mei;2 X2:wide;2FI6.23 FIG, 25 FI6.26 Previous customer Ill! dLjL tz tz Jau-I-+-Meiichi = Iiji Kyoyumiji Ko Wataru: Koyo Nito Yoji Omifuji Fu Nuriji Ko Rinji FI6.28 FIG, 29 C FIG, 30σ FIG, 30b

Claims (1)

【特許請求の範囲】 1、セラミックス成形材料を射出成形機により成形型の
キャビティにゲートを経て射出することよりなるセラミ
ックスの射出成形方法において、前記ゲートがゲート側
から見た前記キャビティの最大横断面積の少なくとも2
0%の面積を有してなる成形型を用い、かつ加圧終了時
、成形型内の成形体温度分布が±0.5℃以内となるよ
うに成形型の温度勾配を制御することを特徴とする成形
方法。 2、前記ゲートの形状を該ゲート側から見たキャビティ
の投影形状と実質的に相似形となし、それによって該ゲ
ートを通過した成形材料がキャビティの形状に沿って流
れるよう制御する請求項1の成形方法。 3、前記キャビティがそれぞれ少なくとも1つの肉厚部
と肉薄部とよりなり、前記ゲートを各肉厚部に開口せし
めることにより、射出した成形材料を肉厚部から肉薄部
へ向かって充填する請求項1または2の成形方法。 4、成形型の温度勾配を下記不等式を満足するように設
定する請求項1、2または3の成形方法。 x≦y≦5x ただし、xはゲートから測温部位までの成形材料の移動
時間(秒)であり、yはゲートと測温部位との間におけ
る成形型の温度差(℃)である。 5、成形体形状に対応する形状を有するキャビティと射
出ノズルから該キャビティへ成形材料を導くための成形
材料導入部からなるセラミックス成形用射出成形型にお
いて、ゲートの面積がゲート側から見た前記キャビティ
の最大横断面積の少なくとも20%であるとともに前記
キャビティのゲート近傍から内奥部へ向かう複数の区画
にそれぞれ加熱手段と温度制御手段と成形体温度測定手
段とを具えてなることを特徴とする成形型。 6、成形体形状に対応する形状を有するキャビティと射
出ノズルから該キャビティへ成形材料を導くための成形
材料導入部とからなるセラミックス成形用射出成形型に
おいて、前記キャビティが少なくとも1つの肉厚部を含
んでなり、かつ該少なくとも1つの肉厚部にそれぞれ直
接開口するゲートを具えてなると共に、該ゲートの面積
がゲート側から見た前記キャビティの最大横断面積の少
なくとも20%であることを特徴とする成形型。 7、前記ゲートの形状が該ゲート側から見たキャビティ
の投影形状と実質的に相似形をなす請求項5または6の
成形型。
[Claims] 1. In a ceramic injection molding method comprising injecting a ceramic molding material into a cavity of a mold by an injection molding machine through a gate, the gate has a maximum cross-sectional area of the cavity when viewed from the gate side. at least 2 of
A mold having an area of 0% is used, and the temperature gradient of the mold is controlled so that the temperature distribution of the molded object within the mold is within ±0.5°C at the end of pressurization. molding method. 2. The shape of the gate is substantially similar to the projected shape of the cavity as seen from the gate side, so that the molding material passing through the gate is controlled to flow along the shape of the cavity. Molding method. 3. Each of the cavities includes at least one thick wall portion and at least one thin wall portion, and the injected molding material is filled from the thick wall portion toward the thin wall portion by opening the gate in each thick wall portion. Molding method 1 or 2. 4. The molding method according to claim 1, 2 or 3, wherein the temperature gradient of the mold is set to satisfy the following inequality. x≦y≦5x However, x is the travel time (seconds) of the molding material from the gate to the temperature measurement site, and y is the temperature difference (° C.) of the mold between the gate and the temperature measurement site. 5. In an injection mold for ceramics molding comprising a cavity having a shape corresponding to the shape of the molded object and a molding material introduction part for guiding the molding material from the injection nozzle to the cavity, the area of the gate is the size of the cavity when viewed from the gate side. 20% of the maximum cross-sectional area of the cavity, and a plurality of sections extending from the vicinity of the gate to the innermost part of the cavity are each provided with a heating means, a temperature control means, and a molded body temperature measuring means. Type. 6. An injection mold for ceramics molding comprising a cavity having a shape corresponding to the shape of the molded object and a molding material introduction part for guiding the molding material from the injection nozzle to the cavity, wherein the cavity has at least one thick part. and further comprising a gate that opens directly into each of the at least one thickened portion, and the area of the gate is at least 20% of the maximum cross-sectional area of the cavity when viewed from the gate side. Molding mold. 7. The mold according to claim 5 or 6, wherein the shape of the gate is substantially similar to the projected shape of the cavity viewed from the gate side.
JP15745890A 1990-06-18 1990-06-18 Ceramic injection molding method and molding die used therefor Expired - Fee Related JP2513905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15745890A JP2513905B2 (en) 1990-06-18 1990-06-18 Ceramic injection molding method and molding die used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15745890A JP2513905B2 (en) 1990-06-18 1990-06-18 Ceramic injection molding method and molding die used therefor

Publications (2)

Publication Number Publication Date
JPH0449003A true JPH0449003A (en) 1992-02-18
JP2513905B2 JP2513905B2 (en) 1996-07-10

Family

ID=15650104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15745890A Expired - Fee Related JP2513905B2 (en) 1990-06-18 1990-06-18 Ceramic injection molding method and molding die used therefor

Country Status (1)

Country Link
JP (1) JP2513905B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195140A (en) * 2012-03-16 2013-09-30 Denso Corp Gas sensor element and manufacturing method of the same
JP2014206426A (en) * 2013-04-12 2014-10-30 株式会社デンソー Random sensor element and manufacturing method thereof
JP2014206427A (en) * 2013-04-12 2014-10-30 株式会社デンソー A/f sensor element and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195140A (en) * 2012-03-16 2013-09-30 Denso Corp Gas sensor element and manufacturing method of the same
US9540282B2 (en) 2012-03-16 2017-01-10 Denso Corporation Gas sensor element and its manufacturing method
JP2014206426A (en) * 2013-04-12 2014-10-30 株式会社デンソー Random sensor element and manufacturing method thereof
JP2014206427A (en) * 2013-04-12 2014-10-30 株式会社デンソー A/f sensor element and manufacturing method thereof
US9594050B2 (en) 2013-04-12 2017-03-14 Denso Corporation A/F sensor element and method of manufacturing the same
US9804119B2 (en) 2013-04-12 2017-10-31 Denso Corporation A/F sensor element and method of manufacturing the same

Also Published As

Publication number Publication date
JP2513905B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US5238627A (en) Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor
CN105563616B (en) The forming method of zirconia ceramic product
CN105541324B (en) The preparation method of phone housing
US5066449A (en) Injection molding process for ceramics
EP0161494A1 (en) A method for the freeze-pressure molding of inorganic powders
EP0356461B1 (en) Forming of complex high performance ceramic and metallic shapes
JPH06316709A (en) Dome-shaped extrusion die and manufacture thereof
EP0345022B1 (en) Method for producing ceramics sintered article
JPH0555461B2 (en)
Samuel et al. Near-net-shape forming of zirconia optical sleeves by ceramics injection molding
JPH02172852A (en) Production of ceramics
Zhang et al. Injection moulding of silicon carbide using an organic vehicle based on a preceramic polymer
JPH0449003A (en) Ceramic injection molding method and molding die used for said method
US20140077403A1 (en) Process for manufacturing coloured ceramic parts by pim
CN107382311A (en) A kind of preparation method of ceramic component
RU2707307C1 (en) Method of forming semi-finished articles of complex shape from silicon powder
JPH0536204B2 (en)
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
JPH02171206A (en) Injection molding method of ceramics
JPH0470122B2 (en)
JPH0820803A (en) Production of sintered compact
De With et al. Injection moulding of zirconia (Y-TZP) ceramics
JPH0641601B2 (en) Molding composition
JPH05194029A (en) Zirconia sintered compact and its production
JPH064504B2 (en) Method for manufacturing ceramics sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees