JP2006306681A - Method for manufacturing large-sized thin-walled ceramic body - Google Patents

Method for manufacturing large-sized thin-walled ceramic body Download PDF

Info

Publication number
JP2006306681A
JP2006306681A JP2005133764A JP2005133764A JP2006306681A JP 2006306681 A JP2006306681 A JP 2006306681A JP 2005133764 A JP2005133764 A JP 2005133764A JP 2005133764 A JP2005133764 A JP 2005133764A JP 2006306681 A JP2006306681 A JP 2006306681A
Authority
JP
Japan
Prior art keywords
ceramic body
mold
producing
ceramic
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005133764A
Other languages
Japanese (ja)
Other versions
JP5099658B2 (en
Inventor
Hidenori Kita
英紀 北
Naoki Kondo
直樹 近藤
Hideki Hiuga
秀樹 日向
Shuzo Kanzaki
修三 神崎
Takahiro Gama
隆弘 蒲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kubota Corp
Priority to JP2005133764A priority Critical patent/JP5099658B2/en
Publication of JP2006306681A publication Critical patent/JP2006306681A/en
Application granted granted Critical
Publication of JP5099658B2 publication Critical patent/JP5099658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing, at a low cost and stably, a ceramic body having a large size, a large area, and a thin wall. <P>SOLUTION: The method for manufacturing a large-sized thin-walled ceramic body comprises: a step, in which slurry of a ceramic raw material powder is poured into a die having heat resistance, dried, and solidified; and a step, in which a formed body formed in the inside or on the surface of the die is placed in a firing furnace together with the die without taking out the body from the die, heated to a prescribed temperature, sintered, and taken out from the die after cooling of the furnace. Since the ceramic body is fired as it is after forming without being taken out from the die, handling of the formed body becomes unnecessary, so that the large-sized thin-walled ceramic body is easily obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高精度大型薄肉セラミック体及びその製造方法等に関するものであり、更に詳しくは、焼成セッターのように、大型、大面積でありながら薄肉であるために、焼結前の状態である成形体のハンドリングが非常に困難な形状及び形態のセラミック体製品、そのハンドリングを容易にして製造する方法及び装置に関するものである。本発明は、従来法では、成形体のハンドリングが困難であり、焼結時の寸法変化が大きく、焼結過程における変形や反りを小さく抑えることができなかった焼成セッターのような大型、大面積で薄肉のセラミック体製品を簡便な操作手段及び工程で、しかも、従来法の問題点を確実に解決して、製造することを可能とする上記焼成セッター等の製造技術及びその高精度大型薄肉セラミック体製品を提供するものである。   The present invention relates to a high-precision large-sized thin ceramic body and a method for manufacturing the same, and more specifically, since it is large and large-area thin like a sintered setter, it is in a state before sintering. The present invention relates to a ceramic body product having a shape and shape that makes it extremely difficult to handle a molded body, and a method and an apparatus for manufacturing the ceramic body product easily. The present invention is difficult to handle the molded body in the conventional method, has a large dimensional change during sintering, and could not suppress deformation and warpage during the sintering process. Manufacturing technology such as the above-mentioned fired setter and its high-precision large-sized thin-walled ceramic, which can manufacture a thin-walled ceramic body product with simple operation means and processes, and which can reliably solve the problems of the conventional methods It provides body products.

本発明は、従来セラミック製品として公知の焼成セッター等の大型薄肉セラミック体製品を、高精度で、高効率で、高品質を維持して生産するための新しい生産技術を新たに提案するものである。従来の大型薄肉セラミック体製品の製造方法としては、例えば、以下のような公知例があげられる。即ち、(1)アルミナ粉末を添加混合した粘土粉末に超高温用セラミツクフアイバ−短繊維を混合して型付けした後、乾燥・焼成することにより、苛酷な自然条件下での使用に適した建築用セラミツク板を製造する、建築用セラミツク板の成形方法が提案されている(特許文献1)。そして、この方法では、粘土粉末とセラミツクフアイバ−短繊維は予め混合して型内に吹付けてもよいとされている。   The present invention newly proposes a new production technique for producing a large thin ceramic body product such as a fired setter, which is known as a conventional ceramic product, with high accuracy, high efficiency and high quality. . As a conventional method for producing a large thin ceramic body product, for example, the following known examples can be cited. That is, (1) The ceramic powder added with alumina powder and mixed with ultra-high temperature ceramic fiber and molded, then dried and fired, which is suitable for use under severe natural conditions A method for forming a ceramic board for construction which produces a ceramic board has been proposed (Patent Document 1). In this method, clay powder and ceramic fiber short fibers may be mixed in advance and sprayed into a mold.

また、(2)大型や複雑形状のセラミツクス成形体でも、クラツクの発生が無く、変形が極めて少なく、寸法精度が良好な焼結体にすることができる方法を提供するものとして、セラミツクス成形体の焼結方法においては、焼成治具内にセラミツクス粉体を入れ、セラミツクス粉体を15〜70%の相対密度にタツピングして粉体ベツドを形成し、粉体ベツドの上にセラミツクス成形板を配置し、セラミツクス成形板上にセラミツクス成形体を載置した後で焼結を行う、セラミツクス成形体の焼結方法が提案されている(特許文献2)。そして、この方法では、セラミツクス成形体とセラミツクス成形板とを同じ材質のセラミツクスにより形成することが好ましく、セラミツクス成形板の上面の平面度が1mm以下であり、かつセラミツクス成形体とセラミツクス成形板の焼結収縮率の差が1%以内であることが好ましいとされている。   In addition, (2) even if a ceramic molded body having a large size or a complicated shape is provided, there is provided a method for producing a sintered body having no cracks, extremely little deformation, and good dimensional accuracy. In the sintering method, ceramic powder is placed in a firing jig, the ceramic powder is tapped to a relative density of 15 to 70% to form a powder bed, and a ceramic molding plate is placed on the powder bed. A method for sintering a ceramics molded body is proposed, in which sintering is performed after the ceramics molded body is placed on the ceramics molded plate (Patent Document 2). In this method, the ceramics molded body and the ceramics molded plate are preferably formed of ceramics made of the same material, the flatness of the upper surface of the ceramics molded plate is 1 mm or less, and the ceramics molded body and the ceramics molded plate are sintered. The difference in the rate of contraction is preferably 1% or less.

また、(3)練土状の可塑性セラミツク組成物を出発原料とし、この出発原料を真空押出し成形機あるいは真空土練機により、角柱状、円柱状あるいはその他の形状に押出し成形した成形体をプレス機により加圧成形することにより、
内部歪みを除去し、かつ密度の均一な加圧成形体に成形する、大型薄肉のセラミツク板体の成形方法及び成形型が提案されている(特許文献3)。
(3) Pressing a molded body obtained by extruding the starting material into a prismatic shape, a cylindrical shape, or other shape by using a vacuum extrusion molding machine or a vacuum kneading machine using a clay-like plastic ceramic composition as a starting material. By press molding with a machine,
There has been proposed a molding method and a molding die for a large-sized thin-walled ceramic plate that eliminates internal strain and is molded into a pressure-molded body having a uniform density (Patent Document 3).

また、(4)(A)可塑性のないセラミツクスはい土100部と、有機質繊維(例;古紙の解砕物)及び/又は無機質繊維(例;ムライト繊維)2〜20部とを、水で混練してスラリー(固形分含有量;5〜25%)とし、次に、上記スラリ−に、それぞれ0.1〜1%のアニオン系分散剤とカチオン系凝集剤とを添加し、撹拌した後、ウエツトマシ−ン等を用いて脱水し、生成されたフロツクを積層させてウエツトマツト(グリ−ンシ−ト)を作成し、次いで、常法に従い、乾燥、焼成して製品を得る、可塑性なきはい土を使用する大型板状セラミツクスの成形方法が提案されている(特許文献4)。この方法では、上記ウエツトマツトは、大型(例;500×500×4mm程度)であつても移動、運搬に耐えるだけのグリ−ン強度、たわみ性を有しているので、容易に大型製品を製造することができるとされている。   In addition, (4) (A) 100 parts of ceramics earth without plasticity and 2-20 parts of organic fibers (eg, crushed waste paper) and / or inorganic fibers (eg, mullite fibers) are kneaded with water. Slurry (solid content: 5 to 25%), and then 0.1 to 1% of an anionic dispersant and a cationic flocculant are added to the slurry and stirred. -Dehydrated using corn, etc., and the resulting flocs are laminated to create a wet mat (green sheet), then dried and fired according to conventional methods to obtain a product. A method for forming large plate-like ceramics has been proposed (Patent Document 4). In this method, even if the above-mentioned wet mat is large (eg, about 500 × 500 × 4 mm), it has a green strength and flexibility enough to withstand movement and transportation, so large products can be easily manufactured. It is supposed to be possible.

更に、(5)一対の無端ベルトコンベアを適当な空間をおいて、搬送面が地面と垂直になるように設置し、搬送面においては原材料である硬化あるいはゲル化するバインダーを含んだセラミックスラリーを加熱する手段を有し、セラミックスラリーの供給装置と併せて、セラミック生成形体を連続生産できる、セラミック生成形体の製造装置が提案されている(特許文献5)。   Furthermore, (5) a pair of endless belt conveyors are placed with an appropriate space so that the transport surface is perpendicular to the ground surface, and the ceramic slurry containing a binder that is a raw material to be cured or gelled is formed on the transport surface. An apparatus for producing a ceramic production form has been proposed which has means for heating and can continuously produce a ceramic production form together with a ceramic slurry supply device (Patent Document 5).

しかしながら、上記公知の事例に記載されたいずれの方法も、大型セラミック成形体の製造方法に係るものであるが、これらの方法では、いずれも、成形体のハンドリングが困難であるために、サイズや厚さ等に大きな制約がある。各公知例において、以下の通りのその他の問題点がある。即ち、上記(1)では、セラミック短繊維を使用しており、非酸化物でなる板を作製する場合、焼成過程で短繊維は脆化するために、不適当である。上記(2)では、成形体を操作する必要があり、薄肉化には限界がある。上記(3)では、押し出し成形機のような大掛かりな設備が必要となる。上記(4)では、原料成分が特定されており、また、繊維を使用するため、非酸化物セラミックスのシートを作製することは困難である。上記(5)では、成形体の大きさに制約があり、また、大型化に伴い設備も大きくなり、コストアップとなる。また、熱硬化樹脂の使用量が多くなるため、コストアップに繋がるだけでなく、環境負荷も大きい。   However, any of the methods described in the above known examples relate to a method for producing a large ceramic molded body. However, in these methods, since the handling of the molded body is difficult, There are major restrictions on thickness. Each known example has the following other problems. That is, in the above (1), ceramic short fibers are used, and when producing a plate made of non-oxide, the short fibers are not suitable because they become brittle during the firing process. In said (2), it is necessary to operate a molded object and there exists a limit in thinning. In the above (3), a large facility such as an extrusion molding machine is required. In (4) above, the raw material components are specified, and since fibers are used, it is difficult to produce a sheet of non-oxide ceramics. In the above (5), there is a restriction on the size of the molded body, and the equipment becomes larger and the cost increases with the increase in size. In addition, since the amount of the thermosetting resin used is increased, not only the cost is increased but also the environmental load is large.

このように、従来の手法では、例えば、焼成セッターのような、大型、大面積で薄肉の板状部材は、焼成前の状態(成形体)は、強度が低く、ハンドリングが極めて困難であること、また、焼成により緻密化する場合、焼成収縮に伴いセッターとの摩擦力により不均一な応力による、変形が生じること、また、大型化に対応して大型設備も必要となり、コストアップ要因となること、等の問題点があり、当技術分野では、それらの問題点の無い新しい製造技術の開発が強く求められていた。   Thus, in the conventional method, for example, a large-sized, large-area, thin-walled plate-like member such as a firing setter has a low strength before firing (molded body) and is extremely difficult to handle. Also, when densified by firing, deformation due to non-uniform stress due to frictional force with the setter accompanying firing shrinkage, and large equipment is also required in response to upsizing, leading to increased costs In this technical field, there has been a strong demand for the development of new manufacturing techniques that do not have these problems.

特開昭59−184763号公報JP 59-184863 A 特開平10−251073号公報JP-A-10-251073 特開平08−72036号公報Japanese Patent Laid-Open No. 08-72036 特開昭60−166258号公報JP-A-60-166258 特開平08−039539号公報Japanese Patent Application Laid-Open No. 08-039539

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術におけるような問題点が無く、大型薄肉セラミック体を簡便な操作手段及び工程でハンドリング良く生産することができる新しい製造技術を開発することを目標として鋭意研究を重ねた結果、型の内部あるいは表面に形成された成形体を脱型せずに、型ごと所定温度に加熱し、成形体を焼結せしめる工程と反応焼結工程とを採用することにより所期の目的を達成し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。本発明は、上述の課題を解決することのでき、低コストで高精度の大型薄肉セラミック体を安定して高効率で製造できる技術及び該方法で製造される高精度大型薄肉セラミック体製品を提供することを目的とするものである。   Under such circumstances, in view of the prior art, the present inventors have no problems as in the prior art, and can produce a large thin ceramic body with easy handling means and processes with good handling. As a result of intensive research aimed at developing a new manufacturing technology that can be done, the molded body formed inside or on the surface of the mold is heated to a predetermined temperature without demolding, and the molded body is sintered. It has been found that the intended purpose can be achieved by adopting the process and the reactive sintering process, and further research has been made to complete the present invention. The present invention provides a technology capable of solving the above-mentioned problems and capable of stably producing a large thin ceramic body with high accuracy at low cost and high efficiency, and a high precision large thin ceramic body product produced by the method. It is intended to do.

また、通常、セラミックスの焼結では、被焼結物以外の炉全体を加熱する方法が一般であり、投入されるエネルギーの大部分は被焼成物以外の加熱に費やされ、その効率は極めて悪いが、本発明では、反応焼結工程を採用することにより、それらの問題点を解決した大型薄肉セラミック体の製造技術を提供することを目的とするものである。   In general, in sintering ceramics, a method of heating the entire furnace other than the object to be sintered is generally used, and most of the input energy is spent on heating other than the object to be fired, and its efficiency is extremely high. Although it is bad, in this invention, it aims at providing the manufacturing technique of the large-sized thin ceramic body which solved those problems by employ | adopting a reaction sintering process.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)セラミック原料粉末スラリーの成形体を脱型せず、型ごと焼結した反応焼結材から成ることを特徴とする大型薄肉セラミック体。
(2)セラミック体が、ケイ素及び/又は窒化ケイ素の原料粉末の反応焼結材から成る前記(1)に記載の大型薄肉セラミック体。
(3)セラミック体が、ケイ素、アルミナ、又はジルコニア系焼結材からなる前記(1)に記載の大型薄肉セラミック体。
(4)焼結時の収縮率が8%以下に抑制された反応焼結材から成る前記(1)に記載の大型薄肉セラミック体。
(5)焼結時の変形や反り及び寸法変化が抑制された反応焼結材から成る前記(1)に記載の大型薄肉セラミック体。
(6)耐熱性を有する型にセラミック原料粉末スラリーを注入し、乾燥、固化させる工程、型の内部あるいは表面に形成された成形体を脱型せず、型ごと所定温度に加熱し、前記成形体を焼結せしめる工程、及び、冷却後、型から焼結体を取り出す工程から成ることを特徴とする大型薄肉セラミック体の製造方法。
(7)上記セラミック原料粉末が、ケイ素を含む前記(6)に記載の大型薄肉セラミック体の製造方法。
(8)上記焼結が、ケイ素を雰囲気ガスとの反応により窒化物に転化させる反応焼結過程を含む前期(6)に記載の大型薄肉セラミック体の製造方法。
(9)上記耐熱性を有する型が、カーボン材料の型である前記(6)に記載の大型薄肉セラミック体の製造方法。
(10)上記固化が、スラリーのゲル化反応による固化である前記(6)に記載の大型薄肉セラミック体の製造方法。
(11)上記耐熱性を有する型が、多孔質セラミックスの型である前記(6)に記載の大型セラミック体の製造方法。
(12)上記耐熱性を有する型の材料が、導電性の多孔質セラミックスである前記(6)に記載の大型セラミック体の製造方法。
(13)上記導電性の多孔質セラミックスの型に直接通電し、型内の成形物を固化、焼結させる前記(12)に記載の大型セラミック体の製造方法。
(14)上記導電性の多孔質セラミックスが、吸水性のあるカーボン、窒化ケイ素系多孔材、又は炭化ケイ素系多孔材である前記(12)に記載の大型セラミック体の製造方法。
(15)上記多孔質セラミックスが、反応焼結窒化ケイ素であることを特徴とする前記(6)、(11)、(12)に記載の大型セラミック体の製造方法。
(15)上記固化が、スラリーに含まれる液体成分の多孔質内への吸水作用による前記(6)又は(12)に記載の大型薄肉セラミック体の製造方法。
(17)上記焼結過程において、セラミックスの収縮率が8%を超えない前記(6)から(14)のいずれかに記載の大型セラミック体の製造方法。
(18)導電性の多孔質セラミックスから成るスラリー成形型、該成形型に通電可能に取り付けた電極、及び成形型の反り防止プレートから成ることを特徴とする通電焼結装置。
(19)上記スラリー成形型が、複数の分割された多孔体単位の組み立て集合体から成る前記(18)に記載の装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A large-sized thin ceramic body comprising a reaction sintered material obtained by sintering a mold of a ceramic raw material powder slurry without demolding.
(2) The large thin ceramic body according to (1), wherein the ceramic body is made of a reaction sintered material of raw material powder of silicon and / or silicon nitride.
(3) The large thin ceramic body according to (1), wherein the ceramic body is made of silicon, alumina, or a zirconia-based sintered material.
(4) The large thin ceramic body according to (1), which is made of a reaction sintered material whose shrinkage rate during sintering is suppressed to 8% or less.
(5) The large thin ceramic body according to (1), which is formed of a reaction sintered material in which deformation, warpage, and dimensional change during sintering are suppressed.
(6) A process of injecting ceramic raw material powder slurry into a mold having heat resistance, drying and solidifying, and heating the mold to a predetermined temperature together with the mold without removing the molded body formed inside or on the surface of the mold. A method for producing a large thin ceramic body comprising a step of sintering a body and a step of taking out the sintered body from a mold after cooling.
(7) The method for producing a large thin ceramic body according to (6), wherein the ceramic raw material powder contains silicon.
(8) The method for producing a large thin ceramic body according to the previous period (6), wherein the sintering includes a reaction sintering process in which silicon is converted into a nitride by reaction with an atmospheric gas.
(9) The method for producing a large thin ceramic body according to (6), wherein the mold having heat resistance is a mold of a carbon material.
(10) The method for producing a large thin ceramic body according to (6), wherein the solidification is solidification by a gelation reaction of a slurry.
(11) The method for producing a large ceramic body according to (6), wherein the mold having heat resistance is a porous ceramic mold.
(12) The method for producing a large-sized ceramic body according to (6), wherein the heat-resistant mold material is a conductive porous ceramic.
(13) The method for producing a large ceramic body according to (12), wherein the conductive porous ceramic mold is directly energized to solidify and sinter the molded product in the mold.
(14) The method for producing a large-sized ceramic body according to (12), wherein the conductive porous ceramic is water-absorbing carbon, a silicon nitride based porous material, or a silicon carbide based porous material.
(15) The method for producing a large ceramic body as described in (6), (11), or (12) above, wherein the porous ceramic is reaction sintered silicon nitride.
(15) The method for producing a large thin ceramic body according to (6) or (12), wherein the solidification is performed by water absorption of the liquid component contained in the slurry into the porous body.
(17) The method for producing a large ceramic body according to any one of (6) to (14), wherein the shrinkage ratio of the ceramic does not exceed 8% in the sintering process.
(18) An electric current sintering apparatus comprising a slurry mold made of conductive porous ceramics, an electrode attached to the mold so as to be energized, and a warpage prevention plate of the mold.
(19) The apparatus according to (18), wherein the slurry mold includes an assembly of a plurality of divided porous body units.

次に、本発明について更に詳細に説明する。
本発明の高精度大型薄肉セラミック体の製造方法は、耐熱性を有する型にセラミック原料粉末スラリーを注入し、乾燥、固化させる工程、型の内部あるいは表面に形成された成形体を脱型せず、型ごと所定温度に加熱し、前記成形体を焼結せしめる工程、及び、冷却後、型から焼結体を取り出す工程から成ることを特徴とするものである。そして、本発明では、上記の目的を達成するために、以下の手段が採用される。耐熱性を有する型にセラミック原料粉末スラリーを注入し、乾燥、固化させる工程と、型の内部あるいは表面に形成された成形体を脱型せず、型ごと所定温度に加熱し、前記成形体を焼結せしめ、炉冷後、型から焼結体を取り出す工程と、また、ケイ素を含むスラリーを使用し、反応焼結を含む工程とが採用される。
Next, the present invention will be described in more detail.
The method for producing a high-accuracy large thin ceramic body of the present invention includes a step of injecting a ceramic raw material powder slurry into a heat-resistant mold and drying and solidifying the molded body formed inside or on the surface of the mold without demolding. The method comprises the steps of heating the mold together to a predetermined temperature to sinter the molded body, and removing the sintered body from the mold after cooling. And in this invention, in order to achieve said objective, the following means are employ | adopted. The ceramic raw material powder slurry is poured into a heat-resistant mold, dried and solidified, and the molded body formed inside or on the surface of the mold is not demolded and heated to a predetermined temperature together with the molded body. After sintering and furnace cooling, a step of taking out the sintered body from the mold and a step including reactive sintering using a slurry containing silicon are employed.

本発明では、それにより、焼結時の寸法変化が小さく、焼結過程における変形や反りを小さく抑えることができ、低コストで、高精度大型薄肉セラミック体を安定して製造することが実現できる。ここで、加熱は、例えば、導電性を有する型に直接通電等により行い、成形から焼結までを一貫して行う方法、及び成形、乾燥までを行い、型ごと焼成炉内に配して外部加熱により焼結する方法等がある。この場合、型(セッターともなる)と被焼結体の間の反応を抑えるために、BN等の粉末を両者の間に介在させることが効果的であり、好適である。本発明では、大型薄肉セラミック体において、上述の寸法変化、変形や反りを小さく抑制した反応焼結材から成る製品が高精度大型薄肉セラミック体と定義される。   Accordingly, in the present invention, the dimensional change during sintering is small, deformation and warpage in the sintering process can be suppressed, and stable production of a high-precision large-sized thin ceramic body can be realized at low cost. . Here, the heating is performed, for example, by directly energizing the conductive mold, and the process from molding to sintering is performed consistently, and the molding and drying are performed. There is a method of sintering by heating. In this case, in order to suppress the reaction between the mold (which also serves as a setter) and the sintered body, it is effective and preferable to interpose a powder such as BN between the two. In the present invention, in a large thin ceramic body, a product made of a reaction sintered material in which the above dimensional change, deformation and warpage are suppressed to be small is defined as a high precision large thin ceramic body.

本発明では、材料は、窒化ケイ素が主流であるが、アルミナやジルコニアといった耐熱性を有するセラミックスあるいは金属であっても効果は期待できるので、同様に使用することができる。ただし、その場合、収縮率を抑える必要がある。収縮率は、初期の成形体の密度に依存するが、通常の場合、焼結時の収縮率は8%以内となるように焼成条件をコントロールすることが望ましい。   In the present invention, silicon nitride is mainly used as the material, but even if it is a heat-resistant ceramic or metal such as alumina or zirconia, the effect can be expected, so that it can be used similarly. However, in that case, it is necessary to suppress the shrinkage rate. Although the shrinkage rate depends on the density of the initial molded body, it is usually desirable to control the firing conditions so that the shrinkage rate during sintering is within 8%.

本発明では、耐熱性を有する型として、カーボン材料から成る型、多孔質セラミックスから成る型、例えば、導電性の多孔質セラミックスから成る型が使用され、具体的には、例えば、吸水性のあるカーボン、窒化ケイ素多孔材、炭化ケイ素系多孔材、反応焼結窒化ケイ素などが使用される。しかし、型の材料は、これらに限定されるものでは無く、これらと同効もしくは類似の材料であれば同様に使用することができる。   In the present invention, as a mold having heat resistance, a mold made of a carbon material, a mold made of porous ceramics, for example, a mold made of conductive porous ceramics is used. Carbon, silicon nitride porous material, silicon carbide based porous material, reaction sintered silicon nitride and the like are used. However, the material of the mold is not limited to these, and any material having the same effect or similar to these can be used in the same manner.

これらの耐熱性を有する型に注入するセラミック原料粉末スラリーとしては、例えば、ケイ素、ケイ素及び窒化ケイ素の混合粉末から成るスラリー、ケイ素、Al、Yの混合粉末から成るスラリー、アルミナやジルコニアの原料粉末から成るスラリー、その他、ムライト、チタン酸アルミ、炭化ケイ素、コージェライトが例示される。しかし、これらに制限されるものではなく、通常の大型薄肉セラミック体の原料として使用し得るものであれば、同様に使用することができる。 Examples of the ceramic raw material powder slurry injected into these heat-resistant molds include a slurry made of a mixed powder of silicon, silicon and silicon nitride, a slurry made of a mixed powder of silicon, Al 2 O 3 and Y 2 O 3 , Examples include slurry made of raw material powders of alumina and zirconia, mullite, aluminum titanate, silicon carbide, and cordierite. However, it is not limited to these, and can be used in the same manner as long as it can be used as a raw material for an ordinary large thin ceramic body.

本発明では、上記耐熱性を有する型にセラミック原料粉末スラリーを注入し、乾燥、固化させる工程が採用されるが、これらでは、セラミック成形体作製の通常の手段が使用される。また、上記固化させる手段としては、スラリーのゲル化反応による固化や、セラミックスの型に直接通電し、型内の成形物を固化、焼結させる方法が例示される。また、固化を、スラリーに含まれる液体成分の多孔質内への吸水作用により行う方法も適宜採用される。次に、本発明では、型の内部あるいは表面に形成された成形体を脱型せず、型ごと所定温度に加熱し、前記成形体を焼結せしめ、冷却後、型から焼結体を取り出す工程が採用されるが、上記焼結では、好適には、例えば、ケイ素を雰囲気ガスとの反応により窒化物に転化させる反応焼結手段、セラミックスの型に直接通電し、型内の成形物を固化、焼結する手段が採用される。   In the present invention, a process of injecting ceramic raw material powder slurry into the above heat-resistant mold, drying and solidifying it is adopted, and in these, a normal means for producing a ceramic molded body is used. Examples of the means for solidification include solidification by gelation reaction of a slurry, and methods of solidifying and sintering a molded product in a mold by directly energizing a ceramic mold. Moreover, a method of solidifying by a water absorbing action into the porous material of the liquid component contained in the slurry is also appropriately employed. Next, in the present invention, the molded body formed inside or on the surface of the mold is not demolded, the whole mold is heated to a predetermined temperature, the molded body is sintered, and after cooling, the sintered body is taken out from the mold. In the above-mentioned sintering, for example, a reaction sintering means for converting silicon into a nitride by reaction with an atmospheric gas, for example, a ceramic mold is directly energized, and the molded product in the mold is Means for solidification and sintering is employed.

本発明では、好適には、例えば、成形型として、例えば、中子ピンで分割された多孔体を組み立てて型を構成する工程、該成形型にスラリーを流し込み、乾燥、固化して成形体を作製する工程、次いで、中子ピンを抜き、成形体を脱型せず、型ごと焼成炉に入れ、所定温度で加熱、焼成し、反応焼成体とする工程、炉冷後、これを取り出し、製品とする工程、が採用される。   In the present invention, for example, as a mold, for example, a step of assembling a porous body divided by core pins to form a mold, a slurry is poured into the mold, dried and solidified to form a molded body The step of producing, then, removing the core pin, without removing the molded body, putting it in a firing furnace together with the mold, heating and firing at a predetermined temperature, and making it as a reaction fired body, taking out this after furnace cooling, The process of making the product is adopted.

上記焼成工程では、好適には、例えば、ケイ素と窒化ケイ素の混合粉末の場合、1400〜1450℃、260〜300MPa、ケイ素、アルミナ及びイットリアの反応焼結の場合、1400〜1800℃、248〜645MPa、アルミナの焼結の場合、1000〜1800℃、5〜375MPa、ジルコニアの焼結の場合、1000〜1800℃、7〜657MPa、の各条件が採用されるが、これらに制限されるものではなく、焼結材の種類に応じて任意に設定することができる。   In the above firing step, for example, in the case of a mixed powder of silicon and silicon nitride, 1400 to 1450 ° C., 260 to 300 MPa, in the case of reactive sintering of silicon, alumina and yttria, 1400 to 1800 ° C., 248 to 645 MPa In the case of sintering of alumina, 1000 to 1800 ° C., 5 to 375 MPa, and in the case of sintering of zirconia, each condition of 1000 to 1800 ° C. and 7 to 657 MPa is adopted, but is not limited thereto. Depending on the kind of the sintered material, it can be arbitrarily set.

本発明では、例えば、上述の工程と、ケイ素を含むスラリーを使用し、反応焼結を含むプロセスを含むプロセスを取り入れることで、従来法のような成形体のハンドリングの困難性の問題が全く無く、焼結時の寸法変化が小さく、焼結過程における変形や反りを小さく抑えた高精度の大型、大面積で薄肉のセラミック焼結体を作製し、提供することが可能となる。本発明では、焼成条件を制御することで、焼結時の収縮率を8%以下に抑えたセラミック焼結体を作製することができる。   In the present invention, for example, by using the above-described process and a process including a process including reactive sintering using a slurry containing silicon, there is no problem of difficulty in handling a molded body as in the conventional method. Therefore, it is possible to produce and provide a high-precision large-sized large-area thin-walled ceramic sintered body that has a small dimensional change during sintering and that suppresses deformation and warpage during the sintering process. In the present invention, a ceramic sintered body in which the shrinkage rate during sintering is suppressed to 8% or less can be produced by controlling the firing conditions.

焼成セッター等の大型、大面積で薄肉の板状セラミックス部材を製造する場合、従来法では、成形体を脱型して焼成炉に搬入するので、1)焼成前の成形体は強度が低く、ハンドリングが極めて困難である、2)焼成収縮に伴い、焼成台とセッター等との摩擦力により生じる不均一な応力により、焼成体に変形が生じる、3)大型化に対応して大型設備が必要となり、高コストを要する、等の問題点があった。これに対し、本発明では、成形型の内部あるいは表面に形成された成形体を脱型せず、所定温度に加熱し、焼成すること、及び、その際に、ケイ素を含むスラリーを使用し、反応焼結を含むプロセスを取り入れること、により、上述の従来技術の問題点を確実に解決して、高精度の反応焼結材から成る、焼成セッター等の大型、大面積で薄肉の板状部材を作製し、提供することが可能となる。   When producing a large, large-area, thin-walled plate-like ceramic member such as a firing setter, the conventional method removes the molded body and loads it into a firing furnace. 1) The molded body before firing is low in strength, It is extremely difficult to handle. 2) Due to the shrinkage of the firing, non-uniform stress caused by the frictional force between the firing table and the setter causes deformation of the fired body. 3) Large equipment is required to cope with the increase in size. Thus, there are problems such as high cost. On the other hand, in the present invention, the molded body formed inside or on the surface of the molding die is not demolded, heated to a predetermined temperature and fired, and at that time, a slurry containing silicon is used, By incorporating processes including reaction sintering, the above-mentioned problems of the prior art are surely solved, and large, large-area, thin-walled plate-like members made of high-accuracy reaction-sintered materials. Can be produced and provided.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)スラリーの調製
Si粉末(#600)、窒化ケイ素粉末(SN−7)を6:4の割合で混合した粉末100gに対して、水を35ml、分散剤(アロンA−6114)を1g、Methacrylamide を7.5g、N-N’-Methylenebisacrylamideを1.5g添加し、ポリエチレン製のポット及び窒化ケイ素製のボールを用いてボールミルを1時間行った。混合後のスラリーをビーカーに移した後、スターラーで撹拌しながら1mlの水に溶解したAnmonium
persulfateを0.13g、 N-N-N’-N’- Tetramethylethylenediamineを1ml加え、ワセリンを塗布した型にスラリーを流し込んだ。
(1) Preparation of slurry 35 g of water and 1 g of dispersing agent (Aron A-6114) are added to 100 g of powder in which Si powder (# 600) and silicon nitride powder (SN-7) are mixed at a ratio of 6: 4. Then, 7.5 g of Methacrylamide and 1.5 g of N—N′-Methylenebisacrylamide were added, and ball milling was performed for 1 hour using a polyethylene pot and silicon nitride balls. The slurry after mixing was transferred to a beaker and then dissolved in 1 ml of water while stirring with a stirrer.
0.13 g of persulfate and 1 ml of NN-N′-N′-Tetramethylethylenediamine were added, and the slurry was poured into a mold coated with petrolatum.

(2)大型薄肉セラミック体の製造(製造例1)
一方、カーボン材料でなる薄板に井桁状に枠を配し、その表面はBNを軽く吹き付け塗布した。このとき、枠内の面積は500×700mmである。この枠内に厚さが約5mmとなるようにスラリーを流し込んだ(図1)。その後、室温で24時間乾燥を行った。脱脂処理後、焼成内に上記型ごと配し、9気圧の窒素雰囲気中、最高、1400℃まで加熱し、反応焼成を行った。炉冷後、取出し、外観上ほとんど変形の無い500×700×5mmの大型薄肉セラミック体を得た。
(2) Production of large thin ceramic body (Production Example 1)
On the other hand, a frame was arranged in a cross pattern on a thin plate made of a carbon material, and BN was lightly sprayed and applied to the surface. At this time, the area in the frame is 500 × 700 mm. Slurry was poured into the frame so that the thickness was about 5 mm (FIG. 1). Thereafter, drying was performed at room temperature for 24 hours. After the degreasing treatment, the above molds were arranged in the firing, and the reaction firing was performed by heating up to 1400 ° C. in a nitrogen atmosphere of 9 atm. After cooling in the furnace, it was taken out, and a large thin ceramic body of 500 × 700 × 5 mm with almost no deformation in appearance was obtained.

(3)大型薄肉セラミック体の製造(製造例2)
また、200×500×で深さ10mmとしたカーボン製の型に電極を取り付け、内部に、製造例1と同様にスラリーを注入した。窒素気流中、通電加熱を行い固化させた。表面の温度を放射温度計により測定しながら通電した。最高、1400℃まで加熱することにより、内部の成形体を焼結することができた。冷却後、取り出し、外観上ほとんど変形の無い200×500×5mmの大型薄肉セラミック体を得た。
(3) Production of large thin ceramic body (Production Example 2)
In addition, an electrode was attached to a carbon mold having a depth of 200 mm and a size of 10 mm, and slurry was injected into the inside in the same manner as in Production Example 1. In a nitrogen stream, electric heating was performed to solidify. The surface was energized while measuring the surface temperature with a radiation thermometer. By heating up to 1400 ° C. at maximum, the molded body inside could be sintered. After cooling, it was taken out to obtain a large thin ceramic body of 200 × 500 × 5 mm with almost no deformation in appearance.

原料として、アルミナ粉末(AL−160SG4)100に対して、分散剤A6114:0.75、水:20の比率となるようこれらを配合して、総計1000gとした。これらを約16時間ボールミルを使って混合した。バインダーとして、寒天(増粘多糖類、ゲル化剤)を5g投入し、更に、2時間混合後、脱泡した。これを同じ材質でなるアルミナの型を実施例1と同様に構成した。なお、型は3分割品であり、それらをセラミックスボルトで固定してひとつの型とした。井桁内部に上記スラリーを鋳込み、約90℃で30分加熱後、1500℃で2時間焼成した。炉冷後、取出し、外観上ほとんど変形の無い大型薄肉セラミック体を得た。   As raw materials, alumina powder (AL-160SG4) 100 was mixed with dispersant A6114: 0.75 and water: 20 to make a total of 1000 g. These were mixed for about 16 hours using a ball mill. As a binder, 5 g of agar (thickening polysaccharide, gelling agent) was added, and the mixture was further defoamed after mixing for 2 hours. An alumina mold made of the same material was constructed in the same manner as in Example 1. The mold was divided into three parts, and they were fixed with ceramic bolts to form one mold. The slurry was cast into a well beam, heated at about 90 ° C. for 30 minutes, and then fired at 1500 ° C. for 2 hours. After cooling in the furnace, it was taken out and a large thin ceramic body with almost no deformation in appearance was obtained.

平均粒径が1ミクロン程度の窒化ケイ素粉末及びアルミナ、イットリアがそれぞれ90:3:5となるように秤量し、所定量のPVA、粉末総重量に対して、140wt%の水を配合し、ボールミルにより混合した。一方、500mm×500mmの枠内寸法として、井桁状の型を構成した。また、型には、直径10ミリ程度の樹脂性中子ピンを格子点位置に間隔25ミリで規則正しく配置した。   A silicon nitride powder having an average particle size of about 1 micron and alumina and yttria are weighed so as to be 90: 3: 5, respectively. A predetermined amount of PVA and the total weight of the powder are mixed with 140 wt% of water. Mixed. On the other hand, a cross-girder-shaped mold was configured as a frame size of 500 mm × 500 mm. In the mold, resin core pins having a diameter of about 10 mm were regularly arranged at a lattice point position with an interval of 25 mm.

なお、この型は、多孔質の反応焼結窒化ケイ素系複合材料で作製されている。この型内にBNを塗布した後、深さが約6mmとなるよう上記スラリーを井桁内に注入した。所定時間経過後、外枠ならびに中子ピンをはずした。乾燥後、0.93MPaの窒素雰囲気中、反応焼結後、最高、1650℃で焼成した。このとき、同じくそり防止のために反応焼結材のプレートでフタをした。得られた焼結体は成形体に対して約5.7%の収縮が生じていることがわかった。炉冷後、取出し、外観上ほとんど変形の無い窒化ケイ素製大型薄肉セラミック体を得た。図2に、工程を示す。   This mold is made of a porous reaction sintered silicon nitride composite material. After applying BN into the mold, the slurry was poured into the well so that the depth was about 6 mm. After a predetermined time, the outer frame and the core pin were removed. After drying, it was fired at a maximum of 1650 ° C. after reaction sintering in a nitrogen atmosphere of 0.93 MPa. At this time, in order to prevent warpage, the reaction sintered material was covered with a plate. It was found that the obtained sintered body contracted by about 5.7% with respect to the molded body. After cooling in the furnace, it was taken out and a large thin ceramic body made of silicon nitride having almost no deformation in appearance was obtained. FIG. 2 shows the process.

ケイ素+窒化ケイ素粉末の混合粉末を原料として、実施例1と同様のプロセスにて、成形体を作製した。温度を変えて焼成を行い、得られた焼結体の焼成過程における収縮率と変形量の関係を図3に示す。反応焼結法で作製しているため、ほとんど変形はないことがわかる。図中、枠内の数字は焼成温度ならびに得られた材料の曲げ強度を示す。また、ここでは変形量(基準面に対する反った面の距離)の許容値を10mm以内とした(以下同様)。   Using a mixed powder of silicon + silicon nitride powder as a raw material, a molded body was produced in the same process as in Example 1. FIG. 3 shows the relationship between the shrinkage rate and the deformation amount in the firing process of the sintered body obtained by firing at different temperatures. It can be seen that there is almost no deformation because the reaction sintering method is used. In the figure, the numbers in the frame indicate the firing temperature and the bending strength of the obtained material. Further, here, the allowable value of the deformation amount (distance of the warped surface with respect to the reference surface) is set within 10 mm (the same applies hereinafter).

ケイ素、アルミナ、イットリア混合粉末を用い、実施例3と同様のプロセスにて、成形体を作製した。温度を変えて焼成を行い、得られた焼結体の焼成過程における収縮率と変形率の関係を図4に示す。収縮率は8%以内とすることが望ましい。   Using a mixed powder of silicon, alumina, and yttria, a molded body was produced in the same process as in Example 3. FIG. 4 shows the relationship between the shrinkage rate and the deformation rate in the firing process of the sintered body obtained by firing at different temperatures. The shrinkage rate is desirably 8% or less.

アルミナ、ジルコニアのスラリーを使って、実施例2と同様のプロセスにて、大型薄肉成形体を作製した。成形後、温度を変えて焼成を行い、そのときの収縮率と変形量の関係をプロットした(図5、図6)。   Using a slurry of alumina and zirconia, a large thin molded article was produced in the same process as in Example 2. After molding, firing was performed at different temperatures, and the relationship between the shrinkage and the deformation amount was plotted (FIGS. 5 and 6).

以上詳述したように、本発明は、高精度の大型薄肉セラミック体の製造方法及びその製品に係るものであり、本発明によれば、耐熱性を有する型にセラミック原料粉末スラリーを注入し、乾燥、固化させる工程と、これを脱型することなく、型とその内部に形成した成形体を同時に焼成炉内に配し、所定温度に加熱し、前記成形体を焼結せしめ、炉冷後、型から焼結体を取り出す工程を採用し、また、ケイ素を含むスラリーを使用し、反応焼結を含むプロセスを取り入れることにより、焼結時の寸法変化が小さく、焼結過程における変形や反りを小さく抑えることができる、高精度の大型薄肉セラミック体を低コストで安定して製造できる方法を提供することができる。   As described above in detail, the present invention relates to a method for producing a high-precision large thin ceramic body and its product, and according to the present invention, a ceramic raw material powder slurry is injected into a mold having heat resistance, After drying and solidifying, and without removing the mold, the mold and the molded body formed in the mold are simultaneously placed in a firing furnace, heated to a predetermined temperature, the molded body is sintered, and after the furnace is cooled By adopting a process to take out the sintered body from the mold, and using a slurry containing silicon and incorporating a process including reactive sintering, the dimensional change during sintering is small, and deformation and warpage in the sintering process It is possible to provide a method capable of stably producing a high-precision large-sized thin ceramic body at a low cost.

ゲルキャストによる大型薄肉セラミック体の製造方法の概要を示す。An outline of a method for producing a large thin ceramic body by gel casting will be described. スリップキャストによる大型薄肉セラミック体の製造方法の概要を示す。An outline of a method for producing a large thin ceramic body by slip casting is shown. 反応焼結窒化ケイ素で薄板を作製したときの収縮率と変形量の関係を示す。The relationship between the shrinkage rate and the amount of deformation when a thin plate is produced from reaction sintered silicon nitride is shown. 二段焼結窒化ケイ素で薄板を作製したときの収縮率と変形量の関係を示す。The relationship between the shrinkage rate and the deformation amount when a thin plate is made of two-stage sintered silicon nitride is shown. アルミナを焼結した場合の収縮率と変形量の関係を示す。The relationship between the shrinkage and the amount of deformation when alumina is sintered is shown. ジルコニアを焼結した場合の収縮率と変形量の関係を示す。The relationship between the shrinkage and the amount of deformation when zirconia is sintered is shown.

Claims (19)

セラミック原料粉末スラリーの成形体を脱型せず、型ごと焼結した反応焼結材から成ることを特徴とする大型薄肉セラミック体。   A large-sized thin ceramic body comprising a reaction sintered material obtained by sintering a mold of a ceramic raw material powder slurry without demolding. セラミック体が、ケイ素及び/又は窒化ケイ素の原料粉末の反応焼結材から成る請求項1に記載の大型薄肉セラミック体。   The large thin ceramic body according to claim 1, wherein the ceramic body is made of a reaction sintered material of raw material powder of silicon and / or silicon nitride. セラミック体が、ケイ素、アルミナ、又はジルコニア系焼結材からなる請求項1に記載の大型薄肉セラミック体。   The large thin ceramic body according to claim 1, wherein the ceramic body is made of silicon, alumina, or a zirconia-based sintered material. 焼結時の収縮率が8%以下に抑制された反応焼結材から成る請求項1に記載の大型薄肉セラミック体。   The large thin ceramic body according to claim 1, comprising a reaction sintered material whose shrinkage rate during sintering is suppressed to 8% or less. 焼結時の変形や反り及び寸法変化が抑制された反応焼結材から成る請求項1に記載の大型薄肉セラミック体。   The large thin ceramic body according to claim 1, comprising a reaction sintered material in which deformation, warpage, and dimensional change during sintering are suppressed. 耐熱性を有する型にセラミック原料粉末スラリーを注入し、乾燥、固化させる工程、型の内部あるいは表面に形成された成形体を脱型せず、型ごと所定温度に加熱し、前記成形体を焼結せしめる工程、及び、冷却後、型から焼結体を取り出す工程から成ることを特徴とする大型薄肉セラミック体の製造方法。   A process of injecting ceramic raw material powder slurry into a mold having heat resistance, drying and solidifying, heating the molded body together with the mold to a predetermined temperature without demolding the molded body formed inside or on the surface, and firing the molded body A method for producing a large thin ceramic body, comprising: a step of binding; and a step of removing a sintered body from a mold after cooling. 上記セラミック原料粉末が、ケイ素を含む請求項6に記載の大型薄肉セラミック体の製造方法。   The method for producing a large thin ceramic body according to claim 6, wherein the ceramic raw material powder contains silicon. 上記焼結が、ケイ素を雰囲気ガスとの反応により窒化物に転化させる反応焼結過程を含む請求項6に記載の大型薄肉セラミック体の製造方法。   The method for producing a large thin ceramic body according to claim 6, wherein the sintering includes a reaction sintering process in which silicon is converted into a nitride by a reaction with an atmospheric gas. 上記耐熱性を有する型が、カーボン材料の型である請求項6に記載の大型薄肉セラミック体の製造方法。   The method for producing a large thin ceramic body according to claim 6, wherein the mold having heat resistance is a mold of a carbon material. 上記固化が、スラリーのゲル化反応による固化である請求項6に記載の大型薄肉セラミック体の製造方法。   The method for producing a large thin ceramic body according to claim 6, wherein the solidification is solidification by a gelation reaction of a slurry. 上記耐熱性を有する型が、多孔質セラミックスの型である請求項6に記載の大型セラミック体の製造方法。   The method for producing a large ceramic body according to claim 6, wherein the mold having heat resistance is a mold of porous ceramics. 上記耐熱性を有する型の材料が、導電性の多孔質セラミックスである請求項6記載の大型セラミック体の製造方法。   The method for producing a large ceramic body according to claim 6, wherein the heat-resistant mold material is a conductive porous ceramic. 上記導電性の多孔質セラミックスの型に直接通電し、型内の成形物を固化、焼結させる請求項12に記載の大型セラミック体の製造方法。   13. The method for producing a large ceramic body according to claim 12, wherein the conductive porous ceramic mold is directly energized to solidify and sinter the molded product in the mold. 上記導電性の多孔質セラミックスが、吸水性のあるカーボン、窒化ケイ素系多孔材、又は炭化ケイ素系多孔材である請求項12に記載の大型セラミック体の製造方法。   The method for producing a large ceramic body according to claim 12, wherein the conductive porous ceramic is water-absorbing carbon, a silicon nitride-based porous material, or a silicon carbide-based porous material. 上記多孔質セラミックスが、反応焼結窒化ケイ素であることを特徴とする請求項6、11、12に記載の大型セラミック体の製造方法。   13. The method for producing a large ceramic body according to claim 6, 11, or 12, wherein the porous ceramic is reaction sintered silicon nitride. 上記固化が、スラリーに含まれる液体成分の多孔質内への吸水作用による請求項6又は12記載の大型薄肉セラミック体の製造方法。   The method for producing a large thin ceramic body according to claim 6 or 12, wherein the solidification is effected by water absorption of the liquid component contained in the slurry into the porous body. 上記焼結過程において、セラミックスの収縮率が8%を超えない請求項6から14のいずれかに記載の大型セラミック体の製造方法。   The method for producing a large ceramic body according to any one of claims 6 to 14, wherein in the sintering process, a shrinkage ratio of the ceramic does not exceed 8%. 導電性の多孔質セラミックスから成るスラリー成形型、該成形型に通電可能に取り付けた電極、及び成形型の反り防止プレートから成ることを特徴とする通電焼結装置。   An electric current sintering apparatus comprising a slurry forming die made of conductive porous ceramics, an electrode attached to the forming die so as to allow electric conduction, and a warpage preventing plate of the forming die. 上記スラリー成形型が、複数の分割された多孔体単位の組み立て集合体から成る請求項18に記載の装置。   The apparatus according to claim 18, wherein the slurry mold comprises an assembly of a plurality of divided porous units.
JP2005133764A 2005-04-28 2005-04-28 Manufacturing method of large thin ceramic body Expired - Fee Related JP5099658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133764A JP5099658B2 (en) 2005-04-28 2005-04-28 Manufacturing method of large thin ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133764A JP5099658B2 (en) 2005-04-28 2005-04-28 Manufacturing method of large thin ceramic body

Publications (2)

Publication Number Publication Date
JP2006306681A true JP2006306681A (en) 2006-11-09
JP5099658B2 JP5099658B2 (en) 2012-12-19

Family

ID=37473998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133764A Expired - Fee Related JP5099658B2 (en) 2005-04-28 2005-04-28 Manufacturing method of large thin ceramic body

Country Status (1)

Country Link
JP (1) JP5099658B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524706A (en) * 2009-04-23 2012-10-18 サン−ゴバン・インダストリエ・ケラミク・レーデンタール・ゲー・エム・ベー・ハー Method, apparatus and use thereof for making ceramic molded parts
CN109053196A (en) * 2018-07-12 2018-12-21 中国电子科技集团公司第五十五研究所 A kind of sintering method of large scale high-temperature co-fired ceramics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190275A (en) * 1983-04-12 1984-10-29 日本軽金属株式会社 Manufacture of reaction sintered ceramics
JPH0687664A (en) * 1992-09-01 1994-03-29 Honda Motor Co Ltd Production of silicon nitride sintered compact
JPH08151275A (en) * 1994-09-27 1996-06-11 Nippon Shokubai Co Ltd Production of ceramic sheet
JP2001122659A (en) * 2000-09-29 2001-05-08 Nippon Shokubai Co Ltd Composition for zirconia green sheet and zirconia green sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190275A (en) * 1983-04-12 1984-10-29 日本軽金属株式会社 Manufacture of reaction sintered ceramics
JPH0687664A (en) * 1992-09-01 1994-03-29 Honda Motor Co Ltd Production of silicon nitride sintered compact
JPH08151275A (en) * 1994-09-27 1996-06-11 Nippon Shokubai Co Ltd Production of ceramic sheet
JP2001122659A (en) * 2000-09-29 2001-05-08 Nippon Shokubai Co Ltd Composition for zirconia green sheet and zirconia green sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524706A (en) * 2009-04-23 2012-10-18 サン−ゴバン・インダストリエ・ケラミク・レーデンタール・ゲー・エム・ベー・ハー Method, apparatus and use thereof for making ceramic molded parts
CN109053196A (en) * 2018-07-12 2018-12-21 中国电子科技集团公司第五十五研究所 A kind of sintering method of large scale high-temperature co-fired ceramics
CN109053196B (en) * 2018-07-12 2021-01-26 中国电子科技集团公司第五十五研究所 Sintering method of large-size high-temperature co-fired ceramic

Also Published As

Publication number Publication date
JP5099658B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
Leo et al. Near‐net‐shaping methods for ceramic elements of (body) armor systems
Zhou et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes
CN102875150B (en) Method for preparing silicon carbide ceramic impeller through gel casting and pressureless sintering
CN103833370A (en) Near shape preparation method of multiphase ceramic Si3N4-SiC
IT201800006916A1 (en) &#34;SUMMARY IN SITU, DENSIFICATION AND CONFORMATION OF NON-OXIDIC CERAMICS BY MEANS OF VACUUM ADDITIVE PRODUCTION TECHNOLOGIES&#34;
JP2006225186A (en) Firing setter and method of manufacturing the same
CN108002843A (en) A kind of preparation method of the high-precision porous silicon nitride complicated shape part based on lotion
Liu et al. A new way of fabricating Si3N4 ceramics by aqueous tape casting and gas pressure sintering
JPH02172852A (en) Production of ceramics
US20060211567A1 (en) Method and slip for production of a moulded body from ceramic material ceramic moulded body and use of such a moulded body
JP5099658B2 (en) Manufacturing method of large thin ceramic body
JP4671501B2 (en) Lightweight ceramic member and manufacturing method thereof
CN115536401A (en) Photocuring formed ceramic based on spark plasma sintering and preparation method thereof
JP2006334976A (en) Method for producing fine ceramic using ultrasonic waves
JP5774289B2 (en) Manufacturing method of ceramic products
JP2592288B2 (en) Method for densifying powder compacts on the premise of sintering
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
JPH064504B2 (en) Method for manufacturing ceramics sintered body
KR20130062597A (en) Eco-friendly castable ceramic composition and the manufacturing method of castable ceramics
JP4771256B2 (en) Large ceramic structure, manufacturing method thereof and ceramic member
TWI239283B (en) Blank body forming device and forming process thereof
GB2241921A (en) Moulding a refractory nozzle for the casting of molten metal
JP4714816B2 (en) Ceramic structure and manufacturing method thereof
JPH0723248B2 (en) Method for manufacturing ceramic molded body
JP2005035154A (en) Cast molding method of yag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees